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STABLE SEMINORMS REVISITED

RICHARD ARENS, MOSHE GOLDBERG ∗ AND W. A. J. LUXEMBURG

Abstract. A seminorm S on an algebra A is called stable if for some constant σ > 0 ,

S(xk) � σS(x)k for all x ∈ A and all k = 1, 2, 3, . . . .

We call S strongly stable if the above holds with σ = 1 . In this note we use several known
and new results to shed light on the concepts of stability. In particular, the interrelation between
stability and similar ideas is discussed.
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