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Abstract. Fractional calculus is an invaluable tool with significant potential for application in
the physical sciences. This paper focuses on addressing parameterized fractional inequalities for
(s,P) -preinvex functions. In light of this, we introduce the concept of (s,P) -preinvex functions
and investigate their related properties. By considering limited first- and second-order derivative
functions, we present two fractional integral identities with a single parameter using exponential
kernel fractional integrals. Building upon these identities, we establish parameterized integral
inequalities for (s,P) -preinvex functions. To provide a more intuitive display of the results, we
also offer illustrative examples with graphs to demonstrate the validity of our theoretical findings.

1. Introduction

Inequality theory, since its very beginning, has been a focal point of scientific
research, with myriad applications in various domains, including optimization theory
[54], automation control [28], engineering science [46], and even the realm of physics
[20]. Recently, with the assistance of generalized convexity, numerous new inequalities
have been investigated in the context of Riemann integrals by several researchers. For
example, one can refer to Çakmak et al. [12] for h -convex functions, Yaşar et al. [49]
for s-convex functions, Eken et al. [17] for p -convex functions, Zhang et al. [57] for
(,m)-convex functions, Ali et al. [2] for coordinated convex functions, Latif [30] for
GA-convex and geometrically quasiconvex mappings, Fahad et al. [19] for generalized
geometric-arithmetic convex functions, Andrić [3] for (h,g;m)-convex functions and
so on. For more information about the generalized convexity and inequalities, see [42,
43, 4, 35] and the relevant citations therein.

Fractional calculus, a framework that extends classic differential and integral oper-
ations to non-integer orders, surpasses classical calculus in elucidating intricate multi-
scale phenomena. Due to its practicality, fractional calculus has found widespread
applications across diverse fields. For instance, it is employed to tackle challenges
encountered in physical systems, including fluid mechanics [52], electromagnetic wave
propagation [45], as well as nuclear and particle physics [23]. In particular, within these
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domains, fractional integral inequalities play a pivotal role in deriving energy estimates.
These applications have ignited the curiosity of numerous researchers, prompting them
to delve into the extension of integral inequalities using various fractional integral op-
erators. As an illustration, Hezenci et al. [24] derived several fractional Simpson-
type inequalities involving twice-differentiable convex functions within the context
of Riemann-Liouville fractional integrals. Furthermore, Nie et al. [34] presented
Simpson-type inequalities with multiple parameters utilizing generalized (,m)-prein-
vexity via k -fractional integrals. Building upon these foundations, Mohammed [32]
established Hermite-Hadamard’s inequalities for convex functions with respect to in-
creasing functions, leveraging generalized Riemann-Liouville fractional integrals, and
elucidated their connection with previous findings in specific cases. Meanwhile, Butt et
al. derived generalized Hadamard-type inequalities using Atangana–Baleanu fractional
integrals in their work [10], and further extended this approach to establish Hadamard–
Mercer inequalities in Ref. [11]. By utilizing multiplicative k -Riemann–Liouville
fractional integrals, Khan et al. [26] constructed Hermite–Hadamard-type inequalities
for multiplicatively (P,m)-superquadratic functions. Additionally, Erden and Sarikaya
[18] formulated generalized Bullen-type inequalities employing local fractional inte-
grals. Moreover, Du et al. [15] conducted a study on Bullen-type inequalities through
generalized fractional integrals. For more results related to the fractional integral op-
erators, the interested reader is directed to [13, 22, 29, 31] and the references cited
therein.

In 2019, Ahmad et al. [1] constructed a novel category of fractional integral opera-
tors having exponential kernel. This groundbreaking work has since sparked a flurry of
research interest among scholars. For example, Budak et al. [9] formulated Hermite–
Hadamard- and Ostrowski-type fractional inequalities through convex functions. Wu et
al. [48], on the other hand, delved into the bounds estimation of left- and right-sided
fractional Hermite–Hadamard-type inequalities. Considering functions whose absolute
values of first derivatives are convex, Yuan et al. [51] further established the param-
eterized fractional integral inequalities. In Ref. [39], the authors deduced the frac-
tional Hermite–Hadamard-, Hermite–Hadamard–Fejér- and Pachpatte-type inequalities
via exponential convexity. In addition, Zhou et al. [56] introduced the interval-valued
fractional integrals with exponential kernels, and constructed corresponding fractional
integral inclusions. For a comprehensive overview of fractional integrals with exponen-
tial kernels, readers are encouraged to consult [25, 44, 47, 50] and the references cited
therein.

Inspired by previous research, this paper concentrates on investigating estimation-
type outcomes using fractional integral operators with exponential kernels for (s,P)-
preinvex functions. The structure of this article is as follows: following the introduction
and preliminaries, we introduce the concept of (s,P)-preinvex functions, explore their
properties, and establish the fractional Hermite–Hadamard-type inequality for such
functions in Sec. 3. In Sec. 4, considering first- and second-order differentiable cases,
we derive parameterized integral inequalities for (s,P)-preinvex functions that unify
midpoint-, trapezoid-, Simpson-, and Bullen-type inequalities with specific choices of
parameters. Finally, we summarize our main findings and offer insights for future re-
search in Sec. 5.
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2. Preliminaries

This section states the necessary definitions of convexity and fractional integrals,
accompanied by various related results. Throughout this paper, let I ⊆ R be a real-
valued interval and I◦ be the interior of I .

Let’s begin by revisiting the (s,P)-function definitions and the correspondingHer-
mite–Hadamard-type inequality, formulated originally by Numan and İşcan.

DEFINITION 2.1. [37] It is assumed that for some fixed s ∈ (0,1] , the function
g : I ⊆ R → R is called (s,P)-function if the coming inequality

g(tx+(1− t)y) � (ts +(1− t)s)[g(x)+g(y)]

holds for every x,y ∈ I and t ∈ [0,1] .

Evidently, setting s = 1 results in the (s,P)-functions transforming into P-convex
functions.

THEOREM 2.1. [37] It is assumed that g : [a,b] → R is an (s,P)-function with
some fixed s ∈ (0,1] . If g ∈ L1 ([a,b]) , then the following Hermite–Hadamard-type
inequality holds

2s−2g

(
a+b

2

)
� 1

b−a

∫ b

a
g()d � 2

s+1
[g(a)+g(b)]. (2.1)

The notion of invex set is formulated in the expressions below.

DEFINITION 2.2. [5] Considering the mapping  : A×A → R
n , the set A ⊆ R

n

is said to be invex with respect to the mapping  , if for every x,y ∈ A and t ∈ [0,1] ,

x+ t(y,x) ∈ A.

Observe that convex sets inherently possess invex properties under the mapping
(y,x) = y− x , yet the inverse statement is not universally valid.

DEFINITION 2.3. [7] The function g defined on the invex set A⊆R
n , in relation

to the mapping  : A× A → R
n , is said to be preinvex, if it satisfies the following

inequality
g(x+ t(y,x)) � (1− t)g(x)+ tg(y)

for every x,y ∈ A and t ∈ [0,1] .

Preinvexity encompasses convexity, as every convex function is preinvex under the
mapping (y,x) = y− x , whereas the inverse does not necessarily apply.

Below, we retrospect the concept of P-preinvex functions.
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DEFINITION 2.4. [36] Let the set A ⊆ R
n be invex. The function g : A → R is

said to be P-preinvex regarding the mapping  : A×A→R
n , if the following inequality

g(x+ t(y,x)) � g(x)+g(y)

is true for every x,y ∈ A and t ∈ [0,1] .

The Condition C introduced by Mohan and Neogy [33] is the following one.

CONDITION C. Let A ⊆ R
n be an open invex subset with respect to the mapping

 : A×A→R . We say that the mapping  satisfies the Condition C if for every x,y∈A
and t ∈ [0,1] ,

(y,y+ t(x,y)) = −t(x,y),

and
(x,y+ t(x,y)) = (1− t)(x,y).

For every x,y ∈ A and t ∈ [0,1] , we can also readily observe that


(
y+ t2(x,y),y+ t1(x,y)

)
= (t2 − t1)(x,y).

The Hermite–Hadamard’s inequality is the following.

g

(
a+b

2

)
� 1

b−a

∫ b

a
g()d � g(a)+g(b)

2
,

where g : I → R is a convex function defined on the interval I , for any a,b ∈ I with
a < b . This inequality provides estimations for the mean value of a continuous convex
function g : [a,b] → R .

The Simpson’s inequality is stated by the following way.∣∣∣∣∣16
[
g(a)+4g

(
a+b

2

)
+g(b)

]
− 1

b−a

∫ b

a
g()d

∣∣∣∣∣� 1
2880

∥∥g(4)∥∥
(b−a)4,

where g : I →R is a four-order continuously differentiable function on I◦ with
∥∥g(4)

∥∥


= sup
∈I◦

∣∣g(4)()
∣∣ <  .

Bullen [8] proved the following inequality which is known as the Bullen’s inequal-
ity for convex functions.

1
b−a

∫ b

a
g()d � 1

2

[
g

(
a+b

2

)
+

g(a)+g(b)
2

]
.

The definitions of fractional integral operators with exponential kernels, proposed
by Ahmad et al. in 2019, are the subsequent ones.

DEFINITION 2.5. [1] Let g ∈ L1 ([a,b]) . The fractional integrals operators with
exponential kernels, denoted by I 

a+g and I 
b−g of order  ∈ (0,1) , are defined as

the coming expressions, respectively.

I 
a+g(x) =

1


∫ x

a
exp

(
−1−


(x− )

)
g()d, x > a,
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and

I 
b−g(x) =

1


∫ b

x
exp

(
−1−


(− x)

)
g()d, x < b.

From Definition 2.5, it readily yields that

lim
→1

I 
a+g(x) =

∫ x

a
g()d, lim

→1
I 

b−g(x) =
∫ b

x
g()d.

Within the same paper, they formulated a fractional Hermite–Hadamard-type in-
equality with exponential kernels, as specified below.

THEOREM 2.2. [1] Let g : [a,b] → R be a positive convex function with 0 �
a < b. If g ∈ L1 ([a,b]) , then the following inequality for fractional integrals with
exponential kernels holds

g

(
a+b

2

)
� 1−

2(1− e−)
[
I 

a+g(b)+I 
b−g(a)

]
� g(a)+g(b)

2
,

where

 =
1−


(b−a).

A fractional equality for once-differentiable functions was put forth by Yuan et al.
in 2021.

LEMMA 2.1. [51] Let g : [a,b] → R be a differentiable function on (a,b) . If
g′ ∈ L1([a,b]) and 0 �  � 1 , then the following identity for fractional integrals holds

1−
2(1− e−)

[
I 

a+g(b)+I 
b−g(a)

]− (1− )g
(

a+b
2

)
−

g(a)+g(b)
2

=
b−a

2(1− e−)

∫ 1

0
f (t)g′(ta+(1− t)b)dt,

where

f (t) =

⎧⎪⎪⎨
⎪⎪⎩

(1− )(1− e−)+ e−(1−t)− e−t, 0 � t � 1
2
,

(1− )(e−−1)+ e−(1−t)− e−t,
1
2

< t � 1.

Another integral identity involving twice-differentiable functions was presented
by Zhou et al. as follows.

LEMMA 2.2. [55] Let g : [a,b] → R be a twice differentiable function on (a,b) .
If g′′ ∈ L1([a,b]) and 0 �  � 1 , then the following identity for fractional integrals
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holds

1−
2(1− e−)

[
I 

a+g(b)+I 
b−g(a)

]− (1− )g
(

a+b
2

)
−

g(a)+g(b)
2

=
(b−a)2

2

∫ 1

0
u(t)g′′(ta+(1− t)b)dt,

where

u(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t(1− )− 1+ e−− e−t − e−(1−t)

(1− e−)
, 0 � t � 1

2
,

(1− t)(1− )− 1+ e−− e−t − e−(1−t)

(1− e−)
,

1
2

< t � 1.

3. Properties and inequality for (s,P)-preinvex functions

In this section, we introduce the concept of (s,P)-preinvex functions, which draws
inspiration from (s,P)-functions and preinvex functions. We subsequently delve into
their properties and establish the Hermite–Hadamard-type inequality for this function
class.

DEFINITION 3.1. Let A∗ ⊆R be an open invex subset with respect to the mapping
 : A∗ ×A∗ → R . The function g defined on the invex set A∗ is said to be (s,P)-
preinvex function with respect to the mapping  , if the following inequality

g(x+ t(y,x)) �
(
ts +(1− t)s)[g(x)+g(y)

]
(3.1)

holds for every x,y ∈ A∗ and t ∈ [0,1] together with some fixed s ∈ (0,1] .

REMARK 3.1. In Definition 3.1, we consider the following special cases:
(i) Putting s = 1, we get the concept of P-preinvex functions.
(ii) Putting (y,x) = y− x , we obtain the concept of (s,P)-functions.
(iii) Putting s = 1 and (y,x) = y− x , we achieve the concept of P-convex func-

tions.

REMARK 3.2. We note that if g is an (s,P)-preinvex function, then g is nonneg-
ative. In fact, if we take t = 0 in the inequality (3.1), then the following inequality

g(x) � g(x)+g(y)

holds for every x,y ∈ A∗ . Thus, we have g(y) � 0 for all y ∈ A∗ .

Next, we investigate certain properties about the (s,P)-preinvex functions. Since
the proofs of propositions 3.1 and 3.2 are straightforward, we omit them here.
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PROPOSITION 3.1. Let A∗ ⊆ R be an invex set. Assume that f ,g : A∗ → R are
both two (s,P)-preinvex functions with regard to the same mapping  : A∗ ×A∗ → R .
Then, we have that

(i) The function f + g is an (s,P)-preinvex function with regard to the mapping
 .

(ii) If c ∈ R
+ , then c f is an (s,P)-preinvex function with regard to the mapping

 .

PROPOSITION 3.2. Every (s,P)-preinvex function is also an h-preinvex function
regarding the function h(t) = ts +(1− t)s .

We proceed to study the properties of (s,P)-preinvex functions.

PROPOSITION 3.3. Every P-preinvex function is also an (s,P)-preinvex function.

Proof. Since the inequalities

t � ts and 1− t � (1− t)s

are valid for each t ∈ [0,1] and s ∈ (0,1] , we have that

1 � ts +(1− t)s.

Making use of the concept of P-preinvexity, we deduce that

g(x+ t(y,x)) � g(x)+g(y)

�
(
ts +(1− t)s)[g(x)+g(y)

]
.

The proof is done. �

PROPOSITION 3.4. Every nonnegative preinvex function is also an (s,P)-preinvex
function.

Proof. Let g be an arbitrary nonnegative preinvex function on the invex set A∗ ⊆
R . For every x,y ∈ A∗ , t ∈ [0,1] and some fixed s ∈ (0,1] , we obtain that

g(x+ t(y,x)) � (1− t)g(x)+ tg(y)
� (1− t)sg(x)+ tsg(y)

�
(
ts +(1− t)s)[g(x)+g(y)

]
.

This fulfills the proof. �

REMARK 3.3. From the proof of Proposition 3.4, we note that every nonnegative
s-preinvex function is also an (s,P)-preinvex function.
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PROPOSITION 3.5. Let A∗ ⊆ R be an invex set. Suppose that the function g :
A∗ → R is bounded pertaining to the mapping  : A∗ ×A∗ → R . Then, there exists
a number c ∈ R satisfying that G(x) = g(x) + c is an (s,P)-preinvex function with
respect to the mapping  .

Proof. If we take c = sup
x,y∈A∗
z∈[x,y]

[g(z)−g(x)−g(y)], then the following inequality

g(x+ t(y,x)) � g(x)+g(y)+ c

is true for each x,y ∈ A∗ and t ∈ [0,1] . Let G(x) = g(x) + c . For every x,y ∈ A∗ ,
t ∈ [0,1] and some fixed s ∈ (0,1] , we have that

G(x+ t(y,x)) = g(x+ t(y,x))+ c

� g(x)+ c+g(y)+ c

= G(x)+G(y)
� (ts +(1− t)s)[G(x)+G(y)].

This ends the proof. �

PROPOSITION 3.6. Let A∗ ⊆ R be an invex set. If the functions g1,g2 : A∗ →
R are both (s,P)-preinvex concerning the same mapping  : A∗ ×A∗ → R , then the
function g = max{g1,g2} is also (s,P)-preinvex on A∗ with respect to the mapping  .

Proof. By means of the (s,P)-preinvexity, the subsequent inequalities

g1(x+ t(y,x)) � (ts +(1− t)s)[g1(x)+g1(y)]

and

g2(x+ t(y,x)) � (ts +(1− t)s)[g2(x)+g2(y)]

hold for any x,y ∈ A∗ , t ∈ [0,1] and some fixed s ∈ (0,1] . Then, we can derive that

g(x+ t(y,x))
= max{g1(x+ t(y,x)),g2(x+ t(y,x))}
� max{(ts +(1− t)s)[g1(x)+g1(y)],(ts +(1− t)s)[g2(x)+g2(y)]}
� (ts +(1− t)s)max{g1(x),g2(x)}+(ts +(1− t)s)max{g1(y),g2(y)}
= (ts +(1− t)s)[g(x)+g(y)].

This accomplishes the proof. �

PROPOSITION 3.7. Let A∗ ⊆ R be an invex set. Suppose that gi : A∗ → R is an
arbitrary crowd of (s,P)-preinvex functions regarding the mapping  : A∗ ×A∗ → R .
And let g() = sup

i
gi() . If V =

{
 ∈ A∗ : g(v) < 

}
is nonempty, then V is an

interval and g is an (s,P)-preinvex function on V with regard to the mapping  .
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Proof. If x,y ∈V,s ∈ (0,1] and t ∈ [0,1] , then we have that

g(x+ t(x,y)) = sup
i

gi(x+ t(x,y))

� sup
i
{(ts +(1− t)s)[gi(x)+gi(y)]}

� (ts +(1− t)s)
[
sup

i
gi(x)+ sup

i
gi(y)

]
= (ts +(1− t)s)[g(x)+g(y)] <.

This shows that V is an interval. Since it contains every point between any two of its
points, and g is an (s,P)-preinvex function on V . This ends the proof. �

PROPOSITION 3.8. Let A∗ ⊆ R be an invex set. Suppose that the function g :
A∗ → R is related to the mapping  : A∗ ×A∗ → R , which meets Condition C. Then,
the function g is an (s,P)-preinvex function pertaining to the mapping  if and only
if the function  : [0,1] → R defined by (t) = g(x + t(x,y)) is an (s,P)-function
concerning the mapping  for all x,y ∈ A∗ .

Proof. “⇐=” Suppose that  is an (s,P)-function on [0,1] . Let 1 = x+1(y,x)
and 2 = x+2(y,x) , where x,y ∈ A∗ and 1,2 ∈ [0,1] . Notice that the mapping 
satisfies the Condition C. Then, for every t ∈ [0,1] and some fixed s ∈ (0,1] , we have
that

g(1 + t(2,1)) = g(x+ 1(y,x)+ t [x+ 2(y,x),x+ 1(y,x)])
= g(x+ 1(y,x)+ t(2− 1)(y,x))
= g(x+((1− t)1 + t2)(y,x))
= ((1− t)1 + t2)
� (ts +(1− t)s)[(1)+(2)]
= (ts +(1− t)s)[g(1)+g(2)],

which shows that g is an (s,P)-preinvex function regarding the mapping  .
“=⇒” Suppose that g is an (s,P)-preinvex function concerning the mapping  .

Let x,y∈ A∗ and 1,2 ∈ [0,1] . Since the mapping  meets the Condition C, for every
t ∈ [0,1] and some fixed s ∈ (0,1] , we deduce that

((1− t)1 + t2) = g(x+((1− t)1 + t2)(y,x))

= g
(
x+ 1(y,x)+ t

(
x+ 2(y,x),x+ 1(y,x)

))
� (ts +(1− t)s)[g(x+ 1(y,x))+g(x+ 2(y,x))]
= (ts +(1− t)s)[(1)+(2)],

which indicates that  is an (s,P)-function on [0,1] . This completes the proof. �
Under the assumption of (s,P)-preinvexity, we present the Hermite–Hadamard-

type inequality constructed from fractional integrals with exponential kernels.
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THEOREM 3.1. Let A∗ ⊆ R be an open invex subset with respect to the mapping
 : A∗ ×A∗ → R

+ and a,b ∈ A∗ . If g : [a,a+(b,a)]→ (0,) is an (s,P)-preinvex
function, g ∈ L1 ([a,a+(b,a)]) and the mapping  satisfies Condition C, for  ∈
[0,1] , the following inequality for fractional integrals holds

2s−2g

(
2a+(b,a)

2

)
� 1−

2(1− e−)

[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]

� 2e−

(s+1)(1− e−)
[
g(a)+g(a+(b,a))

]
, (3.2)

where

 =
1−


(b,a).

Proof. Since g is an (s,P)-preinvex function on [a,a+(b,a)] , we have that

g

(
x+

(y,x)
2

)
� 21−s [g(x)+g(y)]. (3.3)

Using the change of variables x = a+(1− t)(b,a) and y = a+ t(b,a) in inequality
(3.3), we get that

2s−1g

(
a+(1− t)(b,a)+


(
a+ t(b,a),a+(1− t)(b,a)

)
2

)

= 2s−1g

(
a+(1− t)(b,a)+

(2t−1)(b,a)
2

)

= 2s−1g

(
2a+(b,a)

2

)

� g
(
a+(1− t)(b,a)

)
+g

(
a+ t(b,a)

)
. (3.4)

Multiplying the both sides of inequality (3.4) by e−t , then integrating the resulting
inequality with respect to t over [0,1] , we obtain that

2s−1(1− e−)


g

(
2a+(b,a)

2

)

�
∫ 1

0
e−t g

(
a+(1− t)(b,a)

)
dt +

∫ 1

0
e−tg

(
a+ t(b,a)

)
dt

=
1

(b,a)

[∫ a+(b,a)

a
e−

1−
 (a+(b,a)−u)g(u)du+

∫ a+(b,a)

a
e−

1−
 (u−a)g(u)du

]

=


(b,a)

[
I 

a+g
(
a+(b,a)

)
+I 

(a+(b,a))−g(a)
]
, (3.5)

that is

2s−2g

(
2a+(b,a)

2

)
� 1−

2(1− e−)

[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]
.
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We finish the proof of the first inequality in inequality (3.2).
For the proof of the second inequality in inequality (3.2), we first note that if g is

an (s,P)-preinvex function on [a,a+(b,a)] and the mapping  satisfies Condition
C, then for every t ∈ [0,1] and some fixed s ∈ (0,1] , we have that

g
(
a+ t(b,a)

)
= g

(
a+(b,a)+ (1− t)

(
a,a+(b,a)

))
�
(
ts +(1− t)s)[g(a)+g(a+(b,a))

]
,

and

g
(
a+(1− t)(b,a)

)
= g

(
a+(b,a)+ t

(
a,a+(b,a)

))
�
(
ts +(1− t)s)[g(a)+g(a+(b,a))

]
.

By adding these inequalities, we have that

g
(
a+ t(b,a)

)
+g

(
a+(1− t)(b,a)

)
� 2

(
ts +(1− t)s)[g(a)+g(a+(b,a))

]
.

(3.6)

Multiplying the both sides of inequality (3.6) by e−t and integrating the resulting
inequality with respect to t over [0,1] , we obtain that∫ 1

0
e−t[g(a+ t(b,a))+g(a+(1− t)(b,a))

]
dt

� 2
∫ 1

0
e−t(ts +(1− t)s)[g(a)+g(a+(b,a))

]
dt. (3.7)

According to the mean value theorem of generalized integrals, for  ∈ [0,1] , we derive
that

2
∫ 1

0
e−t(ts +(1− t)s)[g(a)+g(a+(b,a))

]
dt

= 2e−
[
g(a)+g(a+(b,a))

]∫ 1

0

(
ts +(1− t)s)dt

=
4

s+1
e−

[
g(a)+g(a+(b,a))

]
. (3.8)

Substituting the equality (3.8) into the inequality (3.7), we have that


(b,a)

[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]
� 4

s+1
e−

[
g(a)+g(a+(b,a))

]
.

By multiplying both sides by 
2(1−e− ) , we have that

1−
2(1− e−)

[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]

� 2e−

(s+1)(1− e−)
[
g(a)+g(a+(b,a))

]
.

Thus, the proof of Theorem 3.1 is completed. �
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REMARK 3.4. In Theorem 3.1, if we take  → 1, i.e.,  = 1−
 (b− a) → 0,

then we have that

lim
→1

1−
1− e−

=
1

(b,a)
, (3.9)

and

lim
→0

e−

1− e−
= 1.

Thus, the inequality (3.2) is transformed to

2s−2g

(
2a+(b,a)

2

)
� 1

(b,a)

∫ a+(b,a)

a
g(u)du � 2

s+1

[
g(a)+g(a+(b,a))

]
.

(3.10)

Specially, putting (b,a) = b− a , the inequality (3.10) turns into the inequality (2.1)
established by Numan and İşcan in [37].

4. Parameterized fractional integral inequalities

This section endeavors to establish parameterized inequalities for (s,P)-preinvex
functions, tied to fractional integrals involving exponential kernels. Initially, Subsection
4.1 formulates a fractional integral identity with a single parameter for first-order differ-
entiable functions, upon which we derive the desired parameterized inequalities. Simi-
larly, Subsection 4.2 extends this methodology to second-order differentiable functions,
presenting a parameterized fractional integral identity and corresponding inequalities.

4.1. Parameterized inequalities for once-differentiable functions

For brevity, we will use the following notation in the sequel:

Tg( ,;a,a+(b,a))

:=
1−

2(1− e−)
[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]
− (1− )g

(
2a+(b,a)

2

)
−

g(a)+g(a+(b,a))
2

. (4.1)

Now we present the following lemma, which involves a parameter.

LEMMA 4.1. Let g : [a,a+(b,a)]→ (0,) be a differentiable function on (a,a+
(b,a)) , where the mapping  : R×R → R

+ . If the function g′ ∈ L1([a,a+(b,a)])
and 0 �  � 1 , then the following identity for fractional integrals with exponential
kernels holds

Tg( ,;a,a+(b,a)) =
(b,a)

2(1− e−)

∫ 1

0
w(t)g′(a+ t(b,a))dt, (4.2)
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where

w(t) =

⎧⎪⎪⎨
⎪⎪⎩

(1− )(e−−1)+ e−t − e−(1−t), 0 � t � 1
2
,

(1− )(1− e−)+ e−t − e−(1−t),
1
2

< t � 1.

Proof. Considering the right hand side of the identity (4.2), we can write that

(b,a)
2(1− e−)

∫ 1

0
w(t)g′(a+ t(b,a))dt

=
(b,a)

2(1− e−)

⎡
⎢⎢⎣
∫ 1

2

0

(
(1− )(e− −1)+ e−t − e−(1−t)

)
g′(a+ t(b,a))dt

+
∫ 1

1
2

(
(1− )(1− e−)+ e−t − e−(1−t)

)
g′(a+ t(b,a))dt

⎤
⎥⎥⎦

=
(b,a)

2(1− e−)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1
2

0
(1− )(e− −1)g′(a+ t(b,a))dt

+
∫ 1

1
2

(1− )(1− e−)g′(a+ t(b,a))dt

+
∫ 1

0

(
e−t − e−(1−t)

)
g′(a+ t(b,a))dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.3)

Direct computation yields that

(b,a)
2(1− e−)

[∫ 1
2

0
(1− )(e−−1)g′(a+ t(b,a))dt

+
∫ 1

1
2

(1− )(1− e−)g′(a+ t(b,a))dt

]

= − (1− )
2

(
g(a+ t(b,a))

∣∣ 1
2
0 −g(a+ t(b,a))

∣∣1
1
2

)

= (1− )
g(a)+g(a+(b,a))

2
− (1− )g

(
2a+(b,a)

2

)
. (4.4)

Integrating by parts and changing the variables, we derive that

(b,a)
2(1− e−)

∫ 1

0

(
e−t − e−(1−t)

)
g′(a+ t(b,a))dt

=
(b,a)

2(1− e−)

⎡
⎢⎢⎣

1
(b,a)g(a+ t(b,a))

(
e−t − e−(1−t)

)∣∣∣1
0

+
∫ 1

0


(b,a)

(
e−t + e−(1−t)

)
g(a+ t(b,a))dt

⎤
⎥⎥⎦
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=
1

2(1− e−)

⎡
⎢⎣ (e− −1)

(
g(a)+g(a+(b,a))

)
+ 

(b,a)

∫ a+(b,a)

a

(
e−

1−
 (−a) + e−

1−
 (a+(b,a)−)

)
g()d

⎤
⎥⎦

= −g(a)+g(a+(b,a))
2

+
1−

2(1− e−)

[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]
.

(4.5)

Applying equations (4.4) and (4.5) to the equality (4.3), we deduce the desired identity.
This ends the proof. �

COROLLARY 4.1. Consider Lemma 4.1, one could see that the next identities are
correct clearly:

(i) For  = 0 , we have the following midpoint-type equality for fractional integrals
with exponential kernels:

1−
2(1− e−)

[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]
−g

(
2a+(b,a)

2

)

=
(b,a)

2(1− e−)

∫ 1

0

(
k(t)(1− e−)+ e−t − e−(1−t)

)
g′
(
a+ t(b,a)

)
dt,

where

k(t) =

⎧⎪⎪⎨
⎪⎪⎩

−1, 0 � t � 1
2
,

1,
1
2

< t � 1.

(ii) For  = 1 , we have the following trapezoid-type equality for fractional inte-
grals with exponential kernels:

1−
2(1− e−)

[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]
− g(a)+g(a+(b,a))

2

=
(b,a)

2(1− e−)

∫ 1

0

(
e−t − e−(1−t)

)
g′(a+ t(b,a))dt.

REMARK 4.1. In Lemma 4.1, if we take (b,a) = b− a , then we have Lemma
2.1 established by Yuan et al. in [51].

REMARK 4.2. In Lemma 4.1, if we take  → 1, i.e.,  = 1−
 (b−a)→ 0, then

we have

lim
→0

e−t − e−(1−t)

1− e−
= 1−2t. (4.6)
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Putting (b,a) = b−a , and using results (3.9) together with (4.6), the equality (4.2) is
transformed to

1
b−a

∫ b

a
g(u)du− (1− )g

(
a+b

2

)
−

g(a)+g(b)
2

=
b−a

2

∫ 1

0
c(t)g′(ta+(1− t)b)dt,

where

c(t) =

⎧⎪⎪⎨
⎪⎪⎩

2t− , 0 � t <
1
2
,

 −2(1− t),
1
2

� t � 1.

In particular, for  = 0, we get Lemma 2.1 established by Kirmaci in [27]. If we take
 = 1, then we obtain the same result presented by Dragomir and Agarwal in [14,
Lemma 2.1].

By means of Lemma 4.1, the fractional inequality for once-differentiable functions
is given as follows.

THEOREM 4.1. Let g : [a,a +(b,a)] → (0,) be a differentiable function on
(a,a+(b,a)) satisfying g′ ∈ L1([a,a +(b,a)]) , where the mapping  : R×R →
R

+ . For 0 �  � 1 , if |g′| is (s,P)-preinvex on [a,a+(b,a)] , then the following
inequality holds∣∣Tg( ,;a,a+(b,a))

∣∣
� (b,a)

⎧⎪⎨
⎪⎩

2
s+1(1− )

[
(1−)s+1−s+1− 1

2

]
+ 21−s

(1−e− )

[(
1+ e−


2

)2−2
√

]
⎫⎪⎬
⎪⎭
(|g′(a)|+ |g′(b)|), (4.7)

where

 := − 1


ln
(1− )(1− e−)+

√


2
, (4.8)

and

 := (1− )2(1− e−)2 +4e− . (4.9)

Proof. In the light of Lemma 4.1 and the (s,P)-preinvexity of |g′| on [a,a +
(b,a)] , we have that∣∣Tg( ;;a,a+(b,a))

∣∣
� (b,a)

2(1− e−)

∫ 1

0
|w(t)| ∣∣g′(a+ t(b,a))

∣∣dt
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� (b,a)
2(1− e−)

∫ 1

0
|w(t)|(ts +(1− t)s)(|g′(a)|+ |g′(b)|)dt

=
(b,a)

2(1− e−)
(|g′(a)|+ |g′(b)|)

×

⎡
⎢⎢⎣
∫ 1

2

0

∣∣∣(1− )(e−−1)+ e−t − e−(1−t)
∣∣∣(ts +(1− t)s)dt

+
∫ 1

1
2

∣∣∣(1− )(1− e−)+ e−t − e−(1−t)
∣∣∣(ts +(1− t)s)dt

⎤
⎥⎥⎦ . (4.10)

It is easy to prove that the following inequality

0 � (1− )(e− −1)+ e−t − e−(1−t) �  (1− e−) (4.11)

holds for any t ∈ [0,] , where  := − 1
 ln (1− )(1−e−)+

√


2 together with  := (1−
 )2(1− e−)2 +4e− . In the same way, for any t ∈ [

, 1
2

]
, we have that

(1− )(e−−1) � (1− )(e−−1)+ e−t − e−(1−t) � 0. (4.12)

As a consequence, we obtain that∫ 1

1
2

∣∣∣(1− )(1− e−)+ e−t − e−(1−t)
∣∣∣(ts +(1− t)s)dt

=
∫ 1

2

0

∣∣∣(1− )(e− −1)+ e−t − e−(1−t)
∣∣∣(ts +(1− t)s)dt

=
∫ 

0

(
(1− )(e− −1)+ e−t − e−(1−t)

)
(ts +(1− t)s)dt

+
∫ 1

2



(
(1− )(1− e−)− e−t + e−(1−t)

)
(ts +(1− t)s)dt. (4.13)

Direct computation yields that∫ 

0
(ts +(1− t)s)dt =

1
s+1

[
s+1 − (1−)s+1 +1

]
, (4.14)

and ∫ 1
2


(ts +(1− t)s)dt =

1
s+1

[
(1−)s+1−s+1] . (4.15)

Since ts +(1− t)s � 21−s for all t ∈ [0,1] , we get that∫ 

0

(
e−t − e−(1−t)

)
(ts +(1− t)s)dt

� 21−s
∫ 

0

(
e−t − e−(1−t)

)
dt

=
21−s



(
1+ e−−

√

)

, (4.16)
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and ∫ 1
2



(
e−(1−t)− e−t

)
(ts +(1− t)s)dt

� 21−s
∫ 1

2



(
e−(1−t)− e−t

)
dt

=
21−s



(
2e−


2 −

√

)

. (4.17)

Applying (4.14)–(4.17) to equality (4.13), we obtain that

∫ 1
2

0

∣∣∣(1− )(e−−1)+ e−t − e−(1−t)
∣∣∣(ts +(1− t)s)dt

� 2
s+1

(1− )(1− e−)
[
(1−)s+1−s+1− 1

2

]
+

21−s



[(
1+ e−


2

)2−2
√

]
.

As a result, we have that∫ 1

0
|w(t)|(ts +(1− t)s)dt

� 2

{
2

s+1
(1− )(1−e−)

[
(1−)s+1−s+1−1

2

]
+

21−s



[(
1+e−


2

)2−2
√

]}

.

(4.18)

Employing the inequality (4.18) in the inequality (4.10), we obtain the expected result.
Thus, the proof is concluded. �

COROLLARY 4.2. If we choose s = 1 in Theorem 4.1, then we have the following
inequality:∣∣Tg( ,;a,a+(b,a))

∣∣
� (b,a)

⎡
⎢⎣(1− )

(
1
2
−2

)
+

(
1+ e−


2

)2−2
√


(1− e−)

⎤
⎥⎦(|g′(a)|+ |g′(b)|), (4.19)

where  and  are given in (4.8) and (4.9) within Theorem 4.1.

REMARK 4.3. In Corollary 4.2, if we take  → 1, i.e.,  = 1−
 (b− a) → 0,

then we have that

lim
→0

(
− 1


ln
(1− )(1− e−)+

√


2

)
=


2

, (4.20)

and

lim
→0

(
1+ e−


2

)2 −2
√


(1− e−)
=

1
4
− (1− )2

2
. (4.21)
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Putting (b,a) = b−a and using results (3.9), (4.20) as well as (4.21), the inequality
(4.19) is transformed to∣∣∣∣ 1

b−a

∫ b

a
g(u)du− (1− )g

(
a+b

2

)
−

g(a)+g(b)
2

∣∣∣∣
� b−a

2

(
 2− +

1
2

)(|g′(a)|+ |g′(b)|) . (4.22)

REMARK 4.4. Taking the specific choices of the parameter  in the inequality
(4.22), we can get the following known outcomes.

(i) For  = 0, we have that∣∣∣∣ 1
b−a

∫ b

a
g(u)du−g

(
a+b

2

)∣∣∣∣ � b−a
4

(|g′(a)|+ |g′(b)|) ,

which is provided by Sarikaya et al. in [41, Theorem 4.8] for the case of x → a or
x → b .

(ii) For  = 1
3 , we get that∣∣∣∣∣16

[
g(a)+4g

(
a+b

2

)
+g(b)

]
− 1

b−a

∫ b

a
g(u)du

∣∣∣∣∣� 5(b−a)
36

(|g′(a)|+ |g′(b)|) ,

which is established by Sarikaya et al. in [41, Theorem 5.8] for the case of x → a or
x → b .

(iii) For  = 1, we obtain that∣∣∣∣ 1
b−a

∫ b

a
g(u)du− g(a)+g(b)

2

∣∣∣∣� b−a
4

(|g′(a)|+ |g′(b)|) ,

which is presented by Sarikaya et al. in [41, Theorem 3.8] for the case of x → a or
x → b .

(iv) For  = 1
2 , we have the following Bullen-type inequality for P-convex func-

tions:∣∣∣∣∣14
[
g(a)+2g

(
a+b

2

)
+g(b)

]
− 1

b−a

∫ b

a
g(u)du

∣∣∣∣∣� b−a
8

(|g′(a)|+ |g′(b)|) .

To better understand Theorem 4.1, we give an example with graph.

EXAMPLE 4.1. Considering the function g(x) = 1
ln2 ( 1

2 )x on the interval (0,) .
Then |g′(x)| = ( 1

2 )x is an (s,P)-preinvex function with regard to (y,x) = 2y− x for
s ∈ (0,1] .

∣∣g′(x+ t(y,x))
∣∣= (

1
2

)x+t(2y−x)

=
(

1
2

)(1−t)x+2ty

� (1− t)
(

1
2

)x

+ t

(
1
2

)2y
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� (1− t)
(

1
2

)x

+ t

(
1
2

)y

� (1− t)s
(

1
2

)x

+ ts
(

1
2

)y

�
[
(1− t)s + ts

][(1
2

)x

+
(

1
2

)y]
.

If we take a = 0, b = 1, s = 1
2 ,  = 1

3 , then all assumptions in Theorem 4.1 are

satisfied. Clearly,  = 1−
 (b,a) = 2(1−)

 . The left side of inequality (4.7) is

∣∣∣∣Tg

(
1
3
,;0,2

)∣∣∣∣=
∣∣∣∣∣∣

1−
2

(
1−e−

2(1−)


)
ln2

∫ 2

0

(
e−

1−
 (2−x)+e−

1−
 x

)(1
2

)x

dx− 13
24ln2

∣∣∣∣∣∣ .
Meanwhile, the right side of inequality (4.7) can be written as

R() =
8
3

[
(1−∗)

3
2 −∗ 3

2 − 1
2

]
+

3
√

2

2(1−)
(
1− e−

2(1−)


) [(1+ e−
1−

)2 −2

√
∗
]
,

where

∗ := − 
2(1−)

ln

2
3

(
1− e−

2(1−)


)
+
√
∗

2
,

and

∗ :=
4
9

(
1− e−

2(1−)


)2
+4e−

2(1−)
 .

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.1: An example to the inequality (4.7)
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We put the variable  ∈ [0.01,0.99] and plot the graphical depiction of the functions
Tg
( 1

3 ,;0,2
)
, R() and −R() in Figure 4.1. It is not laborious to observe that

−R() < Tg
(

1
3 ,;0,2

)
< R() , which shows the consistency with the outcome estab-

lished in Theorem 4.1.
With the help of the Hölder’s inequality, the following theorem is given.

THEOREM 4.2. Let g : [a,a +(b,a)] → (0,) be a differentiable function on
(a,a+(b,a)) satisfying g′ ∈ L1([a,a +(b,a)]) , where the mapping  : R×R →
R

+ . For 0 �  � 1 , q > 1 with p−1 + q−1 = 1 , if |g′|q is (s,P)-preinvex on [a,a+
(b,a)] , then the following inequality for fractional integrals holds∣∣Tg( ,;a,a+(b,a))

∣∣
� 2

1
p−1(b,a)

(
2

s+1

) 1
q
[
 p +

(
1
2
−

)
(1− )p

] 1
p (|g′(a)|q + |g′(b)|q) 1

q ,

where  is defined by (4.8) in Theorem 4.1.

Proof. Utilizing Lemma 4.1, the definition of w(t) , and the Hölder’s inequality,
we obtain that∣∣Tg( ,;a,a+(b,a))

∣∣
� (b,a)

2(1− e−)

∫ 1

0
|w(t)||g′(a+ t(b,a))|dt

� (b,a)
2(1− e−)

(∫ 1

0
|w(t)|pdt

) 1
p
(∫ 1

0
|g′(a+ t(b,a))|qdt

) 1
q

=
(b,a)

2(1− e−)

(∫ 1
2

0
|w1(t)|pdt +

∫ 1

1
2

|w2(t)|pdt
) 1

p (∫ 1

0
|g′(a+ t(b,a))|qdt

) 1
q

,

(4.23)

where

w1(t) = (1− )(e−−1)+ e−t − e−(1−t), t ∈
[
0,

1
2

]
,

and

w2(t) = (1− )(1− e−)+ e−t − e−(1−t), t ∈
(

1
2
,1

]
.

Taking advantage of the inequalities (4.11) and (4.12), we have that∫ 1

1
2

|w2(t)|pdt =
∫ 1

2

0
|w1(t)|pdt

=
∫ 

0

(
(1− )(e− −1)+ e−t − e−(1−t)

)p
dt

+
∫ 1

2



(
(1− )(1− e−)− e−t + e−(1−t)

)p
dt
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�
∫ 

0

(
 (1− e−)

)p
dt +

∫ 1
2



(
(1− )(1− e−)

)p
dt

= 
(
 (1− e−)

)p +
(

1
2
−

)(
(1− )(1− e−)

)p
. (4.24)

Since |g′|q is (s,P)-preinvex on [a,a+(b,a)] , we get that

∫ 1

0
|g′(a+ t(b,a))|qdt �

∫ 1

0
(ts +(1− t)s)(|g′(a)|q + |g′(b)|q)dt

=
2

s+1
(|g′(a)|q + |g′(b)|q). (4.25)

A combination of inequalities (4.23)–(4.25) gives the required result. Thus, the proof
of Theorem 4.2 is end. �

Through application of the power-mean inequality method, we arrive at the theo-
rem stated below.

THEOREM 4.3. Let g : [a,a +(b,a)] → (0,) be a differentiable function on
(a,a+(b,a)) satisfying g′ ∈ L1([a,a +(b,a)]) , where the mapping  : R×R →
R

+ . For 0 �  � 1 , if |g′|q is (s,P)-preinvex on [a,a+(b,a)] with q > 1 , then the
following inequality holds

∣∣Tg( ,;a,a+(b,a))
∣∣

� (b,a)
(|g′(a)|q + |g′(b)|q) 1

q

⎡
⎢⎣(1− )

(
1
2
−2

)
+

(
1+ e−


2

)2 −2
√


(1− e−)

⎤
⎥⎦

1− 1
q

×
{

2
s+1

(1− )
[
(1−)s+1−s+1−1

2

]
+

21−s

 (1−e−)

[(
1+e−


2

)2−2
√

]} 1

q

,

(4.26)

where  and  are given in (4.8) and (4.9) of Theorem 4.1.

Proof. Using Lemma 4.1 and the power-mean inequality, we have that

∣∣Tg( ,;a,a+(b,a))
∣∣

� (b,a)
2(1− e−)

∫ 1

0
|w(t)| ∣∣g′(a+ t(b,a))

∣∣dt
� (b,a)

2(1− e−)

(∫ 1

0
|w(t)|dt

)1− 1
q
(∫ 1

0
|w(t)| ∣∣g′(a+ t(b,a))

∣∣q dt

) 1
q

. (4.27)
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Utilizing the definition of w(t) and necessary calculation, we obtain that

∫ 1

0
|w(t)|dt =

∫ 1
2

0
|w1(t)|dt +

∫ 1

1
2

|w2(t)|dt

= 2
∫ 1

2

0
|w1(t)|dt

= 2

⎡
⎢⎢⎣
∫ 

0

(
(1− )

(
e− −1

)
+ e−t − e−(1−t)

)
dt

+
∫ 1

2



(
(1− )

(
1− e−

)− e−t + e−(1−t)
)

dt

⎤
⎥⎥⎦

= 2

⎡
⎢⎣(1− )

(
1− e−

)(1
2
−2

)
+

(
1+ e−


2

)2−2
√




⎤
⎥⎦ . (4.28)

Using the (s,P)-preinvexity of |g′|q on [a,a +(b,a)] and the inequality (4.18), we
get that

∫ 1

0
|w(t)| ∣∣g′(a+ t(b,a))

∣∣q dt

�
∫ 1

0
|w(t)|(ts +(1− t)s)(|g′(a)|q + |g′(b)|q)dt

� 2

⎧⎨
⎩

2
s+1 (1− )(1− e−)

[
(1−)s+1−s+1− 1

2

]
+ 21−s



[(
1+ e−


2

)2−2
√

] ⎫⎬

⎭(|g′(a)|q + |g′(b)|q).

(4.29)

Making use of (4.28) and (4.29) in (4.27), we get the desired outcome. Thus, the proof
is done. �

COROLLARY 4.3. If we choose s = 1 in Theorem 4.3, then we have the following
inequality:∣∣Tg( ,;a,a+(b,a))

∣∣
� (b,a)

[
(1− )

(
1
2
−2

)
+

(1+ e−

2 )2−2

√


(1− e−)

](|g′(a)|q + |g′(b)|q) 1
q ,

(4.30)

where  and  are defined in (4.8) and (4.9) of Theorem 4.1.

REMARK 4.5. In Corollary 4.3, putting (b,a) = b− a and letting  → 1, to-
gether with using results (3.9), (4.20) and (4.21), the inequality (4.30) is transformed
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to ∣∣∣∣ 1
b−a

∫ b

a
g(u)du− (1− )g

(
a+b

2

)
−

g(a)+g(b)
2

∣∣∣∣
� b−a

2

(
 2− +

1
2

)(|g′(a)|q + |g′(b)|q) 1
q .

In particular, for  = 1, we get Theorem 2.3 established by Barani in [6].

4.2. Parameterized inequalities for the twice-differentiable functions

The lemma that follows is introduced to establish inequalities that are parameter-
ized and based on the (s,P)-preinvexity of twice-differentiable functions.

LEMMA 4.2. Let g : [a,a +(b,a)] → (0,) be a twice-differentiable function
on (a,a+(b,a)) , where the mapping  : R×R → R

+ . For 0 �  � 1 , if the func-
tion g′′ ∈ L1([a,a+(b,a)]) , then the following identity for fractional integrals with
exponential kernels holds

Tg( ,;a,a+(b,a)) =
2(b,a)

2

∫ 1

0
h(t)g′′(a+ t(b,a))dt, (4.31)

where

h(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t(1− )− 1+ e−− e−t − e−(1−t)

(1− e−)
, 0 � t � 1

2
,

(1− t)(1− )− 1+ e−− e−t − e−(1−t)

(1− e−)
,

1
2

< t � 1,

and Tg( ,;a,a+(b,a)) is defined in (4.1).

Proof. The proof is analogous to that of Lemma 4.1 and we omit the details
here. �

COROLLARY 4.4. Consider Lemma 4.2, we can get the following known results.
(i) For  = 0 , we have the following midpoint-type equality for fractional integrals

with exponential kernels:

1−
2(1− e−)

[
I 

a+g
(
a+(b,a)

)
+I 

(a+(b,a))−g(a)
]
−g

(
2a+(b,a)

2

)

=
2(b,a)

2

∫ 1

0
m(t)g′′(a+ t(b,a))dt,

where

m(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t− 1+ e−− e−t − e−(1−t)

(1− e−)
, 0 � t � 1

2
,

(1− t)− 1+ e−− e−t − e−(1−t)

(1− e−)
,

1
2

< t � 1.
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(ii) For  = 1 , we obtain the following trapezoid-type equality for fractional inte-
grals with exponential kernels:

1−
2(1− e−)

[
I 

a+g
(
a+(b,a)

)
+I 

(a+(b,a))−g(a)
]
− g(a)+g(a+(b,a))

2

= − 2(b,a)
2(1− e−)

∫ 1

0

(
1+ e−− e−t − e−(1−t)

)
g′′(a+ t(b,a))dt.

REMARK 4.6. In Lemma 4.2, putting (b,a) = b− a , we acquire Lemma 2.2
established by Zhou et al. in [55].

REMARK 4.7. In Lemma 4.2, if we take  → 1, i.e.,  = 1−
 (b−a)→ 0, then

we get that

lim
→0

1+ e− − e−t − e−(1−t)

(1− e−)
= −t2 + t. (4.32)

Putting (b,a) = b−a and using results (3.9) together with (4.32), the equality (4.31)
is transformed to

1
b−a

∫ b

a
g(u)du− (1− )g

(
a+b

2

)
−

g(a)+g(b)
2

=
(b−a)2

2

∫ 1

0
s(t)g′′(ta+(1− t)b)dt,

where

s(t) =

⎧⎪⎪⎨
⎪⎪⎩

t2− t, 0 � t <
1
2
,

(1− t)(1−− t),
1
2

� t � 1,

which is recorded by Sarikaya and Aktan in [40, Lemma 2].

Before giving the parameterized-type inequalities for the twice-differentiable func-
tions, we recall that hyperbolic tangent function is defined by

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x .

THEOREM 4.4. Let g : [a,a+(b,a)]→ (0,) be a twice-differentiable function
on (a,a+(b,a)) satisfying g′′ ∈ L1([a,a+(b,a)]) , where the mapping  : R×R→
R

+ . For 0 �  � 1 , if |g′′| is (s,P)-preinvex on [a,a +(b,a)] , then the following
inequality holds∣∣Tg( ,;a,a+(b,a))

∣∣
� 2(b,a)

2

[
2tanh(4 )
(s+1)

+
2−2−s

(s+1)(s+2)
(1− )

](|g′′(a)|+ |g′′(b)|).
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Proof. Using Lemma 4.2 and the definition of h(t) , we have that∣∣Tg( ,;a,a+(b,a))
∣∣

� 2(b,a)
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1
2

0

∣∣∣∣∣t(1− )− 1+ e−− e−t − e−(1−t)

(1− e−)

∣∣∣∣∣
∣∣g′′(a+ t(b,a))

∣∣dt
+
∫ 1

1
2

∣∣∣∣∣(1− t)(1− )− 1+ e−− e−t − e−(1−t)

(1− e−)

∣∣∣∣∣
×|g′′(a+ t(b,a))|dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 2(b,a)
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1
2

0
t(1− )

∣∣g′′(ta+(1− t)b)
∣∣dt

+
∫ 1

1
2

(1− t)(1− )
∣∣g′′(a+ t(b,a))

∣∣dt
+
∫ 1

0

∣∣∣∣∣1+ e−− e−t − e−(1−t)

(1− e−)

∣∣∣∣∣ ∣∣g′′(a+ t(b,a))
∣∣dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.33)

Since |g′′|q is (s,P)-preinvex on [a,a+(b,a)] , we get that

∫ 1
2

0
t(1− )

∣∣g′′(a+ t(b,a))
∣∣dt +∫ 1

1
2

(1− t)(1− )
∣∣g′′(a+ t(b,a))

∣∣dt
�
∫ 1

2

0
t(1− )(ts +(1− t)s)

(|g′′(a)|+ |g′′(b)|)dt

+
∫ 1

1
2

(1− t)(1− )(ts +(1− t)s)
(|g′′(a)|+ |g′′(b)|)dt

= 2(1− )
(|g′′(a)|+ |g′′(b)|)∫ 1

2

0
(ts+1 + t(1− t)s)dt

=
2−2−s

(s+1)(s+2)
(1− )

(|g′′(a)|+ |g′′(b)|) . (4.34)

Since 2e−

2 � e−t + e−(1−t) � 1+ e− for any t ∈ [0,1] and |g′′| is (s,P)-preinvex

on [a,a+(b,a)] , we obtain that

∫ 1

0

∣∣∣∣∣1+ e−− e−t − e−(1−t)

(1− e−)

∣∣∣∣∣
∣∣g′′(a+ t(b,a))

∣∣dt
�
∫ 1

0

1+ e−−2e−

2

(1− e−)
(ts +(1− t)s)

(|g′′(a)|+ |g′′(b)|)dt

=
2tanh(4 )
(s+1)

(|g′′(a)|+ |g′′(b)|) . (4.35)

A combination of inequalities (4.33)–(4.35) yields the desired result. Thus, the proof is
done. �
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Below, we present a theorem which is proved by invoking the Hölder’s inequality.

THEOREM 4.5. Let g : [a,a+(b,a)]→ (0,) be a twice-differentiable function
on (a,a + (b,a)) satisfying g′′ ∈ L1([a,a + (b,a)]) , where the mapping  : R×
R → R

+ . For 0 �  � 1 , q > 1 with p−1 + q−1 = 1 , if |g′′|q is (s,P)-preinvex on
[a,a+(b,a)] , then the following inequalities for fractional integrals hold
(i) For 0 �  < 1 , we have that∣∣Tg( ,;a,a+(b,a))

∣∣
� 2(b,a)(1− )

2

(
2

p+1

) 1
p (

2
s+1

) 1
q

×
⎡
⎣
(

1
2

+
tanh(4 )
(1− )

)p+1

−
(

tanh(4 )
(1− )

)p+1
⎤
⎦

1
p (|g′′(a)|q + |g′′(b)|q) 1

q . (4.36)

(ii) For  = 1 , we have that∣∣∣∣ 1−
2(1− e−)

[
I 

a+g(a+(b,a))+I 
(a+(b,a))−g(a)

]− g(a)+g(a+(b,a))
2

∣∣∣∣
�

2(b,a)tanh(4 )
2

(
2

s+1

) 1
q (|g′′(a)|q + |g′′(b)|q) 1

q .

Proof. First, suppose that 0 �  < 1. Utilizing Lemma 4.2, the definition of h(t) ,
and the Hölder’s inequality, we obtain that∣∣Tg( ,;a,a+(b,a))

∣∣
� 2(b,a)

2

∫ 1

0
|h(t)||g′′(a+ t(b,a))|dt

� 2(b,a)
2

(∫ 1

0
|h(t)|pdt

) 1
p
(∫ 1

0
|g′′(a+ t(b,a))|qdt

) 1
q

=
2(b,a)

2

(∫ 1
2

0
|h1(t)|pdt +

∫ 1

1
2

|h2(t)|pdt
) 1

p (∫ 1

0
|g′′(a+ t(b,a))|qdt

) 1
q

,

(4.37)

where

h1(t) = t(1− )− 1+ e− − e−t − e−(1−t)

(1− e−)
, t ∈

[
0,

1
2

]
,

and

h2(t) = (1− t)(1− )− 1+ e− − e−t − e−(1−t)

(1− e−)
, t ∈

(
1
2
,1

]
.
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Owing to 2e−

2 � e−t + e−(1−t) � 1+ e− for any t ∈ [0,1] , we have that

∫ 1

1
2

|h2(t)|pdt =
∫ 1

2

0
|h1(t)|pdt

�
∫ 1

2

0

(
t(1− )+

1+ e− − e−t − e−(1−t)

(1− e−)

)p

dt

�
∫ 1

2

0

(
t(1− )+

1+ e− −2e−

2

(1− e−)

)p

dt

= (1− )p
∫ 1

2

0

⎛
⎜⎝t +

(
1− e−


2

)2

(1− e−)(1− )

⎞
⎟⎠

p

dt

= (1− )p 1
p+1

⎡
⎣(1

2
+

tanh(4 )
(1− )

)p+1

−
(

tanh(4 )
(1− )

)p+1
⎤
⎦ .

As a result, it follows that

∫ 1

0
|h(t)|pdt � (1− )p 2

p+1

⎡
⎣(1

2
+

tanh(4 )
(1− )

)p+1

−
(

tanh(4 )
(1− )

)p+1
⎤
⎦ . (4.38)

Since |g′′|q is (s,P)-preinvex on [a,a+(b,a)] , we get that

∫ 1

0
|g′′(a+ t(b,a))|qdt �

∫ 1

0
(ts +(1− t)s)(|g′′(a)|q + |g′′(b)|q)dt

=
2

s+1
(|g′′(a)|q + |g′′(b)|q). (4.39)

Applying inequalities (4.38) and (4.39) to inequality (4.37), we obtain the required
result (4.36). Thus, this ends the proof for this case.

Now, suppose that  = 1. The remainder of the argument is analogous to that of
part one in Theorem 4.5 and we omit the details. Thus, the proof of Theorem 4.5 is
completed. �

THEOREM 4.6. Let g : [a,a+(b,a)]→ (0,) be a twice-differentiable function
on (a,a+(b,a)) satisfying g′′ ∈ L1([a,a+(b,a)]) , where the mapping  : R×R→
R

+ . For 0 �  � 1 , if |g′′|q is (s,P)-preinvex on [a,a+(b,a)] with q > 1 , then the
following inequality holds∣∣Tg( ,;a,a+(b,a))

∣∣
� 2

1−s−q
q 2(b,a)

(
1−

4
+
 +e− +2e− −2

2(1− e−)

)(|g′′(a)|q + |g′′(b)|q) 1
q .

(4.40)
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Proof. Utilizing Lemma 4.2, the definition of h(t) , and the power-mean inequal-
ity, we have that

∣∣Tg( ,;a,a+(b,a))
∣∣

� 2(b,a)
2

∫ 1

0
|h(t)| ∣∣g′′(a+ t(b,a))

∣∣dt
� 2(b,a)

2

(∫ 1

0
|h(t)|dt

)1− 1
q
(∫ 1

0
|h(t)| ∣∣g′′(a+ t(b,a))

∣∣q dt

) 1
q

. (4.41)

Using the properties of the module and direct computation, we obtain that

∫ 1

0
|h(t)|dt =

∫ 1
2

0
|h1(t)|dt +

∫ 1

1
2

|h2(t)|dt

�
∫ 1

2

0

(
t(1− )+

1+ e−− e−t − e−(1−t)

(1− e−)

)
dt

+
∫ 1

1
2

(
(1− t)(1− )+

1+ e−− e−t − e−(1−t)

(1− e−)

)
dt

=
1−

4
+
 +e− +2e− −2

2(1− e−)
. (4.42)

Since |g′′|q is (s,P)-preinvex on [a,a +(b,a)] and ts +(1− t)s � 21−s for all t ∈
[0,1] , we get that

∫ 1

0
|h(t)| ∣∣g′′(a+ t(b,a))

∣∣q dt

�
∫ 1

0
|h(t)|(ts +(1− t)s)(|g′′(a)|q + |g′′(b)|q)dt

� 21−s (|g′′(a)|q + |g′′(b)|q)∫ 1

0
|h(t)|dt

� 21−s
[
1−

4
+
 +e− +2e− −2

2(1− e−)

]
(|g′′(a)|q + |g′′(b)|q). (4.43)

Employing inequalities (4.42) and (4.43) in inequality (4.41), we obtain the desired
result. Thus, the proof is accomplished. �

REMARK 4.8. In Theorem 4.6, if we take  → 1, i.e.,  = 1−
 (b− a) → 0,

then we have that

lim
→0

 +e− +2e−−2
2(1− e−)

=
1
6
. (4.44)
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Using results (3.9) and (4.44), the inequality (4.40) is transformed to

∣∣∣∣ 1
(b,a)

∫ a+(b,a)

a
g(u)du− (1− )g

(
2a+(b,a)

2

)
−

g(a)+g(a+(b,a))
2

∣∣∣∣
� 2

1−s−q
q 2(b,a)

(
5
12

− 
4

)(|g′′(a)|q + |g′′(b)|q) 1
q . (4.45)

To illustrate the result of Theorem 4.6 more intuitively, we offer an example here.

EXAMPLE 4.2. Considering the function g(x) = q2

s2
e

s
q x for q > 1 and s ∈ (0,1]

on the interval x ∈ (0,) . Then |g′′(x)|q = esx is an (s,P)-preinvex function with
regard to (y,x) = 1

2y− x for s ∈ (0,1] .

∣∣g′′(x+ t(y,x))
∣∣q = es(x+t( 1

2 y−x))

= es(1−t)x+ 1
2 sty

� (1− t)esx + te
1
2 sy

� (1− t)esx + tesy

� [(1− t)s + ts][esx + esy].

If we take a = 2, b = 6,  = 1
2 ,  = 1

2 , then all assumptions in Theorem 4.6 are
satisfied. Clearly,  = 1−

 (b,a) = 1. The left part of inequality (4.40) is

|L(s,q)| =
∣∣∣∣Tg

(
1
2
,
1
2
;2,3

)∣∣∣∣
=
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2s2 e
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q
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e

3s
q − e
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+
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(
e
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q − e
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q
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− q2

2s2 e
5s
2q − q2

4s2

(
e

2s
q + e

3s
q

)∣∣∣∣∣.
The right part of inequality (4.40) is identified as

R(s,q) = 2
1−s−q

q

(
1
8

+
3e−1−1
1− e−1

)(
e2s + e6s

) 1
q
.

We take s ∈ [0.2,1] and q ∈ [1.1,5] as variables to plot |L(s, p)| and R(s, p) in Figure
4.2. It is obvious that |L(s, p)|� R(s, p) , which agrees with the result stated in Theorem
4.6.
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Figure 4.2: An example to the inequality (4.40)

5. Conclusions

In this research, we commence by proposing a novel class of (s,P)-preinvex func-
tions along with their properties, from which we subsequently derive the fractional
Hermite–Hadamard-type inequality. Taking advantage of fractional integrals with ex-
ponential kernels, we establish a comprehensive series of parameterized inequalities tai-
lored for (s,P)-preinvex functions. In particular, the inequalities derived in this study
extend and generalize previous results presented by Numan and İşcan [37], Yuan et
al. [51], Zhou et al. [55], and Sarikaya et al. [41]. Furthermore, these inequalities
demonstrate significant potential in addressing challenges in mathematical physics.

Building upon the parameterization methodology developed in this paper, we en-
vision the construction of analogous inequalities through various types of multiplicative
fractional integrals, including the multiplicative Riemann-Liouville fractional integrals
[16], multiplicative k -Riemann–Liouville fractional integrals [53], multiplicative frac-
tional integrals with exponential kernels [38], and multiplicative tempered fractional
integrals [21]. This represents a promising and innovative direction for future research
endeavors.
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