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HÖLDER TYPE INEQUALITIES FOR MATRICES

TSUYOSHI ANDO AND FUMIO HIAI

(communicated by R. Mathias)

Abstract. We discuss Hölder type inequalites involving (Ap + Bp)1/p for positive semi-definite
matrices A , B . Matrix or trace inequalities of Hölder type as well as weak majorizations of
similar type are obtained. Also we give counter-examples for expected Hölder type inequalities.

0. Introduction

When 1 < p, q < ∞ and 1/p + 1/q = 1 , the simplest form of numerical Hölder
inequality is written as

(|a|p + |b|p)1/p(|c|q + |d|q)1/q � |ac + bd| (0.1)

for a, b, c, d ∈ C . Moreover, we have the variational expression

(|a|p + |b|p)1/p = max{|ac + bd| : |c|q + |d|q = 1} . (0.2)

Another formulation of Hölder inequality is

(a1 + a2)1/p(b1 + b2)1/q � a1/p
1 b1/q

1 + a1/p
2 b1/q

2 for aj, bj � 0, (0.3)

which means joint concavity of the function (a, b) �→ a1/pb1/q in a, b � 0 .
A well-known Hölder inequality for matrices (or operators) is that for the Schatten

p -norms and is not viewed as a genuine matrix inequality. Although many kinds of
matrix inequalilties, trace inequalities, and (weak) majorization relations are known so
far as summarized in [3], we have very few ones of Hölder type. The aim of this paper
is to make the first step to develop Hölder type inequalities for matrices themselves.
Namely, we want to get inequalities involving (|A|p + |B|p)1/p or (Ap + Bp)1/p for
(positive semi-definite) matrices A, B .

A direct generalization of (0.1) or (0.2) to matrices may be formulated as follows:
If 1/p + 1/q = 1 and |C∗|q + |D∗|q = I , then

(|A|p + |B|p)1/p � |CA + DB| (0.4)
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holds in the order of positive semi-definiteness. As is well known to experts, the case
p = 2 (or a matrix Cauchy-Schwarz inequality) is shown in this form by the method
of 2 × 2 block matrices (see the beginning of Sec. 1). However, the matrix inequality
(0.4) turns out to be false for any 1 < p < ∞ except p = 2 (see Proposition 3.1),
so that some obstacles must be encountered in our study. Nevertheless, we can obtain,
related to (0.1) and (0.2), several (trace) inequalities and weak majorizations of Hölder
type for matrices.

In connection with (0.3) it is well known [12] (also [1]) that the function (A, B) �→
Tr(A1/pB1/q) is jointly concave in A, B � 0 whenever 1 < p, q < ∞ and 1/p+1/q =
1 . On the other hand, even when we consider B1/2qA1/pB1/2q instead of A1/pB1/q , it
is impossible to generalize (0.3) to a matrix inequality. In fact, B �→ B1/2qA1/pB1/2q is
not operator concave for any q > 0 (see Proposition 4.1). So our concern is to obtain
weak majorization relations for eigenvalue products generalizing joint concavity (0.3).

The paper is organized as follows. In Sec. 1, we prove a matrix Hölder inequality

(|A|p + |B|p)2/p � |α1/rCA + (1 − α)1/rDB|2

if 0 � α � 1 and |C∗|q + |D∗|q � I , where 2 � p, q < ∞ , 1 < r < ∞ , and
1/p + 1/q = 1 − 1/r . This may be unsatisfactory in the points that an additional
parameter α is contained and that the case 1 < p < 2 is excluded. But there must be
some weakening for a matrix Hölder inequality because the best form (0.4) is false.

In Sec. 2, we discuss Hölder type inequalities for matrices under trace. For
A, B � 0 a main trace inequality presented is

Tr(Ap + Bp)1/p � Tr(CA + DB)

if C, D � 0 and Cq + Dq � I , where 1 < p, q < ∞ and 1/p + 1/q = 1 . As a
corollary we have

Tr(Ap + Bp)1/p �
n∑

i=1

(ap
ii + bp

ii)
1/p ,

and this can be strengthened to a form of weak majorization. Furthermore, we compare
Tr(Ap + Bp)1/p with some variational expressions such as

max{Tr |CA + DB| : |C∗|q + |D∗|q � I} ,

max{Tr(CA + DB) : C, D � 0, Cq + Dq � I} .

In Sec. 3, we take as A , B two non-commuting orthogonal projections of rank one
to give counter-examples for expected matrix or trace inequalities of Hölder type. In
particular, all possible candidates of variational expressions of Tr(Ap + Bp)1/p fail to
hold true for any 2 < p < ∞ . This tells us that an attempt to prove joint concavity of
(A, B) �→ Tr(Ap + Bp)1/p via variational expression seems hopeless. Indeed, we show
that Tr(Ap + Bp)1/p is not jointly concave in A, B � 0 for any 2 < p < ∞ , while
this is the case for p = 2 because of variational expression. The case 1 < p < 2 is a
challenging open problem.

In Sec. 4, we obtain a Hölder type inequality given under taking eigenvalue prod-
ucts

∏k
i=1 λn−i+1(·) where λ1(A), . . . , λn(A) are the eigenvalues of A in decreasing
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order. This is a kind of weak majorization viewed as an extension of (0.3) and also a
generalization of the Oppenheim inequality [14]. For the proof the technique of anti-
symmetric tensor powers and the concavity property given in [12] and [1] are useful. In
Sec. 5 and 6, we further give similar weak majorizations involving α -power mean and
Hadamard product.

Acknowledgments. We thank Professor D. Petz who suggested us the problem on
joint convexity of Tr(Ap + Bp)1/p when p > 1 . Our study was motivated by this
problem. We are grateful to Professor M. B. Ruskai who informed us that E. A. Carlen
and E. H. Lieb studied the same problem. But we do not know the details.

1. Matrix inequalities of Hölder type

In this paper we always consider n×n complex matrices, which are denoted by A ,
B , C , etc. We use the usual notations: the identity matrix I , the adjont A∗ , the absolute
value |A| = (A∗A)1/2 , the operator norm or the spectral norm ‖A‖ , the trace TrA , the
determinant det A , and so on. Matrix inequalities (between Hermitian matrices) mean
those with respect to the order of positive semi-definiteness; in particular, A � 0 means
that A is positive semi-definite.

Let f be a real continuous function on an interval J . Recall that f is said to
be operator monotone if A � B implies f (A) � f (B) for any Hermitian matrices (of
any size) A, B whose eigenvalues are in J . Also, f is said to be operator convex if
f (αA+(1−α)B) � αf (A)+ (1−α)f (B) for every Hermitian A, B with eigenvalues
in J , and operator concave if inequality sign is reversed.

As is well known, the trick of 2 × 2 block matrices is quite useful when one
discusses matrix inequalities. This is based on the fact that if A, B, C are matrices

and A, B � 0 , then

[
A C∗

C B

]
� 0 if and only if C = B1/2WA1/2 for some W with

‖W‖ � 1 . This says in particular that

[
A C∗

C I

]
� 0 if and only if A � C∗C . The

following is a typical example of 2 × 2 arguments. For any matrices A, B, C, D we
have [

A∗A + B∗B A∗C∗ + B∗D∗

CA + DB CC∗ + DD∗

]
=
[

A C∗

B D∗

]∗ [
A C∗

B D∗

]
� 0 ,

so that if CC∗ + DD∗ = I (or more weakly CC∗ + DD∗ � I ), then

A∗A + B∗B � |CA + DB|2 (1.1)

and hence by operator monotonity of t1/2

(A∗A + B∗B)1/2 � |CA + DB| . (1.2)

Furthermore, when C = (A∗A + B∗B)−1/2A∗ and D = (A∗A + B∗B)−1/2B∗ (with a
slight modification if A∗A + B∗B is not invertible), we obtain CC∗ + DD∗ = I and
equality occurs in (1.1). Inequality (1.1) or (1.2) under CC∗ + DD∗ = I is regarded
as a matrix Cauchy-Schwarz inequality.
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One may expect the generalization of (1.1) or (1.2) to a matrix Hölder inequality.
Namely, if 1 < p, q < ∞ , 1/p + 1/q = 1 , and |C∗|q + |D∗|q = I , then does the
inequality

(|A|p + |B|p)1/p � |CA + DB| (1.3)

hold true? Unfortunately, this is false for every 1 < p < ∞ except p = 2 as we shall
explicitly see in Sec. 3. So one has to weaken (1.3) to get some matrix inequality of
Hölder type. The aim of this section is to establish an inequality of this type.

The next simple lemma will be sometimes useful in this paper.

LEMMA 1.1. If 1 < p < ∞ and 0 � α � 1 , then for every A, B � 0

(Ap + Bp)1/p � α1−1/pA + (1 − α)1−1/pB .

Proof. We may assume 0 < α < 1 because the result for α = 0, 1 is obtained
by taking limit (or obvious by operator monotonity of t1/p ). We have

(Ap + Bp)1/p = {α(α−1/pA)p + (1 − α)((1 − α)−1/pB)p}1/p

� α1−1/pA + (1 − α)1−1/pB

by operator concavity of t1/p . �
THEOREM 1.2. Let 2 � p, q < ∞ and 1 < r � ∞ with 1/p + 1/q = 1 − 1/r .

Then for any A, B, C, D and 0 � α � 1 ,

(|A|p + |B|p)2/p � |α1/rCA + (1 − α)1/rDB|2

whenever |C∗|q + |D∗|q � I .

Proof. Since the case r = ∞ (hence p = q = 2 ) is (1.1), we may assume
1 < r < ∞ . It suffices to show that for every A, B, C, D[

(|A|p + |B|p)2/p α1/rA∗C∗ + (1 − α)1/rB∗D∗

α1/rCA + (1 − α)1/rDB (|C∗|q + |D∗|q)2/q

]
� 0 . (1.4)

Since (1/2 − 1/p) + (1/2 − 1/q) = 1/r , we get[
α1−2/pA∗A + (1 − α)1−2/pB∗B α1/rA∗C∗ + (1 − α)1/rB∗D∗

α1/rCA + (1 − α)1/rDB α1−2/qCC∗ + (1 − α)1−2/qDD∗

]

=
[
α1/2−1/pA∗ (1 − α)1/2−1/pB∗

α1/2−1/qC (1 − α)1/2−1/qD

] [
α1/2−1/pA α1/2−1/qC∗

(1 − α)1/2−1/pB (1 − α)1/2−1/qD∗

]
� 0 .

Since Lemma 1.1 gives

(|A|p + |B|p)2/p � α1−2/pA∗A + (1 − α)1−2/pB∗B ,

(|C∗|q + |D∗|q)2/q � α1−2/qCC∗ + (1 − α)1−2/qDD∗ ,

we obtain (1.4). �
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In particular, let r = 2 and replace p, q by 2p, 2q . Then the theorem says that if
1 � p, q < ∞ , 1/p + 1/q = 1 , and 0 � α � 1 , then

(|A|2p + |B|2p)1/p � |√α CA +
√

1 − α DB|2

whenever |C∗|2q + |D∗|2q � I .
It is known that for every A, B � 0 the increasing limit of {(Ap + Bp)/2}1/p as

p → ∞ exists. So (Ap + Bp)1/p converges to the same limit as p → ∞ . We write

A ∨ B = lim
p→∞

(
Ap + Bp

2

)1/p

= lim
p→∞(Ap + Bp)1/p . (1.5)

In fact, this A ∨ B is the supremum of A, B with respect to some spectral order among
Hermitian matrices (see [9], [2, Lemma 6.5]). For instance, if P and Q are orthogonal
projections, then P ∨ Q coincides with the usual supremum of projections.

COROLLARY 1.3. Let 2 � p < ∞ and 1 < p′ � 2 with 1/p + 1/p′ = 1 . Then
for any A, B, C, D,

(‖C‖p′ + ‖D‖p′)2/p′(|A|p + |B|p)2/p � |CA + DB|2 . (1.6)

Moreover,

(‖C‖ + ‖D‖)2(|A| ∨ |B|)2 � |CA + DB|2 . (1.7)

Proof. Taking the limit of (1.4) as q → ∞ with p fixed (hence r → p′ ) we get

[
(|A|p + |B|p)2/p α1/p′A∗C∗ + (1 − α)1/p′B∗D∗

α1/p′CA + (1 − α)1/p′DB |C∗| ∨ |D∗|
]

� 0 .

Note that |C∗| ∨ |D∗| � I if and only if |C∗| � I and |D∗| � I , that is, ‖C‖ � 1 and
‖D‖ � 1 . Hence, if ‖C‖ � 1 and ‖D‖ � 1 , then for every 0 � α � 1

(|A|p + |B|p)2/p � |α1/p′CA + (1 − α)1/p′DB|2 .

By replacing α1/p′C and (1 − α)1/p′D by C and D respectively, this means that if
‖C‖p′ + ‖D‖p′ � 1 then (|A|p + |B|p)2/p � |CA + DB|2 . This is equivalent to (1.6).
(1.7) is the limit of (1.6) as p → ∞ . �

Here let us give a simple but worthwhile remark. Let A = U|A| and B = V|B| be
the polar decompositions with unitaries U, V . If we set C1 = CU and D1 = DV , then

|C∗| = |C∗
1 | , |D∗| = |D∗

1 | , |CA + DB| = |C1 |A| + D1 |B| | .

This says that when one discusses Hölder type inequalities such as (1.3) as well as
similar trace inequalities, it may be assumed without loss of generality that A, B are
positive semi-definite.
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2. Trace inequalities and weak majorizations of Hölder type

Hereafter, according to the remark above, we shall assume that A, B � 0 . Another
way of weakening (1.3) is to consider it under trace. A tracial Hölder inequality may
be proposed as follows: If 1 < p, q < ∞ , 1/p + 1/q = 1 , and |C∗|q + |D∗|q = I (or
|C∗|q + |D∗|q � I ), then does the inequality

Tr(Ap + Bp)1/p � Tr |CA + DB| (2.1)

hold true? To consider this question, it is convenient to use the following variational
expressions associated with A, B � 0 :

Vp(A, B) = max{Tr |CA + DB| : |C∗|q + |D∗|q � I} , (2.2)

Ṽp(A, B) = max{Tr |CA + DB| : |C∗|q + |D∗|q = I} , (2.3)
where 1 < p � ∞ and 1 � q < ∞ with 1/p+1/q = 1 . Then the problem consists of
the comparison of Tr(Ap + Bp)1/p with Vp(A, B) (or Ṽp(A, B) ). Here Tr(Ap + Bp)1/p

when p = ∞ means Tr(A ∨ B) according to (1.5). Also, in case of p = 1 we may
define

V1(A, B) = lim
p→1

Vp(A, B)

= max{Tr |CA + DB| : ‖C‖, ‖D‖ � 1} (2.4)

due to (1.5) and equivalence of |C∗| ∨ |D∗| � I and ‖C‖, ‖D‖ � 1 . But the problem
is trivial in this case because Tr(A + B) = V1(A, B) is obvious.

From the argument at the beginning of Sec. 1 it is clear that

Tr(A2 + B2)1/2 = V2(A, B) = Ṽ2(A, B) . (2.5)

But it seems that this variational equality fails to hold for any 1 < p � ∞ except p = 2 .
Indeed, we shall explicitly show in Sec. 3 that for each 2 < p < ∞ there is no relation
between Tr(Ap +Bp)1/p and Vp(A, B) ; more precisely, both Tr(Ap +Bp)1/p > Vp(A, B)
and Tr(Ap + Bp)1/p < Ṽp(A, B) can occur. So one needs to modify (2.1) to get some
trace inequality of Hölder type (at least when 2 < p < ∞ ). In this section we shall
obtain a weaker version of (2.1) as well as related inequalities.

First, let us give equivalent expressions of Vp(A, B) and Ṽp(A, B) , while they are
not essential in our later discussions.

PROPOSITION 2.1. Let 1 < p � ∞ and 1/p + 1/q = 1 . Then for A, B � 0 ,

Vp(A, B) = max{Re Tr(CA + DB) : |C∗|q + |D∗|q � I}
= max{Tr(|CA| + |DB|) : C, D � 0, Cq + Dq � I} .

The analogous expressions hold for Ṽp(A, B) too. Moreover, Vp(A, B) = Ṽp(A, B)
when 1 < p � 2 .

Proof. If |C∗|q + |D∗|q � I and CA + DB = U|CA + DB| is the polar decompo-
sition, then we have

Tr |CA + DB| = Tr(U∗CA + U∗DB) ,

|(U∗C)∗|q + |(U∗D)∗|q = U∗(|C∗|q + |D∗|q)U � I .
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Hence the first equality is obtained.
Let C, D � 0 and Cq + Dq � I . Taking the polar decompositions CA = V|CA|

and DB = W|DB| we get

Tr(|CA| + |DB|) = Tr(V∗CA + W∗DB)
= Tr(ACV + BDW)
= Tr(CVA + DWB) ,

|(CV)∗|q + |(DW)∗|q = |C∗|q + |D∗|q � I .

Moreover, for any C, D with the polar decompositions C∗ = V|C∗| nad D∗ = W|D∗|
we get

Re Tr(CA + DB) = Re Tr(A |C∗|V∗ + B |D∗|W∗)
� Tr(|A |C∗| | + |B |D∗| |)
= Tr(| |C∗|A| + | |D∗|B|) .

Hence the second equality is obtained.
In the same way as above we have also

Ṽp(A, B) = max{Re Tr(CA + DB) : |C∗|q + |D∗|q = I}
= max{Tr(|CA| + |DB|) : C, D � 0, Cq + Dq = I} .

Assume 1 < p � 2 and so 2 � q < ∞ . When C, D � 0 and Cq + Dq � I ,
if we set C1 = (I − Dq)1/q , then Cq

1 + Dq = I and Cq � Cq
1 so that C2 � C2

1

by operator monotonity of t2/q . Hence |CA|2 = AC2A � AC2
1A = |C1A|2 so that

Tr |CA| � Tr |C1A| . Thanks to the equivalent expressions of Vp(A, B) and Ṽp(A, B)
this implies that Vp(A, B) = Ṽp(A, B) . �

The following is our trace inequality of Hölder type, where C, D as well as A, B
are restricted to positive semi-definite matrices.

THEOREM 2.2. Let 1 < p, q < ∞ and 1/p + 1/q = 1 . If C, D � 0 and
Cq + Dq � I , then

Tr(Ap + Bp)1/p � Tr(CA + DB)

for every A, B � 0 .

Proof. When C, D � 0 and Cq +Dq � I , if C1 = (I−Dq)1/q , then Cq
1 +Dq = I

and Cq � Cq
1 , implying C � C1 by operator monotonity of t1/q and so Tr CA �

TrC1A . Hence we may assume that Cq + Dq = I so that C, D are commuting. Since
Tr is invariant under unitary similarity, it suffices to assume that

C = diag(α1/q
1 , . . . ,α1/q

n ) ,

D = diag((1 − α1)1/q, . . . , (1 − αn)1/q) ,
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where 0 � αi � 1 ( i = 1, . . . , n ). With the canonical basis e1, . . . , en we have

Tr(CA + DB) =
n∑

i=1

{〈Aei, Cei〉 + 〈Bei, Dei〉 }

=
n∑

i=1

{α1/q
i 〈Aei, ei〉 + (1 − αi)1/q〈Bei, ei〉 }

�
n∑

i=1

〈 (Ap + Bp)1/pei, ei〉

= Tr(Ap + Bp)1/p .

Lemma 1.1 was used for the above inequality. �
COROLLARY 2.3. If A = [aij] � 0 and B = [bij] � 0 , then for every 1 < p < ∞

Tr(Ap + Bp)1/p �
n∑

i=1

(ap
ii + bp

ii)
1/p .

Proof. The proof of Theorem 2.2 implies that

Tr(Ap + Bp)1/p �
n∑

i=1

{α1/q
i aii + (1 − αi)1/qbii} (2.6)

for all 0 � αi � 1 ( i = 1, . . . , n ). Take the maximum on the right-hand side of (2.6)
for 0 � αi � 1 to obtain the inequality required. �

Indeed, the abovecorollary can be stated in a bit stronger form. To do so, we need to
introduce the notion of weak majorization. Let �a = (a1, . . . , an) and �b = (b1, . . . , bn)
be real vectors. We say that �a weaklymajorizes �b , written as �a �w

�b , if the inequalities

k∑
i=1

a↓i �
k∑

i=1

b↓i (2.7)

hold for all k = 1, . . . , n , where a↓1 � · · · � a↓n and b↓1 � · · · � b↓n are the decreasing
rearrangements of the components of �a and �b . Also, we write �a �w �b if −�a �w −�b ,
equivalently

k∑
i=1

a↓n−i+1 �
k∑

i=1

b↓n−i+1 for k = 1, . . . , n.

Furthermore, it is said that �a majorizes �b , written as �a � �b , if �a �w
�b and equality

holds in (2.7) for k = n . An important fact is that �a �w
�b (resp. �a �w �b ) implies∑n

i=1 f (ai) �
∑n

i=1 f (bi) (resp.
∑n

i=1 f (ai) �
∑n

i=1 f (bi) ) for any increasing convex
(resp. concave) function f on an interval containing all ai, bi (see [13] and [2]).

For a Hermitian matrix H let

�λ (H) = (λ1(H), . . . , λn(H))
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denote the eigenvalues (with multiplicities) of H in decreasing order, i.e. λ1(H) �
· · · � λn(H) . Many (weak) majorization results are known so far for eigenvalues and
singular values of matrices (see [13] and [2, 3]), which are useful in deriving various
norm and trace inequalities for matrices.

Now a stronger form of Corollary 2.3 is the following:

COROLLARY 2.4. If A, B � 0 , then for every 1 < p < ∞
�λ ((Ap + Bp)1/p) �w ((ap

11 + bp
11)

1/p, . . . , (ap
nn + bp

nn)
1/p) .

Proof. For any 1 � i1 < i2 < · · · < ik � n we have

k∑
j=1

(ap
ijij

+ bp
ijij

)1/p �
k∑

j=1

〈 (Ap + Bp)1/peij , eij〉

�
k∑

i=1

λi((Ap + Bp)1/p) .

In the above, the first inequality follows from the proofs of Theorem 2.2 and Corollary
2.3, and the latter is due to the well-known theorem of Ky Fan [13, p. 511]. Hence the
stated weak majorization is obtained. �

This corollary shows that the inequality

Tr f ((Ap + Bp)1/p) �
n∑

i=1

f ((ap
ii + bp

ii)
1/p)

holds for every 1 < p < ∞ whenever f is an increasing convex function on [0,∞) .
In particular,

Tr(Ap + Bp)r �
n∑

i=1

(ap
ii + bp

ii)
r

for every 1 < p < ∞ and 1/p � r < ∞ (the case r = 1/p is Corollary 2.3).
Although we are mostly concerned with Tr(Ap + Bp)1/p for p > 1 , the above

theorem and corollaries can be reversed when 1/2 � p < 1 .

THEOREM 2.5. Let 1/2 � p < 1 and q � −1 with 1/p + 1/q = 1 . Let
A = [aij] � 0 and B = [bij] � 0 . If C, D � 0 are invertible and Cq + Dq � I , then

Tr(Ap + Bp)1/p � Tr(CA + DB) .

Furthermore,

�λ ((Ap + Bp)1/p) �w ((ap
11 + bp

11)
1/p, . . . , (ap

nn + bp
nn)

1/p) . (2.8)

Proof. First, note the elementary fact that for any a, b � 0 and 0 < p < 1

(ap + bp)1/p = inf
0<α<1

{α1/qa + (1 − α)1/qb} .
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Since t1/p is operator convex thanks to 1 < 1/p � 2 , the reversed version of Lemma
1.1 holds as follows:

(Ap + Bp)1/p = {α(α−1/pA)p + (1 − α)((1 − α)−1/pB)p}1/p

� α1/qA + (1 − α)1/qB (2.9)

for all 0 < α < 1 .
Let C, D � 0 be invertible and Cq + Dq � I . If C1 = (I − Dq)1/q , then

Cq
1 + Dq = I and C � C1 so that Tr CA � Tr C1A . Hence, as in the proof of Theorem

2.2, we may assume that

C = diag(α1/q
1 , . . . ,α1/q

n ) ,

D = diag((1 − α1)1/q, . . . , (1 − αn)1/q) ,

where 0 < αi < 1 ( i = 1, . . . , n ). Then

Tr(CA + DB) =
n∑

i=1

{α1/q
i 〈Aei, ei〉 + (1 − αi)1/q〈Beiei〉 }

� Tr(Ap + Bp)1/p

by (2.9). Next, for any 1 � i1 < i2 < · · · < ik � n we have

k∑
j=1

(ap
ijij

+ bp
ijij

)1/p = inf
0<αj<1

k∑
j=1

{α1/q
j 〈Aeij , eij〉 + (1 − αj)1/q〈Beij , eij〉 }

�
k∑

j=1

〈 (Ap + Bp)1/peij , eij〉

�
k∑

i=1

λn−i+1((Ap + Bp)1/p)

by the theorem of Ky Fan. This means the weak majorization (2.8). �
When 1/2 � p < 1 and 0 < r � 1/p , apply (2.8) to the increasing concave

function tpr on [0,∞) to get

Tr((Ap + Bp)r) �
n∑

i=1

(ap
ii + bp

ii)
r .

We do not know whether Theorem 2.5 is true or not when 0 < p < 1/2 .
In the rest of this section let us consider some other variational expressions and

their relations to Tr(Ap + Bp)1/p in particular when 1 < p � 2 .

LEMMA 2.6. Let 1 < p � 2 and 2 � q < ∞ with 1/p+1/q = 1 , and A, B � 0 .
Then there exist C, D such that

CA + DB = (Ap + Bp)1/p (2.10)
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and
α1−2/qCC∗ + (1 − α)1−2/qDD∗ � I for all 0 � α � 1. (2.11)

Proof. Let

C = (Ap + Bp)−1/qAp−1 , D = (Ap + Bp)−1/qBp−1 .

Here, when Ap + Bp is not invertible, (Ap + Bp)−1/q is defined as (Ap + Bp)−1/qP
where P is the projection onto the range of Ap + Bp . Then (2.10) is clear. For any
0 � α � 1 we have

α1−2/qCC∗ + (1 − α)1−2/qDD∗

= (Ap + Bp)−1/q{α1−2/qA2(p−1) + (1 − α)1−2/qB2(p−1)}(Ap + Bp)−1/q

� (Ap + Bp)−1/q{(A2(p−1))q/2 + (B2(p−1))q/2}2/q(Ap + Bp)−1/q

� I .

Above we used Lemma 1.1. �

THEOREM 2.7. Let 1 < p � 2 and 2 � q < ∞ with 1/p + 1/q = 1 . Then for
every A, B � 0 ,

max{Tr(CA + DB) : C, D � 0, Cq + Dq � I}

�
{

Tr(Ap + Bp)1/p

Vp(A, B)

� max{Tr |CA + DB| : α1−2/qCC∗ + (1 − α)1−2/qDD∗ � I (0 � α � 1)}

� min

{
n∑

i=1

(‖Aei‖p + ‖Bei‖p)1/p : {ei} is an orthonormal basis

}
.

Proof. We denote the two maximum expressions and the minimum expression in
the theorem by M1 , M2 and M3 , respectively. Theorem 2.2 means M1 � Tr(Ap +
Bp)1/p , and M1 � Vp(A, B) is trivial. Lemma 2.6 implies Tr(Ap +Bp)1/p � M2 . Since
by Lemma 1.1

(|C∗|q + |D∗|q)2/q � α1−2/qCC∗ + (1 − α)1−2/qDD∗ for 0 � α � 1,

we get Vp(A, B) � M2 . As in the proof of Proposition 2.1 it is immediately seen that
M2 is equal to the maximum of |Tr(CA+DB)| over C, D satisfying (2.11). Moreover,
condition (2.11) means that

α1−2/q‖C∗e‖2 + (1 − α)1−2/q‖D∗e‖ � 1

for all 0 � α � 1 and ‖e‖ = 1 , which is equivalent to

‖C∗e‖q + ‖D∗e‖q � 1 for ‖e‖ = 1. (2.12)
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When C, D satisfy (2.11) and {ei} is an orthonormal basis, we have

|Tr(CA + DB)| =

∣∣∣∣∣
n∑

i=1

{〈Aei, C
∗ei〉 + 〈Bei, D

∗ei〉 }
∣∣∣∣∣

�
n∑

i=1

(‖Aei‖ ‖C∗ei‖ + ‖Bei‖ ‖D∗ei‖)

�
n∑

i=1

(‖Aei‖p + ‖Bei‖p)1/p(‖C∗ei‖q + ‖D∗ei‖q)1/q

�
n∑

i=1

(‖Aei‖p + ‖Bei‖p)1/p

by (2.12). This completes the proof. �
The above theorem implies in particular that

Tr(Ap + Bp)1/p �
n∑

i=1

(‖Aei‖p + ‖Bei‖p)1/p (2.13)

for any orthonormal basis {ei} . Indeed, this can be strengthened to a weak majorization
as Corollary 2.4 and Theorem 2.5.

PROPOSITION 2.8. Let A, B � 0 and {ei} be an orthonormal basis. Then for
every 1 < p � 2 ,

�λ ((Ap + Bp)1/p)

�w ((‖Ae1‖p + ‖Be1‖p)1/p, . . . , (‖Aen‖p + ‖Ben‖p)1/p) . (2.14)

Proof. Set a linear map Φ on the n × n matrices into itself by

Φ(X) = diag(〈Xe1, e1〉 , . . . , 〈Xen, en〉 ) .

Then Φ is a doubly stochastic map on the n × n matrices; namely Φ is positive,
Φ(I) = I , and preserves Tr . In fact, Φ can be written as Φ(X) =

∑k
j=1 αjUjXU∗

j

where αj > 0 ,
∑k

j=1 αj = 1 , and Uj are unitaries. Since t2/p is operator convex, we
have for X � 0

Φ(Xp)2/p =

(
k∑

j=1

αjUjX
pU∗

j

)2/p

�
k∑

j=1

αj(UjX
pU∗

j )2/p = Φ(X2) ,

and hence thanks to operator monotonity of tp/2

Φ(Xp) � Φ(X2)p/2 . (2.15)
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For X � 0 , since �λ (X) � �λ (Φ(X)) (see [2, Theorem 7.1]) and t1/p is concave, we get

�λ(X1/p) �w �λ (Φ(X))1/p .

Therefore for A, B � 0 ,

�λ ((Ap + Bp)1/p) �w �λ (Φ(Ap + Bp))1/p

� �λ (Φ(A2)p/2 + Φ(B2)p/2)1/p

by (2.15). The latter vector is nothing but the right-hand side of (2.14) (up to a
component permutation), and we have the result because �a �w �b � �c implies �a �w

�c . �

The above weak majorization implies in particular that

Tr((Ap + Bp)r) �
n∑

i=1

(‖Aei‖p + ‖Bei‖p)r

whenever 1 < p � 2 and 0 < r � 1/p .
When p > 2 , inequality (2.13) is false even when A, B are commuting. In fact,

let

A =
[

1 0
0 0

]
, B =

[
0 0
0 1

]
and

e1 =
[

1/
√

2
1/

√
2

]
, e2 =

[
1/

√
2

−1/
√

2

]
.

Then
Tr(Ap + Bp)1/p = Tr I = 2

while
2∑

i=1

(‖Aei‖p + ‖Bei‖p)1/p = 21/2+1/p .

3. Counter-examples from two projections

The aim of this section is to give counter-exampleswhich show thatHölder inequal-
ities as stated in (1.3) and (2.1) are false. To do so, we take as A, B two non-commuting
orthogonal projections of rank one and examine the validity of those inequalities in de-
tail.

Now let

P =
[

1 0
0 0

]
, Qt =

[
t2 t

√
1 − t2

t
√

1 − t2 1 − t2

]
for 0 < t < 1 . Then P and Qt are rank one projections and

(Pp + Qp
t )

1/p = (P + Qt)1/p .
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The diagonalization of P + Qt is

P + Qt = Ut diag(1 + t, 1 − t) Ut

where

Ut =

⎡
⎣
√

1+t
2

√
1−t
2√

1−t
2 −

√
1+t
2

⎤
⎦ ,

a Hermitian unitary. Set

Ct = (P + Qt)−1/2P , Dt = (P + Qt)−1/2Qt ,

so that CtP + DtQt = (P + Qt)1/2 .
The next proposition says that matrix Hölder inequality (1.3) is false for any

1 < p < ∞ except 2 .

PROPOSITION 3.1. For every 0 < q < ∞ ,

|C∗
t |q + |D∗

t |q = I . (3.1)

But for every 0 < p < ∞ with p �= 2 and 0 < t < 1 ,

(P + Qt)1/p �� |CtP + DtQt| .

Proof. A direct computation gives

UtCtC
∗
t Ut =

[
1/2 1/2
1/2 1/2

]
, UtDtD

∗
t Ut =

[
1/2 −1/2
−1/2 1/2

]
.

Hence |C∗
t | and |D∗

t | are projections such that |C∗
t |+ |D∗

t | = I and (3.1) holds for any
q > 0 . On the other hand, the eigenvalues of (P + Qt)1/p − |CtP + DtQt| are

(1 ± t)1/p − (1 ± t)1/2 ,

one of which is strictly negative for any p > 0 with p �= 2 . �

Next, to examine trace inequality (2.1), for 1 � p � ∞ and 0 < t < 1 put

f t(p) = Tr(Pp + Qp
t )

1/p = Tr(P + Qt)1/p,

and compare it with Vp(P, Qt) (or Ṽp(P, Qt) ) defined in (2.2)–(2.4). The following
are clear by (2.4) and (2.5):

f t(1) = f t(∞) = V1(P, Qt) = 2 , (3.2)

f t(2) = V2(P, Qt) . (3.3)
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LEMMA 3.2. Vp(P, Qt) is decreasing in 1 � p � 2 and Vp(P, Qt) = Ṽp(P, Qt) =
V2(P, Qt) for all 2 � p � ∞ .

Proof. When 1 < p < p′ � ∞ and 1/p′ + 1/q′ = 1 as well as 1/p + 1/q = 1 ,
since |C∗|q′ + |D∗|q′ � I implies |C∗|q + |D∗|q � I , we get Vp(P, Qt) � Vp′(P, Qt) .
Hence Vp(P, Qt) is decreasing in 1 � p � ∞ . Moreover we have by (3.1) and (3.3)

Vp(P, Qt) � Ṽp(P, Qt) � Tr |CtP + DtQt| = V2(P, Qt)

for all 1 � p � ∞ . �

LEMMA 3.3. There exist 2 < p0(t) < p1(t) < ∞ such that
(i) f t(p) is strictly decreasing in p ∈ [1, p0(t)] and strictly increasing in p ∈

[p0(t),∞] ,
(ii) f t(2) = f t(p1(t)) ,
(iii) p0(t) → ∞ as t → 1 and p1(t) → 2 as t → 0 .

Proof. For simplicity write

gt(x) = f t(1/x) = (1 + t)x + (1 − t)x

for x � 0 and 0 < t < 1 . Since

g′t(x) = (1 + t)x log(1 + t) + (1 − t)x log(1 − t) ,

we get
g′t(0) = log(1 − t2) < 0 .

To show g′t(1/2) > 0 let

φ(t) = (1 + t)1/2 log(1 + t) + (1 − t)1/2 log(1 − t) for 0 � t < 1.

By differentiating φ up to the fourth degree one can easily show that φ(t) > φ(0) = 0
for 0 < t < 1 . Hence g′t(1/2) > 0 . Since

g′′t (x) = (1 + t)(log(1 + t))2 + (1 − t)x(log(1 − t))2 > 0 ,

there exists a unique x0 ∈ (0, 1/2) (depending on t ) such that g′t(x0) = 0 . Since
gt(0) = gt(1) = 2 by (3.2), there exists a unique x1 ∈ (0, x0) (depending on t ) such
that gt(x1) = gt(1/2) . Then (i) and (ii) hold with p0(t) = 1/x0 and p1(t) = 1/x1 .
Now it remains to show that x0 → 0 as t → 1 and x1 → 1/2 as t → 0 . The first
is seen because limt→1 g′t(x) > 0 for any x > 0 . To see the second, take the Taylor
expansions in t up to the second order of both sides of the equation

(1 + t)x1 + (1 − t)x1 = (1 + t)1/2 + (1 − t)1/2 .

Though x1 depends on t , since the Taylor coefficients of the left-hand side are uniformly
bounded for 0 < x1 < 1/2 , we get

x1(x1 − 1)t2 + O(t3) = −1
4
t2 + O(t3)
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and hence (x1 − 1/2)2 = O(t) . This implies that x1 → 1/2 as t → 0 . �

By Lemmas 3.2 and 3.3 together with (3.3) we have{
f t(p) < Ṽp(P, Qt) if 2 < p < p1(t),
f t(p) > Vp(P, Qt) if p1(t) < p � ∞.

Thanks to Lemma 3.3 (iii) this shows the following:

PROPOSITION 3.4. For each 2 < p < ∞ , both Tr(P + Qt)1/p < Ṽp(P, Qt) and
Tr(P + Qt)1/p > Vp(P, Qt) can occur when t varies in (0, 1) .

In this way trace inequality (2.1) does not hold when 2 < p < ∞ .
Though we could not settle (2.1) for 1 < p < 2 , numerical computations strongly

suggest that
Tr(P + Qt)1/p > Vp(P, Qt) for 1 < p < 2.

The next proposition is concerned with another variational expression in Theorem
2.7.

PROPOSITION 3.5. For each 1 < p < 2 , strict inequality

Tr(P + Qt)1/p

< max{Tr |CP + DQt| : α1−2/qCC∗ + (1 − α)1−2/qDD∗ � I (0 � α � 1)}
can occur when t varies in (0, 1) .

Proof. Let 1 < p < 2 and 1/p + 1/q = 1 . By Lemma 2.6 and its proof, if we
set for 0 < t < 1

C(p)
t = (P + Qt)−1/qP , D(p)

t = (P + Qt)−1/qQt ,

then C(p)
t P + D(p)

t Qt = (P + Qt)1/p and C(p)
t , D(p)

t satisfy (2.11), so that

Tr(P + Qt)1/p = Tr(C(p)
t P + D(p)

t Qt) .

Now define
Ft(x) = Tr(C(p)

x P + D(p)
x Qt) for 0 < x < 1.

Since Tr(P + Qt)1/p = Ft(t) , the result follows if F′
t(t) �= 0 is shown. A simple but a

bit tedious computation yields

2F′
t(t) =

(
1
p
− 1

q

)
{(1 + t)−1/q − (1 − t)−1/q}

which is strictly negative due to p < 2 < q . �

One may expect to get more information from two projections of higher rank.
But this is not so. In fact, when P, Q are two projections such that P ∨ Q = I and
P ∧ Q = 0 , it is readily seen from the structure theorem for two projections (see [15,
pp. 306–308]) that the eigenvalues of P + Q except 1 are 1 ± α1, . . . , 1 ± αk with
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0 < αi < 1 . So we can have no better results than the above propositions from two
projections.

We end this section with a brief discussion about joint convexity of the function
(A, B) �→ Tr(Ap + Bp)1/p . Note that variational expressions such as (2.2) are jointly
convex in (A, B) because so is Tr |CA + DB| (the trace norm of CA + DB ). Our
motivation of comparing Tr(Ap + Bp)1/p with such variational expressions in Sec. 2
came from the search for joint convexity of Tr(Ap + Bp)1/p , namely

Tr((A1 + A2)p + (B1 + B2)p)1/p � Tr(Ap
1 + Bp

1)
1/p + Tr(Ap

2 + Bp
2)

1/p (3.4)

for Ai, Bi � 0 ( i = 1, 2 ). However, the proposition below says that this is negative for
any 2 < p � ∞ , while of course it is true for p = 2 by (2.5) and trivial for p = 1 .
So it may be conjectured for 1 < p < 2 only. But the negative results shown above
in this section as well as numerical computations suggest us that the way of proof via
variational expression is hopeless.

PROPOSITION 3.6. Let

A1 = B1 =
[

1 1
1 1

]
, A2 =

[
2ε 0
0 0

]
, B2 =

[
0 0
0 2ε

]

for ε > 0 . If 2 < p � ∞ , then (3.4) fails to hold for ε small enough, that is,

Tr((A1 + A2)p + (B1 + B2)p)1/p > Tr(Ap
1 + Bp

1)
1/p + Tr(Ap

2 + Bp
2)

1/p . (3.5)

Proof. First let p < ∞ . The right-hand side of (3.5) can be immediately computed
and it is equal to 21+1/p + 4ε . The eigenvalues of A1 + A2 (also B1 + B2 ) are

α1 = 1 + ε +
√

1 + ε2 , α2 = 1 + ε −
√

1 + ε2 ,

and A1 + A2 is diagonalized as A1 + A2 = U diag(α1,α2) U with a Hermitian unitary

U =
1√

2(1 + ε2)1/4

[ {(1 + ε2)1/2 + ε}1/2 {(1 + ε2)1/2 − ε}1/2

{(1 + ε2)1/2 − ε}1/2 −{(1 + ε2)1/2 + ε}1/2

]
.

Hence we get

(A1 + A2)p =

⎡
⎣ αp

1 +αp
2

2 + ε(αp
1 −αp

2 )
2
√

1+ε2

αp
1 −αp

2

2
√

1+ε2

αp
1 −αp

2

2
√

1+ε2

αp
1 +αp

2
2 − ε(αp

1 −αp
2 )

2
√

1+ε2

⎤
⎦ .

Also (B1+B2)p is analogously computed,where the diagonal entries are just exchanged.
Therefore

(A1 + A2)p + (B1 + B2)p =

⎡
⎣αp

1 + αp
2

αp
1 −αp

2√
1+ε2

αp
1 −αp

2√
1+ε2 αp

1 + αp
2

⎤
⎦

and its eigenvalues are

β1 = αp
1 + αp

2 +
αp

1 − αp
2√

1 + ε2
, β2 = αp

1 + αp
2 − αp

1 − αp
2√

1 + ε2
.
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Since

β1/p
1 �

(
1 +

1√
1 + ε2

)1/p

α1 � 21+1/p + O(ε) ,

β1/p
2 �

(
1 − 1√

1 + ε2

)1/p

α1 � 21−1/pε2/p + O(ε) ,

the left-hand side of (3.5) is bounded below by 21+1/p +21−1/pε2/p +O(ε) . This proves
(3.5) for small ε ; hence (3.4) does not hold for 2 < p < ∞ .

Next when p = ∞ , since A2 ∨ B2 = 2εI , (3.5) means that

Tr((A1 + A2) ∨ (B1 + B2)) > 2 + 4ε . (3.6)

Set A = (A1 + A2) ∨ (B1 + B2) and A − A1 =
[

a c
c̄ b

]
. Since A − A1 � A2 and

A − A1 = A − B1 � B2 , we get

a � 2ε , (a − 2ε)b � |c|2 ,

b � 2ε , a(b − 2ε) � |c|2 .

If (3.6) does not hold, then a + b = Tr(A − A1) � 4ε , so that a = b = 2ε and
c = 0 . Hence A = A1 + 2εI . Moreover we have A2 � (B1 + B2)2 by definition of

∨ in [9], which implies

[
4ε + 4ε2 2ε

2ε 0

]
� 0 , a contradiction. So (3.6) holds for any

ε > 0 . �
For the operator norm ‖(Ap + Bp)1/p‖ we have the following positive result.

PROPOSITION 3.7. If 1 � p � 2 , then ‖(Ap+Bp)1/p‖ is jointly convex in A, B � 0 .

Proof. Let Ai, Bi � 0 ( i = 1, 2 ) and show that

‖((A1 + A2)p + (B1 + B2)p)1/p‖ � ‖(Ap
1 + Bp

1)
1/p‖ + ‖(Ap

2 + Bp
2)

1/p‖ . (3.7)

Put ai = ‖(Ap
i + Bp

i )1/p‖ and α = a1/(a1 + a2) . Then ai is the largest eigenvalue of
(Ap

i + Bp
i )1/p . Since tp is operator convex and Ap

i + Bp
i � ap

i I , we get as (2.9)

(A1 + A2)p + (B1 + B2)p � α1−p(Ap
1 + Bp

1) + (1 − α)1−p(Ap
2 + Bp

2)

� {α1−pap
1 + (1 − α)1−pap

2}I
= (a1 + a2)pI ,

implying (3.7). �

4. Multiplicative weak majorizations of Hölder type

The aim of this section is to search how we can generalize joint concavity
stated in (0.3) to matrices. First the next proposition shows that the map (A, B) �→
(B1/2qA1/pB1/2q)1/r has a rather poor property of operator concavity.
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PROPOSITION 4.1. Let p, q, r > 0 . The map A � 0 �→ (BA1/pB)1/r is operator
concave for every B � 0 if and only if p, r � 1 . For every q, r > 0 and for some
A � 0 the map B �→ (B1/2qAB1/2q)1/r is not operator concave.

Proof. When p, r � 1 operator concavity of A �→ (BA1/pB)1/r is clear because
t1/r is operator concave and operator monotone. Conversely, suppose it is operator
concave for every B � 0 . Since

([
I I
I I

] [
A 0
0 B

]1/p [
I I
I I

])1/r

= 21/r−1

[
X X
X X

]

where X = (A1/p+B1/p)1/r , it follows that (A, B) �→ (A1/p+B1/p)1/r is jointly operator
concave. Hence if P, Q are projections, then we get

(P + Q)1/r = 21/pr

{(
P + 0

2

)1/p

+
(

0 + Q
2

)1/p}1/r

� 21/pr−1(P + Q) .

Since any x ∈ (0, 1) can be an eigenvalue of P + Q , we must have x1/r−1 � 21/pr−1

for all 0 < x < 1 . This imples r � 1 . Moreover, since the numerical function
(x1/p + 1)1/r is concave in x � 0 , we get

d2

dx2
(x1/p + 1)1/r

=
1
pr

x1/p−2(x1/p + 1)1/r−2

{(
1
pr

− 1

)
x1/p +

(
1
p
− 1

)}
� 0

for every x > 0 . This implies p � 1 , and hence the first assertion is shown.
Next, let

A =
[

1/2 1/2
1/2 1/2

]
, B1 =

[
1 0
0 0

]
, B2 =

[
0 0
0 1

]
.

Then

λ2((B1 + B2)1/2qA(B1 + B2)1/2q) = 0

while

λ2((B
1/2q
1 AB1/2q

1 )1/r + (B1/2q
2 AB1/2q

2 )1/r) > 0 .

These prove the second assertion. �

Now we are concerned with a Hölder type inequality for positive semi-definite
matrices under taking eigenvalue products

∏k
i=1 λn−i+1(·) . It is some kind of multi-

plicative weak majorization and also considered as a matrix version of joint concavity
(0.3).

In the sequel of this paper let A, B, Aj, Bj be positive semi-definite n× n matrices.
We may write λi(AB) instead of λi(B1/2AB1/2) because AB is similar to B1/2AB1/2 .
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LEMMA 4.2. For every 1 � p, q < ∞ ,

λn((A
p
1 + Ap

2)
1/p(Bq

1 + Bq
2)

1/q)pq/(p+q)

� λn(A1B1)pq/(p+q) + λn(A2B2)pq/(p+q) . (4.1)

Proof. Put aj = λn(AjBj)pq/(p+q) and α = a1/(a1 + a2) , a1 + a2 > 0 being
assumed. Note that if A, B � 0 and a � 0 , then λn(AB) � a (i.e. A1/2BA1/2 � aI ) is

equivalent to

[
A a1/2I

a1/2I B

]
� 0 . Since

α2−(p+q)/pqA1/2
1 B1A

1/2
1 � α2−(p+q)/pqa(p+q)/pq

1 I = α2(a1 + a2)(p+q)/pqI ,

we get [
α1−1/pA1 α(a1 + a2)(p+q)/2pqI

α(a1 + a2)(p+q)/2pqI α1−1/qB1

]
� 0 ,

and similarly[
(1 − α)1−1/pA2 (1 − α)(a1 + a2)(p+q)/2pqI

(1 − α)(a1 + a2)(p+q)/2pqI (1 − α)1−1/qB2

]
� 0 ,

so that [
α1−1/pA1 + (1 − α)1−1/pA2 (a1 + a2)(p+q)/2pqI

(a1 + a2)(p+q)/2pqI α1−1/qB1 + (1 − α)1−1/qB2

]
� 0 .

Therefore by Lemma 1.1[
(Ap

1 + Ap
2)

1/p (a1 + a2)(p+q)/2pqI
(a1 + a2)(p+q)/2pqI (Bq

1 + Bq
2)

1/q

]
� 0 ,

which is equivalent to

λn((A
p
1 + Ap

2)
1/p(Bq

1 + Bq
2)

1/q) � (a1 + a2)(p+q)/pq ,

as desired. �
In the following proof we use the technique of antisymmetric tensor powers. For

each n × n matrix X and k = 1, . . . , n , the k -fold antisymmetric tensor power (or
the k th compound) of X is denoted by ∧kX . This is the restriction of the k -fold
tensor product ⊗kX on ⊗kCn to the antisymmetric tensor product subspace ∧kCn of
dimension

(n
k

)
. What we need are the following basic properties (see [13, 19.F] and [5,

I.5]):
(i) ∧k(XY) = (∧kX)(∧kY) and ∧k(X∗) = (∧kX)∗ .
(ii) For A � 0 and r > 0 , ∧kA � 0 and ∧k(Ar) = (∧kA)r .
(iii) For A � 0 , λ1(∧kA) =

∏k
i=1 λi(A) and λN(∧kA) =

∏k
i=1 λn−i+1(A) where

N =
(n

k

)
.

For every A, B � 0 these properties give

λN((∧kA)(∧kB)) =
k∏

i=1

λn−i+1(AB) for N =
(

n
k

)
. (4.2)
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It is known [1, Corollary 6.2] (also [12]) that A � 0 �→ ⊗kA1/k is operator concave
for any k ∈ N . Since ∧kA1/k = ⊗kA1/k|∧kCn , we state another important property:

(iv) A � 0 �→ ∧kA1/k is operator concave.

THEOREM 4.3. For every 1 � p, q < ∞ and k = 1, . . . , n ,

{
k∏

i=1

λn−i+1((A
p
1 + Ap

2)
1/pk(Bq

1 + Bq
2)

1/qk)

}pq/(p+q)

�
{

k∏
i=1

λn−i+1(A
1/k
1 B1/k

1 )

}pq/(p+q)

+

{
k∏

i=1

λn−i+1(A
1/k
2 B1/k

2 )

}pq/(p+q)

.
(4.3)

Proof. For k = 1, . . . , n and N =
(n

k

)
, by (4.1) applied to ∧kA1/k

j ,∧kB1/k
j instead

of Aj, Bj we have

λN((∧kAp/k
1 + ∧kAp/k

2 )1/p(∧kBq/k
1 + ∧kBq/k

2 )1/q)pq/(p+q)

� λN((∧kA1/k
1 )(∧kB1/k

1 ))pq/(p+q) + λN((∧kA1/k
2 )(∧kB1/k

2 ))pq/(p+q) .
(4.4)

By property (iv) stated above we get

∧kAp/k
1 + ∧kAp/k

2 � ∧k(Ap
1 + Ap

2)
1/k ,

∧kBq/k
1 + ∧kBq/k

2 � ∧k(Bq
1 + Bq

2)
1/k .

Thanks to operator monotonity of t1/p and t1/q , it follows that λi(A1/pB1/q) is jointly
increasing in A, B � 0 . So the above inequalities imply that

λN((∧kAp/k
1 + ∧kAp/k

2 )1/p(∧kBq/k
1 + ∧kBq/k

2 )1/q)

� λN(∧k(Ap
1 + Ap

2)
1/pk ∧k (Bq

1 + Bq
2)

1/qk)

=
k∏

i=1

λn−i+1((A
p
1 + Ap

2)
1/pk(Bq

1 + Bq
2)

1/qk)

by (4.2). Also by (4.2) the right-hand side of (4.4) is equal to that of (4.3). Hence we
obtain (4.3). �

By taking the limit of (4.3) as p → ∞ we see that (4.3) holds true for p = ∞
and 1 � q < ∞ too, that is,{

k∏
i=1

λn−i+1((A1 ∨ A2)1/k(Bq
1 + Bq

2)
1/qk)

}q

�
{

k∏
i=1

λn−i+1(A
1/k
1 B1/k

1 )

}q

+

{
k∏

i=1

λn−i+1(A
1/k
2 B1/k

2 )

}q

.



22 T. ANDO AND F. HIAI

So, weak majorization (4.3) becomes a proper form of Hölder type when 1 � p, q � ∞
and 1/p + 1/q = 1 .

Let p = q = 1/r and replace Ap
j , B

q
j by Aj, Bj in (4.3). Then for every 0 < r � 1

and k = 1, . . . , n we have the superadditivity{
k∏

i=1

λn−i+1((A1 + A2)r/k(B1 + B2)r/k)

}1/2r

�
{

k∏
i=1

λn−i+1(A
r/k
1 Br/k

1 )

}1/2r

+

{
k∏

i=1

λn−i+1(A
r/k
2 Br/k

2 )

}1/2r

, (4.5)

which means that when 0 < r � 1 the map (A, B) �→ {∏k
i=1 λn−i+1(Ar/kBr/k)}1/2r

is jointly concave (and jointly increasing). In particular, when A1 = B1 = A and
A2 = B2 = B , this reads as{

k∏
i=1

λn−i+1(A + B)

}1/k

�
{

k∏
i=1

λn−i+1(A)

}1/k

+

{
k∏

i=1

λn−i+1(B)

}1/k

, (4.6)

which is the Oppenheim inequality [14] (or [13, p. 475]). Moreover, (4.5) can be stated
in a formally more general form that if f , g : [0,∞) → [0,∞) are operator monotone
(hence operator concave, [7]), then for every 0 < r � 1 and k = 1, . . . , n the function

(A, B) �→
{

k∏
i=1

λn−i+1(f (A)r/kg(B)r/k)

}1/2r

is jointly concave. This is obvious because for 0 � α � 1

λi(f (αA1 + (1 − α)A2)r/kg(αB1 + (1 − α)B2)r/k)

� λi((αf (A1) + (1 − α)f (A2))r/k(αg(B1) + (1 − α)g(B2))r/k) .

Since log t ( t > 0 ) is concave and increasing, (4.5) shows that for every 0 < r � 1
and k = 1, . . . , n the function

(A, B) �→ log

{
k∏

i=1

λn−i+1(Ar/kBr/k)

}

is jointly concave. In particular, when A = B , this implies Ky Fan’s result [6] (or [13,
p. 476]) that A �→ log{∏k

i=1 λn−i+1(A)} is concave.
When A, B � 0 are invertible, the (continuous parameter version of) Lie product

formula says that
lim
r→0

(Br/2ArBr/2)1/r = exp(logA + logB) . (4.7)

Also, note [8, Sec. 4] that for general A, B � 0 the expression exp(log A + logB) is
meaningful and given as

exp(logA + logB) = lim
ε↓0

exp(log(A + εI) + log(B + εI)) . (4.8)

The following is one more consequence of (4.5).
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COROLLARY 4.4. For every k = 1, . . . , n the function

(A, B) �→
{

k∏
i=1

λn−i+1(exp(logA + logB))

}1/2k

is jointly concave.

Proof. Thanks to (4.8) we may assume that Aj, Bj are invertible. Then by (4.7)
we get

lim
r→0

λi(A
r/k
j Br/k

j )1/r = λi(exp(logAj + logBj))1/k .

Hence the limit of (4.5) as r → 0 is{
k∏

i=1

λn−i+1(exp(log(A1 + A2) + log(B1 + B2)))

}1/2k

�
{

k∏
i=1

λn−i+1(exp(log A1 + logB1))

}1/2k

+

{
k∏

i=1

λn−i+1(exp(logA2 + logB2))

}1/2k

,

which means the stated joint concavity. �
The next proposition illustrates that the assumption 0 < r � 1 is essential for

(4.5).

PROPOSITION 4.5. If 1 < r < ∞ , then (A, B) �→ λn(ArBr)1/2r is not jointly
concave.

Proof. Let r > 0 and suppose that (A, B) �→ λn(ArBr)1/2r is jointly concave.
Then for any invertible A1, A2 we get

λn((A1 + A2)r(A−1
1 + A−1

2 )r)1/2r � λn(Ar
1A

−r
1 )1/2r + λn(Ar

2A
−r
2 )1/2r = 2 ,

which implies that

(A−1
1 + A−1

2 )r/2(A1 + A2)r(A−1
1 + A−1

2 )r/2 � 22rI

and hence (
A1 + A2

2

)r

�
(

A−1
1 + A−1

2

2

)−r

.

Now let A = A1/2
1 and B = A−1/2

1 A2A
−1/2
1 . Then the above inequality is written as

{A(I + B)A/2}r � {2AB(I + B)−1A}r ,

which holds for all A, B � 0 by continuity. For instance, take

A =
1

(1 + a2)1/4

[
1 a
a 1

]
(0 < a < 1), B =

[
1 0
0 0

]
,
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and put X = A(I + B)A/2 and Q = 2AB(I + B)−1A . Then

X =
1√

1 + a2

[
1 + a2

2
3a
2

3a
2

1
2 + a2

]
, Q =

1√
1 + a2

[
1 a
a a2

]
,

so that Q is a rank one projection, X � Q , det(X−Q) = 0 , and Xr � Q . Transforming
by unitary similarity we can get

X̃ =
[
α 0
0 β

]
(α > β > 0), Q̃ =

[
t2 t

√
1 − t2

t
√

1 − t2 1 − t2

]
(0 < t < 1)

such that X̃ � Q̃ , det(X̃ − Q̃) = 0 , and X̃r � Q̃ . Therefore

αβ = α(1 − t2) + β t2 ,

αrβ r � αr(1 − t2) + β rt2 ,

so that
{α(1 − t2) + β t2}r � αr(1 − t2) + β rt2 .

This does not hold for r > 1 and we must have r � 1 . �
We end this section with a small remark. For any n × n matrix X let �s(X) =

(s1(X), . . . , sn(X)) denote the singular values (with multiplicities) of X (i.e. the eigen-
values of |X| ) in decreasing order. When r = 1/2 , (4.5) may be viewed as a sort of
Cauchy-Schwarz type inequality. As was discussed in [10], there is a more natural weak
majorization of Cauchy-Schwarz type as follows: For every Xj, Yj and k = 1, . . . , n ,

k∏
i=1

si(X∗
1 X1 + X∗

2 X2)1/2si(Y∗
1 Y1 + Y∗

2 Y2)1/2 �
k∏

i=1

si(X∗
1 Y1 + X∗

2 Y2) .

This can be proved by a nice application of 2 × 2 trick and the Horn theorem on
majorization.

5. Weak majorizations involving α -power mean

In this section let us discuss inequalities similar to (4.3) and (4.5) involving α -
power mean. When A, B are invertible, the parallel sum A : B is defined by

A : B = (A−1 + B−1)−1 ,

and for 0 � α � 1 the α -power mean A #α B is defined by

A #α B = A1/2(A−1/2BA−1/2)αA1/2 .

For general A, B � 0 , A : B is given as the decreasing limit of (A + εI) : (B + εI)
as ε ↓ 0 , and similarly for A #α B . We already treated parallel sum in the proof
of Proposition 4.5. The harmonic mean is 2(A : B) and the geometric mean is
A # B = A #1/2 B . Also, A #0 B = A and A #1 B = B . As properties of general operator
means, the map (A, B) �→ A #α B is jointly operator monotone and jointly operator
concave. (See [11] for general theory of operator means.)

The next proposition gives a variant of (4.3) when usual product is replaced by
geometric mean.
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PROPOSITION 5.1. For every 1 � p, q < ∞ and k = 1, . . . , n ,

{
k∏

i=1

λn−i+1((A
p
1 + Ap

2)
1/p # (Bq

1 + Bq
2)

1/q)

}2pq/(p+q)k

�
{

k∏
i=1

λn−i+1(A1 # B1)

}2pq/(p+q)k

+

{
k∏

i=1

λn−i+1(A2 # B2)

}2pq/(p+q)k

.

Proof. Put aj = {∏k
i=1 λn−i+1(Aj # Bj)}2pq/(p+q)k and α = a1/(a1 + a2) . Then

we have

{
k∏

i=1

λn−i+1((A
p
1 + Ap

2)
1/p # (Bq

1 + Bq
2)

1/q)

}1/k

�
{

k∏
i=1

λn−i+1((α1−1/pA1 + (1 − α)1−1/pA2)

# (α1−1/qB1 + (1 − α)1−1/qB2)

}1/k

�
{

k∏
i=1

λn−i+1(α1−(p+q)/2pqA1 # B1

+ (1 − α)1−(p+q)/2pqA2 # B2)

}1/k

� α1−(p+q)/2pqa(p+q)/2pq
1 + (1 − α)1−(p+q)/2pqa(p+q)/2pq

2

= (a1 + a2)(p+q)/2pq .

Above we used Lemma 1.1, the properties of # mentioned above, the Oppenheim
inequality (4.6), and positive homogeneity of {∏k

i=1 λn−i+1(·)}1/k . Hence the desired
inequality is shown. �

The following variant of (4.5) holds for general α -power mean. The proof is
similar to the above and we omit the details.

PROPOSITION 5.2. Let 0 � α � 1 . Then for every 0 < r � 1 and k = 1, . . . , n
the function

(A, B) �→
{

k∏
i=1

λn−i+1(Ar #α Br)

}1/rk

is jointly concave.

Next, note that (4.3) can be reformulated in terms of parallel sum. When Aj, Bj
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are invertible, replace Aj, Bj by A−1
j , B−1

j in (4.3) to get

{
k∏

i=1

λi((A
−p
1 + A−p

2 )−1/kp(B−q
1 + B−q

2 )−1/kq)

}−pq/(p+q)

�
{

k∏
i=1

λi(A
1/k
1 B1/k

1 )

}−pq/(p+q)

+

{
k∏

i=1

λi(A
1/k
2 B1/k

2 )

}−pq/(p+q)

.

This is equivalently written as{
k∏

i=1

λi((A
p
1 : Ap

2)
1/kp(Bq

1 : Bq
2)

1/kq)

}pq/(p+q)

�
{

k∏
i=1

λi(A
1/k
1 B1/k

1 )

}pq/(p+q)

:

{
k∏

i=1

λi(A
1/k
2 B1/k

2 )

}pq/(p+q)

for every 1 � p, q < ∞ .
The following is a similar inequality for α -power mean, while it does not contain

parameters p, q .

PROPOSITION 5.3. For every 0 < α < 1 and k = 1, . . . , n ,

k∏
i=1

λi((A1 #α A2)(B1 #α B2)) �
k∏

i=1

{λi(A1B1)1−αλi(A2B2)α} (5.1)

and

k∏
i=1

λn−i+1((A1 #α A2)(B1 #α B2)) �
k∏

i=1

{λn−i+1(A1B1)1−αλn−i+1(A2B2)α} (5.2)

with equality for k = n .

Proof. Once we can show that

λ1((A1 #α A2)(B1 #α B2)) � λ1(A1B1)1−αλ1(A2B2)α , (5.3)

the proof of (5.1) is a standard application of the technique of antisymmetric tensors as
in the proof of [4, Theorem 2.1] (also Theorem 4.3 above). For k = n both sides of
(5.1) are equal to (detA1 det B1)1−α(det A2 det B2)α . So it is enough for (5.1) to show
(5.3). By positive homogeneity we have for γ1, γ2 > 0

λ1(((γ1A1) #α (γ2A2))(B1 #α B2)) = γ 1−α
1 γ α2 λ1((A1 #α A2)(B1 #α B2)) ,

λ1((γ1A1)B1)1−αλ1((γ2A2)B2)α = γ 1−α
1 γ α2 λ1(A1B1)1−αλ1(A2B2)α .

So we may assume that λ1(A1B1) = λ1(A2B2) = 1 . Furthermore, we may assume
that A1, A2 are invertible. Then B1 � A−1

1 and B2 � A−1
2 , so that by monotonity of

α -power mean
B1 #α B2 � A−1

1 #α A−1
2 = (A1 #α A2)−1 .
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This implies that λ1((A1#α A2)(B1 #α B2)) � 1 . Hence (5.3) is shown. Moreover,
(5.2) immediately follows from (5.1) applied to A−1

j , B−1
j . �

By using the notation ≺
(log)

of log majorization introduced in [4], (5.1) is rewritten

as
�s((A1 #α A2)1/2(B1 #α B2)1/2) ≺

(log)
�s(A1/2

1 B1/2
1 )1−α�s(A1/2

2 B1/2
2 )α , (5.4)

where �s(·) is the vector of the singular values in decreasing order and �a1−α�bα =
(a1−α

1 bα1 , . . . , a1−α
n bαn ) for �a,�b � 0 .

A norm ‖| · ‖| on the n× n matrices is said to be unitarily invariant if ‖|UXV‖| =
‖|X‖| for every X and unitaries U, V . As is well known (see e.g. [5]), there is a bijective
correspondence between the set of unitarily invariant norms on n × n matrices and the
set of symmetric gauge functions on the n -vectors.

COROLLARY 5.4. For every 0 < α < 1 and every unitarily invariant norm ‖| · ‖| ,

‖|(A1 #α A2)1/2(B1 #α B2)1/2‖| � ‖|A1/2
1 B1/2

1 ‖|1−α‖|A1/2
2 B1/2

2 ‖|α . (5.5)

Proof. Log majorization (5.4) implies the weak majorization

�s((A1 #α A2)1/2(B1 #α B2)1/2) ≺w �s(A1/2
1 B1/2

1 )1−α�s(A1/2
2 B1/2

2 )α .

Let Φ be the symmetric gauge function corresponding to ‖|·‖| so that ‖|X‖| = Φ(�s(X)) .
Note that �a ≺w

�b implies Φ(�a) � Φ(�b) for �a,�b � 0 . Furthermore, the following
Hölder inequality for Φ is well known (see [5, IV.1.6]): For every 0 < α < 1 and
�a,�b � 0 ,

Φ(�a1−α�bα) � Φ(�a)1−αΦ(�b )α .

Therefore

Φ(�s((A1 #α A2)1/2(B1 #α B2)1/2))

� Φ(�s(A1/2
1 B1/2

1 )1−α�s(A1/2
2 B1/2

2 )α)

� Φ(�s(A1/2
1 B1/2

1 ))1−αΦ(�s(A1/2
2 B1/2

2 ))α ,

which is the required inequality. �
When A1 = B1 = A and A2 = B2 = B , (5.5) becomes a known inequality

‖|A #α B‖| � ‖|A‖|1−α‖|B‖|α = ‖|A‖| #α ‖|B‖| .
In [4] and [8], we obtained several logarithmic trace inequalities. The following

corollary gives another one.

COROLLARY 5.5. If A2, B2 are invertible, then

Tr(A1/2
1 B1A

1/2
1 log(A1/2

1 B−1
2 A1/2

1 )) + Tr(B1/2
1 A1B

1/2
1 log(B1/2

1 A−1
2 B1/2

1 ))

� (Tr A1B1) log
TrA1B1

TrA2B2
. (5.6)
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Proof. First note that the traces in the left-hand side are well defined for all
A1, B1 � 0 whenever A2, B2 are invertible. By continuity we may assume that A1, B1

are also invertible. By (5.5) applied to Frobenius norm (with A2, B2 exchanged) we
get

Tr((A1 #α B2)(B1 #α A2)) � (Tr A1B1)1−α(Tr A2B2)α .

When α = 0 , both sides of the above are equal to Tr A1B1 . Therefore

d
dα

∣∣∣∣
α=0

Tr((A1 #α B2)(B1 #α A2)) � d
dα

∣∣∣∣
α=0

(Tr A1B1)1−α(Tr A2B2)α .

Computing these derivatives yields the result. �

In particular when B1 = I , (5.6) becomes

Tr A1(logA1/2
1 B−1

2 A1/2
1 − logA2) � Tr A1 log

Tr A1

Tr A2B2
.

This becomes the Peierls-Bogoliubov inequality when B2 = I too.

6. Weak majorizations involving Hadamard product

Let X ◦ Y denote the Hadamard product (or the Schur product), i.e. the entrywise
product of matrices X, Y . When 1 � p, q < ∞ and 1/p + 1/q = 1 , the following
Hölder type inequality holds: For every Aj, Bj � 0 ,

(Ap
1 + Bp

1)
1/p ◦ (Bq

1 + Bq
2)

1/q � A1 ◦ B1 + A2 ◦ B2 .

This is seen because (A, B) �→ A1/p ⊗ B1/q is jointly operator oncave in A, B � 0 ([1],
[12]) and X ◦ Y is a principal submatrix of X ⊗ Y .

The following variant of (4.3) for Hadamard product can be shown as in the proof
of Proposition 5.1 thanks to joint monotonity and concavity of (A, B) �→ A1/2 ◦ B1/2 .

PROPOSITION 6.1. For every 1 � p, q < ∞ and k = 1, . . . , n ,

{
k∏

i=1

λn−i+1((A
p
1 + Ap

2)
1/2p ◦ (Bq

1 + Bq
2)

1/2q)

}2pq/(p+q)k

�
{

k∏
i=1

λn−i+1(A
1/2
1 ◦ B1/2

1 )

}2pq/(p+q)k

+

{
k∏

i=1

λn−i+1(A
1/2
2 ◦ B1/2

2 )

}2pq/(p+q)k

. (6.1)
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Let p = q = 1/r and replace Ap
j , B

q
j by Aj, Bj in (6.1) to show the superadditivity

{
k∏

i=1

λn−i+1((A1 + A2)r/2 ◦ (B1 + B2)r/2)

}1/rk

�
{

k∏
i=1

λn−i+1(A
r/2
1 ◦ Br/2

1 )

}1/rk

+

{
k∏

i=1

λn−i+1(A
r/2
2 ◦ Br/2

2 )

}1/rk

,
(6.2)

namely (A, B) �→ {∏k
i=1 λn−i+1(Ar/2 ◦ Br/2)}1/rk is jointly concave for 0 < r � 1 and

k = 1, . . . , n . In particular, so is (A, B) �→ {det(Ar/2 ◦ Br/2)}1/rn for 0 < r � 1 .
It is shown in [16] that

lim
r↓0

(Ar ◦ Br)1/r = exp(I ◦ (logA + logB))

when A, B � 0 are invertible. This right-hand side is meaningful for all A, B � 0 (take
the limit from A + εI, B + εI ). So, letting r ↓ 0 in (6.2) yields the following:

COROLLARY 6.2. For every k = 1, . . . , n the function

(A, B) �→
{

k∏
i=1

λn−i+1(exp(I ◦ (logA + logB)))

}1/2k

is jointly concave.

When k = n this says that (A, B) �→ exp{ 1
2n Tr(logA+ logB)} is jointly concave,

and it may be compared with Lieb’s result [12, Corollary 6.1] that so is (A, B) �→
Tr exp{ 1

2 (log A + logB)} . When A = diag(a1, . . . , an) and B = diag(b1, . . . , bn) ,

exp

{
1
2n

Tr(logA + logB)
}

=

(
n∏

i=1

aibi

)1/2n

while

Tr exp

{
1
2
(log A + logB)

}
=

n∑
i=1

(aibi)1/2 .

This clearly explains why constant 1/n is necessary in the former expression.
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