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STABLE SEMINORMS REVISITED

RICHARD ARENS, MOSHE GOLDBERG ∗ AND W. A. J. LUXEMBURG

(communicated by J. Pečarić)

Abstract. A seminorm S on an algebra A is called stable if for some constant σ > 0 ,

S(xk) � σS(x)k for all x ∈ A and all k = 1, 2, 3, . . . .

We call S strongly stable if the above holds with σ = 1 . In this note we use several known
and new results to shed light on the concepts of stability. In particular, the interrelation between
stability and similar ideas is discussed.

Let A be an associative algebra over a field F , either R or C . As usual, a
function

S : A → R

is called a seminorm if for all x, y ∈ A and α ∈ F :

S(x) � 0,

S(αx) = |α|S(x),
S(x + y) � S(x) + S(y).

If in addition,
S(x) �= 0 for all x �= 0,

then S is a norm. Finally, we call a seminorm S proper if S does not vanish identically
and S(x) = 0 for some x �= 0 .

In this note we dealmainlywith strongly stable seminorms, namely those satisfying

S(xk) � S(x)k for all x ∈ A and all k = 1, 2, 3, . . . ,

or in other words, the ones for which

S(x) � 1 implies S(xk) � 1, x ∈ A , k = 1, 2, 3, . . . .

Since S being submultiplicative means

S(xy) � S(x)S(y) for all x, y ∈ A ,

Mathematics subject classification (1991): 15A60, 47A30.
Key words and phrases: Algebras, norms, seminorms, stability, strong stability.
∗ Research sponsored in part by the Fund for the Promotion of Research at the Technion, Grant 100–013.

c© � � , Zagreb
Paper MIA-01-02

31



32 R. ARENS, M. GOLDBERG AND W. A. J. LUXEMBURG

we see that submultiplicativity implies strong stability. The converse is usually false.
One of the first examples that come to mind is the well known numerical radius,

r(T) = sup
{|(Tx, x)| : x ∈ H, (x, x) = 1

}
, (1)

defined on B(H) , the algebra of bounded linear operators on a Hilbert space H over
C . Whereas r is a non-submultiplicative norm on B(H) , it is strongly stable, since
by Berger’s celebrated inequality [P, H, GT]:

r(Tk) � r(T)k , T ∈ B(H), k = 1, 2, 3, . . . . (2)

While often S will not be strongly stable, it may have weaker,yet related properties.
For instance, we call S quadrative if

S(x2) � S(x)2 for all x ∈ A .

As multiplicativity implies strong stability, which in turn implies quadrativity, we
consult Theorems 1.4 in [AGL1] to obtain:

THEOREM 1. Let A be an algebra of F -valued functions

f : T → F

defined on a given nonempty set T , with the usual pointwise multiplication

(f g)(t) = f (t)g(t), f , g ∈ A , t ∈ T. (3)

Suppose A is closed under absolute values, that is,

f ∈ A implies |f | ∈ A ;

and let S be monotonic, i.e.,

|f | � |g| implies S(f ) � S(g).

Then the following are equivalent:
(a) S is submultiplicative.
(b) S is strongly stable.
(c) S is quadrative.

Theorem 1 applies, of course, to algebras of bounded functions with seminorms of
the form

Sc(f ) = sup
t∈T

|c(t)f (t)|, (4)

0 �= c ∈ A being a fixed element. Clearly, Sc is a norm if and only if c is not a
zero-divisor in A . Otherwise, Sc is a proper seminorm. Such monotonic seminorms
were studied intensively in [AG1, AG2]. Appealing, for example, to Theorem 3.1 in
[AG2], one can obtain:



STABLE SEMINORMS REVISITED 33

THEOREM 2. Let A be as in Theorem 1, with the seminorm in (4). Then the
following are equivalent:

(a) Sc is submultiplicative.
(b) Sc is strongly stable.
(c) Sc is quadrative.
(d) inf

{|c(t)| : t ∈ T, c(t) �= 0
}

� 1 .

Similar observations can be obtained at once from Theorems 3.2 and 3.3 in [AG2].
To illustrate Theorem 2, we consider l∞ , the algebra of bounded sequences

a = {αi}∞i=1 over F , with the usual Hadamard multiplication,

ab = {αiβi}, a = {αi}, b = {βi} ∈ l∞. (5)

Identifying l∞ with the algebra of bounded functions on

T = Z
+ ≡ {1, 2, 3, . . .}, (6)

we fix an element c = {γi}∞i=1 ∈ l∞ , c �= 0 , and define the seminorm

Sc(a) = sup
i
|γiαi|, a ∈ l∞. (7)

Obviously, Sc is a norm on l∞ if and only if

γi �= 0, i = 1, 2, 3, . . . .

Otherwise Sc is a proper seminorm.
By the theorem, Sc is strongly stable (in fact, multiplicative) if and only if

inf
γi �=0

|γi| � 1.

Hence, the four selections,

γi = 1, i = 1, 2, 3, . . . ,

γi = i−1, i = 1, 2, 3, . . . ,

γ1 = 0; γi = 1, i = 2, 3, 4, . . . ,

γ1 = 0; γi = i−1, i = 2, 3, 4, . . . ,

show that norms and proper seminorms of the form (7) may or may not be strongly
stable on l∞ .

A more complex situation arises when we consider a (monotonic) function norm
η on M = M (T,Ω,μ) , the algebra of measurable functions on a nonempty set T ,
where Ω is a σ -algebra of subsets of T , and μ is a countably additive, nonnegative
measure. In [AGL1] we discussed Lη = Lη(T,Ω,μ) , the space of all functions

{f ∈ M : η(f ) < ∞}
(modulo the null functions). η is surely a norm on this space, and without going into
the definitions, we quote:
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THEOREM 3. [AGL1, Theorem 2.5]. If η is σ -subadditive, then Lη is an algebra
(i.e., closed under multiplication) if and only if it is contained in L∞ = L∞(T,Ω,μ) ,
the algebra of all μ -essentially bounded functions in M .

Another result can be readily deduced from Theorem 2.9 of [AGL1]:

THEOREM 4. Let (T,Ω,μ) be free of infinite atoms, and let η be a σ -subadditive,
saturated function norm on M . If Lη is an algebra, then the following are equivalent
on Lη :

(a) ρ is submultiplicative.
(b) ρ is strongly stable.
(c) ρ is quadrative.
(d) sup

{‖f ‖∞ : f ∈ Lη, η(f ) � 1
}

� 1 .

The results in Theorems 3 and 4 were applied in [AGL2] to Orlicz space function
norms, a case that includes all Lp spaces. In particular, we showed that if μ is the
Lebesgue or any other nonatomic measure, then for 1 � p < ∞ , the corresponding Lp

space is not an algebra; so the question of strong stability is irrelevant. On the other
hand, if T = Z

+ is the set in (6), and μ is the counting measure assigning to each
subset of Z+ its cardinality, then lp , the corresponding space of all bounded sequences
a = {αi}∞i=1 satisfying

‖a‖p =
( ∞∑

i=1

|αi|p
)1/p

< ∞, (8)

is an algebra with respect to the pointwise multiplication in (5), and the norm in (8) is
multiplicative, hence strongly stable.

Theorem 2 does not apply to monotonic seminorms on F
n×n , the algebra of n× n

matrices over F with respect to usual matrix multiplication. The reason is that while
any A ∈ F n×n can be viewed as a function on the set of pairs of integers

Tn×n = {(i, j) : i, j = 1, . . . , n},
the standard matrix multiplication

A, B �→ AB, (AB)ij =
n∑

s=1

αisβsj, A = (αij), B = (βij) ∈ F
n×n, (9)

does not agree with the pointwise manner in (3).
In order to accomodate this case, let W = (ωij) be a fixed n×n matrix of positive

entries, and consider the W -weighted l∞ norm on C
n×n ,

‖A‖W,∞ = max
i,j

ωij|αij|, A = (αij) ∈ C
n×n.

For this norm we can prove,

THEOREM 5. [AG3, Theorem 1]. The following are equivalent on Cn×n :
(a) ‖ · ‖W,∞ is submultiplicative.
(b) ‖ · ‖W,∞ is strongly stable.
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(c) ‖ · ‖W,∞ is quadrative.
(d) (W−1)2 � W−1 ,

where W−1 , the Hadamard inverse of W = (ωij) , is the matrix of reciprocals defined
by

W−1 = (ω−1
ij ),

and the inequality is construed entrywise.

We remark that Theorem 5 does not hold for all weighted lp norms, 1 � p � ∞ ,
on Cn×n . For example, it was shown in [AG5] that for certain weight matrices W , the
weighted l1 norms

‖A‖W,1 =
n∑
i,j

ωij|αij|, A = (αij) ∈ C
n×n,

are quadrative but not submultiplicative. Whether or not the strong stability of ‖ · ‖W,1

on Cn×n is equivalent to either quadrativity or to submultiplicativity, is unknown to us.
Returning to an arbitrary algebra A of F -valued functions defined on a set T ,

we adapt (2.6) in [AG4], and say that A is homotonic if

|f 1| � g1, |f 2| � g2 implies |f 1f 2| � g1g2, f 1, f 2, g1, g2 ∈ A ,

where for h1, h2 ∈ A ,
h1 � h2

means, of course,
h1(t) � h2(t), t ∈ T.

Consider the weighted sup norm

‖f ‖w,∞ = sup
t∈T

w(t)|f (t)|, f ∈ A , (10)

where w , the weight function, is a fixed positive function on T , bounded away from
zero. Let w−1 be the (positive) reciprocal function of w ,

w−1(t) ≡ w(t)−1, t ∈ T,

and assume that w−1 ∈ A . Then in analogy with Theorem 5, we can prove,

THEOREM 6. [AG4, Theorem 4.2]. If A is a homotonic algebra of F -valued
functions, and ‖ · ‖w,∞ is the norm in (10), then the following are equivalent:

(a) ‖ · ‖w,∞ is submultiplicative.
(b) ‖ · ‖w,∞ is strongly stable.
(c) ‖ · ‖w,∞ is quadrative.
(d) w−2 � w−1 , where w−2 = (w−1)2 ≡ w−1w−1 .

As it is not hard to verify that F
n×n with the standard matrix multiplication in (9)

is a homotonic algebra, we see that Theorem 5 is but a special case of Theorem 6.
Given an integer k � 2 we shall follow [AG3] and call a seminorm S on an algebra

A k -bounded if
S(xk) � S(x)k for all x ∈ A . (11)



36 R. ARENS, M. GOLDBERG AND W. A. J. LUXEMBURG

Hence, S is quadrative if it is 2-bounded, and strongly stable if it is k -bounded for all
k = 2, 3, 4, . . . .

Boundedness for a particular k larger than 2 does not usually ensure strong stability,
not even quadrativity. To substantiate this statement we quote, for example,

THEOREM 7. [AG3, Theorem 2]. If k � 3 , then there exists a weight matrix W
for which ‖ · ‖W,∞ is k -bounded but not strongly stable, not even quadrative on Cn×n .

Whether, in general, quadrativity implies strong stability, we do not know.
Relaxing our definition of strong stability, we shall say that a seminorm S is stable

on an algebra A if for some positive constant σ ,

S(xk) � σS(x)k for all x ∈ A , k = 1, 2, 3, . . . . (12)

With this definition we can improve our observation in Theorem 7 as far as norms
on Cn×n are concerned:

THEOREM 8. If k � 2 and N is a k -bounded norm on Cn×n , then N is stable.

Proof. By hypothesis, for any A ∈ Cn×n ,

N
(
Akj) � N(A)kj

, j = 1, 2, 3, . . . .

Thus,

N(A) � N
(
Akj)1/kj

@ >> j → ∞ > ρ(A),

where ρ(A) denotes the spectral radius of A . Consequently, N is spectrally dominant,
i.e.,

N(A) � ρ(A), A ∈ C
n×n;

hence N is stable by the renowned Friedland-Zenger Theorem [FZ, Theorem 1]. �
Contrary to what one might expect, the converse of Theorem 8 is false; that is,

stability of matrix norms does not imply k -boundedness for any k � 2 . This was
demonstrated in [AG3] by the action of ‖ · ‖W,∞ on C2×2 , where W was the 2 × 2
weight matrix

W =

⎛
⎜⎝

2
1 + θ

2
1 − θ

2
1 − θ

2
1 + θ

⎞
⎟⎠ , θ = constant, 0 < θ < 1. (13)

The message conveyed by the above example is not limited to finite-dimensional
algebras. In what follows we exhibit a norm on an arbitrary complex Hilbert space,
which is stable but not strongly stable, not even quadrative.

Indeed, let H be any Hilbert space over C , with dimH � 2 , and consider the
generalized numerical radius

rg(T) = sup
{|2(Tx, x) + (Ty, y)| : x, y ∈ H; x, y orthonormal

}
, T ∈ B(H).

Since

rg(T) � 2 sup
{|(Tx, x) : (x, x) = 1

} − sup{|(Ty, y)| : (y, y) = 1
}

= r(T)
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and

rg(T) � 2 sup
{|(Tx, x) : (x, x) = 1

}
+ sup{|(Ty, y)| : (y, y) = 1

}
= 3r(T),

we get
r(T) � rg(T) � 3r(T), T ∈ B(H), (14)

where r is the classical numerical radius in (1). Consequently, rg is a well defined,
positive definite function on B(H) , and as it is moreover homogeneous and subadditive,
it constitutes a norm on B(H) .

Now, let S1 and S2 be seminorms on an arbitrary algebra A , such that for
constants v1 � v2 > 0 , τ > 0 , and a fixed integer k ,

v1S1(x) � S2(x) � v2S1(x), x ∈ A ,

and
S1(xk) � τS1(x)k, x ∈ A .

It follows that

S2(xk) � v2S1(xk) � v2τS1(x)k � v2τ
vk
1

S2(x)k for all x ∈ A ; (15)

so having (2) and (14), we apply (15) to S1 = r and S2 = rg and get

rg(Tk) � 3rg(T)k for all T ∈ B(H), k = 1, 2, 3, . . . ,

showing that rg is stable.
To prove that rg is not strongly stable, fix linearly independent vectors a , b ∈ H ,

and let H2 be the subspace of H spanned by these two vectors, so that

H = H2 ⊕ H⊥
2 .

Let
Q ∈ B(H)

be the linear operator defined on H by

Q(αa + βb + x) = αa − βb for all α, β ∈ C, x ∈ H⊥
2 .

Since

Q2 =
{

I on H2,

0 on H⊥
2 ,

we can write,

rg(Q2) = sup
{|2(Ix, x) + (Iy, y)| : x, y ∈ H2; x, y orthonormal

}
= 3. (16)

Similarly,

rg(Q) = sup
{|2(Qx, x) + (Qy, y)| : x, y ∈ H2; x, y orthonormal

}
;

hence given the basis {a, b} , we may represent Q on H2 by the 2 × 2 matrix

B =
(

1 0
0 −1

)
,



38 R. ARENS, M. GOLDBERG AND W. A. J. LUXEMBURG

and write

rg(Q) = sup
{|2(Bx, x) + (By, y)| : x, y ∈ C

2; x, y orthonormal
}
,

where here, (x, y) ≡ y∗x is the standard inner product on C2 ( ∗ denoting the conjugate
transpose). We obtain,

rg(Q) = max
{|2x∗Bx + y∗By| : x, y ∈ C

2; x, y orthonormal
}

= max

{∣∣∣∣∣tr
[(

2 0
0 1

)
U∗BU

]∣∣∣∣∣ : U ∈ C
2×2 unitary

}

= max

{∣∣∣∣∣tr
[(

1 0
0 1

)
U∗BU

]
+ tr

[(
1 0
0 0

)
U∗BU

]∣∣∣∣∣ : U ∈ C
2×2 unitary

}

= max
{| tr B + x∗Bx| : x ∈ C

2, x∗x = 1
}

= max
{|x∗Bx| : x ∈ C

2, x∗x = 1
}

= r(B).

As B is a normal matrix, we have r(B) = ρ(B) = 1 (e.g., [GT]). Thus,

rg(Q) = 1, (17)

so by (16) and (17),
rg(Q2) = 3rg(Q)2,

implying that rg is not strongly stable on H , not even quadrative.
Recalling the definition in (11), we follow Theorem 1.2 in [AG2] and prove,

THEOREM 9. If S is a proper seminorm on an algebra A , then it is k -bounded if
and only if K , the kernel of S , is closed under raising to the k -th power (i.e., x ∈ K
implies xk ∈ K ) and

λk ≡ sup{S(xk) : x ∈ A , S(x) = 1} � 1. (18)

Proof. Let S be k -bounded. Then for any x ∈ K ,

S(xk) � S(xk) = 0;

hence xk ∈ K . So if K is not closed under the k -th power, S is not k -bounded.
Similarly, if λk > 1 , then there exists an element x0 ∈ A with S(x0) = 1 such

that
S(xk

0) > S(x0)k;

and again, S is not k -bounded.
Conversely, suppose K is closed under raising to the k -th power and λk � 1 .

By the first assumption,
S(xk) = 0 = S(x)k, x ∈ K . (19)

By the second, since

λk = sup
{S(xk)

S(x)k
: x ∈ A , x �∈ K

}
,
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we get
S(xk) � λkS(x)k � S(x)k, x �∈ K ,

which together with (19) implies (11). �

Note that if K ≡ ker S is closed under squaring, then K is closed under all
natural powers, k = 2, 3, 4, . . . .

Indeed, K is clearly a subspace of A . So if x, y ∈ K are commuting elements
and K is closed under squaring, then

xy = 1
2 [(x + y)2 − x2 − y2] ∈ K .

Thus
x ∈ K implies xk ∈ K , k = 2, 3, 4, . . . ,

and the assertion follows.
Combining this assertion with Theorem 9, we get:

THEOREM 10. Let S be a proper seminorm on A , and let K ≡ ker S be closed
under squaring. Then:

(a) S is k -bounded if and only if (18) holds.
(b) S is stable if and only if the sequence {λk}∞k=1 is bounded, and strongly stable

if and only if the bound is 1 .

If S is proper and λk is finite for some k � 1 , then obviously, λk is the best
k -factor for S , i.e., the least constant λ satisfying

S(xk) � λS(x)k, x ∈ A .

In the same way, if S is proper and

σinf ≡ sup
k�1

λk < ∞,

then σinf is the best stability factor for S , that is, the least constant σ for which (12)
holds.

For example, it was shown in [AG3] that the best k -factors for ‖ · ‖W,∞ on C2×2

with the weight matrix in (13) are

λk =
1 − θk

1 − θ
, k = 1, 2, 3, . . . ;

hence the best stability factor in this case is

σinf =
1

1 − θ
.

We conclude by noting that if S is proper and λk < ∞ for some k � 2 , then all
sufficiently large multiples of S will always be k -bounded. More precisely, if λ is a
positive constant such that

λ � (λk)1/(k−1),
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then Sλ ≡ λS will be a k -bounded seminorm on A . For then,

Sλ (xk) = λS(xk) � λ · λkS(x)k � λ kS(x)k = Sλ (x)k, x ∈ A .

Similarly, if S is proper with σinf < ∞ , and σ is a constant satisfying σ � σinf ,
then Sσ ≡ σS is strongly stable. This is so because σinf � λ1 = 1 ; hence for all
x ∈ A and k = 2, 3, 4, . . . ,

Sσ(xk) = σS(xk) � σ · σinfS(x)k � σ2S(x)k � σkS(x)k = Sσ(x)k.
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