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LÁSZLÓ LEINDLER

(communicated by J. Pečarić)

Abstract. We show that the simplest coefficient condition

∞∑
n=1

|cn|qγnμn < ∞,

under specific assumptions on the sequence {μn}, is equivalent to the conditions

∞∑
m=1

βm

( m∑
n=1

γn|cn|q
)p/q

< ∞,

and
∞∑

m=1

λm

( ∞∑
n=m

γn|cn|q
)p/q

< ∞,

respectively. Plainly the assumptions on {μn} depend on {βm}, or {λm} , and 0 < p < q.
An application to absolute |C,α| -summability of general orthogonal series is also pre-

sented.

1. Introduction. In the theory of orthogonal series several families of coefficient
conditions are being utilized. Among them the primarily used assumptions have the
following structure:

∞∑
n=1

c2
nρn < ∞, (1.1)

∞∑
m=1

αm

( νm+1∑
n=νm+1

c2
n

)p/2

< ∞ (1.2)

and
∞∑

m=1

κm

( ∞∑
n=m

c2
n

)p/2

< ∞, (1.3)

where p > 0, ρ := {ρn}, α := {αn} and κ := {κn} are certain monotone sequences
of real numbers, ν := {νm} is a subsequence of natural numbers and c := {cn} is
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a real coefficient sequence. We do believe that the reader knows plenty of results
using one of the above mentioned conditions, but in any case in [5] are cited several
different theorems incorporating conditions (1.i) . In the same paper we studied the
relations between these conditions. Among others, we gave sufficient conditions for
the equivalence of (1.2) and (1.3); moreover, we analyzed the relation between (1.1)
and (1.2).

V. Totik and I. Vincze [9] continued our investigations replacing the exponent 2 by a
positive number q in the conditions (1.i) , and gave necessary and sufficient conditions
for the equivalences of the generalized conditions.

In [7] Y. Okuyama and T. Tsuchikura proved that for a specific sequence α and
p = 1 the condition (1.2) is equivalent to a condition of the type

∞∑
m=1

βm

(
m∑

n=1

γnc2
n

)1/2

< ∞ (βn, γn > 0). (1.4)

As far we know, this is the first result verifying equivalence between conditions of type
(1.2) and (1.4).

In [6] we proved a general equivalence theorem pertaining to the following condi-
tions:

σ1 :=
∞∑

m=1

αm

( νm+1∑
n=νm+1

|cn|q
)p/q

< ∞ (1.5)

and

σ2 :=
∞∑

m=1

βm

(
m∑

n=1

γn|cn|q
)p/q

< ∞. (1.6)

The equivalence of conditions (1.5) and (1.6) means that there exists a constant
K := K(α, β , γ , ν, p, q) > 0 such that K−1σ2 � σ1 � Kσ2 for any sequence {cn}. We
maintain this meaning of equivalence through the paper. In what follows K , Ki denote
absolute constants or constants depending only those parameters which are irrelevant
to the problem in question. The constants are not necessarily the same at any two
occurrences.

Since the equivalence of (1.5) with the conditions

∞∑
n=1

|cn|qρn < ∞ (1.7)

and
∞∑

m=1

κm

( ∞∑
n=m

|cn|q
)p/q

< ∞ (1.8)

is settled by Totik and Vincze, thus all equivalences of conditions (1.5)–(1.8) are
analyzed.

In an old paper [3], improving a celebrated theorem of W. Orlicz [8] related to the
unconditional convergence of orthogonal series, we proved that the condition (1.3) with
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p = 1 and κm = 1/m is equivalent to the pair of the following conditions:

∞∑
n=1

c2
nμn < ∞ (1.9)

and ∞∑
n=1

22n

μ22n
< ∞,

where μ := {μn} is a nondecreasing sequence of positive numbers.
Later we [4] generalized this equivalence statement as follows:

THEOREM A. The condition

∞∑
m=1

1
λm

( ∞∑
n=m

c2
n

)1/2

< ∞

holds if and only if there exists a nondecreasing sequence μ := {μn} of positive
numbers satisfying (1.9) and

∞∑
n=1

Λn

λnμn
< ∞,

where Λn :=
∑n

k=1 λ
−1
k and λ := {λn} is a monotone sequence of positive numbers.

This result was also utilized for problems in connection with orthogonal series. In
the theory of orthogonal series an universal assertion on the equivalence of coefficient
conditions with more general parameters would seem very strange. Maybe this was the
reason that we hid the kernel of the proof of Theorem A as a lemma (see Hilfssatz).
But now, treating the equivalence of very general coefficient conditions, our lemma,
in my view, would be worth for recalling as a notable result. However, instead of
doing this, we shall present a slightly more general version of it as Theorem 1, and we
shall omit some assumptions from the original lemma, which were natural restrictions
in connection with orthogonal series. We also remark that without the monotonicity
assumption the proof requires some additional consideration.

2. Theorems. First we prove the following theorem.

THEOREM 1. Let 0 < p < q, λ := {λn}, c := {cn} and γ := {γn} be sequences
of nonnegative numbers, furthermore let Λn :=

∑n
k=1 λk. The condition

∞∑
m=1

λm

( ∞∑
n=m

γncq
n

)p/q

< ∞ (2.1)

holds if and only if there exists a nondecreasing sequence μ := {μn} of positive
numbers satisfying conditions

∞∑
n=1

cq
nγnμn < ∞ (2.2)
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and ∞∑
n=1

λn

(
Λn

μn

)p/(q−p)

< ∞. (2.3)

Next we establish the symmetrical analogue of Theorem 1 with condition (1.6)
instead of (2.1).

THEOREM 2. Let 0 < p < q, β := {βn}, c := {cn} and γ := {γn} be sequences
of nonnegative numbers,

∑∞
n=1 βn < ∞, furthermore let Bn :=

∑∞
k=n βk. Then the

condition (1.6) holds if and only if there exists a nonincreasing sequence μ := {μn} of
positive numbers satisfying conditions (2.2) and

∞∑
n=1

βn

(
Bn

μn

)p/(q−p)

< ∞. (2.4)

REMARK. We underline that if p > q then Theorems 1 and 2 are not valid
universally. To verify this we present only one counterexample. Let 0 < q < p, α >

0, λn := n
pα
q −1, γn := 1, cn := n−(1+α)/q and μn := nα−ε , 0 < ε < α. Then a simple

calculation shows that the sum in (2.1) is infinite, but the sums in (2.2) and (2.3) are
finite, i.e. (2.2) and (2.3) do not imply (2.1).

3. Proofs. The idea of the proofs are similar to that of the lemma used in the proof
of Theorem A (see Hilfssatz in [4]).

Proof of Theorem 1. First we assume that all γn = 1. Then we set

tn :=

( ∞∑
k=n

cq
k

)1/q

and μn := tp−q
n Λn,

assuming that all tn are positive, otherwise Theorem 1 is obvious. It is plain that this
sequence μ := {μn} is nondecreasing, and

∞∑
n=1

λn

(
Λn

μn

)p/(q−p)

=
∞∑
n=1

λnt
p
n,

whence the implication (2.1)⇒ (2.3) clearly follows.
To prove (2.1)⇒ (2.2) we define an index-sequence {�m} as follows: Let �0 := 1

and �1 := 2. If m � 2 then let �′m be the smallest integer k with

4(1+ 1
p )tk < t�m−1

, (3.1)

and let
�m := max(�m−1 + 1, �′m − 1). (3.1a)

By the definition of {�m}
∞∑

k=m

tp�k � Ktp�m (3.2)
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obviously holds.
An elementary consideration shows that

∞∑
n=1

cq
nμn =

∞∑
n=1

cq
nt

p−q
n

n∑
k=1

λk =
∞∑
k=1

λk

∞∑
n=k

cq
nt

p−q
n

�
∞∑

m=0

�m+1−1∑
k=�m

λk

∞∑
i=m

�i+1−1∑
n=�i

cq
nt

p−q
n

�
∞∑

m=0

�m+1−1∑
k=�m

λk

∞∑
i=m

tp�i =: S1. (3.3)

Now, using (3.1) and (3.2), we get that

S1 � K
∞∑

m=0

�m+1−1∑
k=�m

λkt
p
�m

� K1

∞∑
m=0

�m+1−1∑
k=�m

λkt
p
k ,

whence, by (3.3), the statement (2.1)⇒ (2.2) is obvious.
In order to verify that conditions (2.2) and (2.3) jointly imply (2.1) we can assume

that
∑∞

k=1 λk = ∞, otherwise the assertion is trivial. Thenwe define an index-sequence
{pm} as follows: Let p0 := 0 and p1 := 2. If m � 2 then let p′m be the smallest
integer i with

i∑
n=pm−1+1

λn > 4
pm−1∑

n=pm−2+1

λn, (3.4)

and let
pm := max(pm−1 + 1, p′m − 1). (3.5)

By (3.4) and (3.5), it is easy to see that

⎛
⎝ pm+1∑

n=pm−1+1

λn

⎞
⎠

q/(q−p)

� K
pm+1∑

n=pm−1+1

λnΛp/(q−p)
n (3.6)

stays.
Now we estimate the sum in (2.1). By p < q we can use the so-called power-sum

inequality (see e.g. [1], p. 28), and thus, by (3.4) and (3.5), it is easy to see that

∞∑
n=3

λnt
p
n �

∞∑
m=1

pm+1∑
n=pm+1

λn

∞∑
ν=m

⎛
⎝ pν+1∑

k=pν+1

cq
k

⎞
⎠

p/q

� 4
∞∑
ν=1

⎛
⎝ pν+1∑

k=pν+1

cq
k

⎞
⎠

p/q
pν+1∑

n=pν−1+1

λn =: 4S2. (3.7)
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Hence, by (2.2), (2.3) and (3.6), using Hölder’s inequality we get

S2 =
∞∑
ν=1

⎛
⎝ pν+1∑

k=pν+1

cq
k

⎞
⎠

p/q

μp/q
pν+1μ

−p/q
pν+1

pν+1∑
n=pν−1+1

λn

�

⎛
⎝ ∞∑

k=p1+1

cq
kμk

⎞
⎠

p/q
⎧⎪⎨
⎪⎩

∞∑
ν=1

μp/(p−q)
pν+1

⎛
⎝ pν+1∑

n=pν−1+1

λn

⎞
⎠

q/(q−p)
⎫⎪⎬
⎪⎭

(q−p)/q

� K

⎧⎨
⎩

∞∑
ν=1

⎛
⎝ pν∑

n=pν−1+1

+
pν+1∑

n=pν+1

⎞
⎠ λnΛp/(q−p)

n μp/(p−q)
pν+1

⎫⎬
⎭

(q−p)/q

� K

⎧⎨
⎩K1 +

∞∑
ν=1

pν+1∑
n=pν+1

λnΛp/(q−p)
n μp/(p−q)

pν+1

⎫⎬
⎭

(q−p)/q

. (3.8)

If in the last summation we consider only terms where pν+1 = pν + 1, then this part of
the sum, by (2.3), is plainly finite. If pν+1 > pν + 1, then by (3.4) and (3.5)

pν+1∑
n=pν+1

λn � 4
pν∑

n=pν−1+1

λn,

and thus

Λpν+1 � 5Λpν � 25Λpν−1+1

also holds, and these inequalities clearly imply

pν+1∑
n=pν+1

λnΛp/(q−p)
n � K2

pν∑
n=pν−1+1

λnΛp/(q−p)
n . (3.9)

Taking into account these comments, by (3.9) we easily get that

∞∑
ν=1

pν+1∑
n=pν+1

λnΛp/(q−p)
n μp/(p−q)

pν+1

� K1 + K2

∞∑
ν=1

μp/(p−q)
pν+1

pν∑
n=pν−1+1

λnΛp/(q−p)
n

� K3

∞∑
n=1

λn

(
Λn

μn

)p/(q−p)

. (3.10)

Combining of (3.7), (3.8) and (3.10) yields that (2.2) and (2.3) imply (2.1) with
γn = 1.
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Finally, if γn are arbitrary nonnegative numbers, we set

cn := cnγ 1/q
n ,

and apply the previous results for these cn, whence the statements of Theorem 1
evidently follow, and the proof is complete.

Proof of Theorem 2. We begin again the proof with the assumption γn = 1 for all
n. We also assume that

∑∞
n=1 cq

n = ∞, otherwise Theorem 2 is trivial.
The proof of the implication (1.6)⇒ (2.4) is very simple, namely we set

hn :=

(
n∑

k=1

cq
k

)1/q

and μn := Bnh
p−q
n ,

and thus ∞∑
n=1

βn

(
Bn

μn

)p/(q−p)

=
∞∑

n=1

βnh
p
n,

and the sequence {μn} is obviously nonincreasing.
To prove the implication (1.6)⇒ (2.2) we first define an index-sequence {rm} as

follows: r0 := 1 and, if m � 1, let rm be the smallest integer k with the property

hk > 4hrm−1
.

Furthermore, let N(k) be defined by rN(k) � k < rN(k)+1.
Using these notations and properties we have

∞∑
n=1

cq
nμn =

∞∑
n=1

cq
nh

p−q
n

∞∑
k=n

βk =
∞∑
k=1

βk

k∑
n=1

cq
nh

p−q
n

�
∞∑
k=1

βk

N(k)∑
m=0

rm+1−1∑
n=rm

cq
nh

p−q
n

� 4p
∞∑
k=1

βk

N(k)∑
m=0

hp
rm � K

∞∑
k=1

βkh
p
k ,

and this proves the implication (1.6)⇒ (2.2).
In order to verify that conditions (2.2) and (2.4) jointly imply (1.6) we define

another index-sequence {qm} as follows: q0 := 0 and, if m � 1, let qm be the
smallest integer with the property

qm∑
n=qm−1+1

βn >
1
2
Bqm−1+1.

Using this definition we get that

qm+2∑
n=qm+1

βn >
3
4
Bqm+1
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and
qm+1−1∑
n=qm+1

βn � 1
2
Bqm+1, (3.11)

and these inequalities imply
qm+2∑

n=qm+1

βn >
1
4
Bqm+1. (3.12)

Finally, (3.11) and (3.12) yield

2
qm+2∑

n=qm+1

βn >

qm+1−1∑
n=qm+1

βn. (3.13)

We also need the inequality

Bqm+1 � 2Bqm+1 . (3.14)

This comes from the definition of qm+1. Namely,

qm+1−1∑
n=qm+1

βn � 1
2

∞∑
n=qm+1

βn =
1
2

⎛
⎝qm+1−1∑

n=qm+1

βn +
∞∑

n=qm+1

βn

⎞
⎠ ,

whence (3.14) clearly follows.
Now we turn to the estimation of the sum in (1.6). Since p < q we can use the

so-called power-sum inequality and get

∞∑
n=1

βnh
p
n =

∞∑
m=0

qm+1∑
n=qm+1

βn

m∑
i=0

⎛
⎝ qi+1∑

k=qi+1

cq
k

⎞
⎠

p/q

�
∞∑

m=0

qm+1∑
n=qm+1

βn

m∑
i=0

⎛
⎝ qi+1∑

k=qi+1

μkc
q
k

⎞
⎠

p/q

μ−p/q
qi+1

=
∞∑
i=0

⎛
⎝ qi+1∑

k=qi+1

μkc
q
k

⎞
⎠

p/q

μ−p/q
qi+1

∞∑
m=i

qm+1∑
n=qm+1

βn =: I1. (3.15)

By the definition of qm it is clear that

∞∑
m=i

qm+1∑
n=qm+1

βn � 2
qi+1∑

n=qi+1

βn.
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Using this and Hölder’s inequality, by (2.2), (2.4) and (3.13), we have

I1 � K

⎧⎨
⎩

∞∑
i=0

qi+1∑
k=qi+1

μkc
q
k

⎫⎬
⎭

p/q
⎧⎪⎨
⎪⎩

∞∑
i=0

μ
p

p−q
qi+1

⎛
⎝ qi+1∑

n=qi+1

βn

⎞
⎠

q/(q−p)
⎫⎪⎬
⎪⎭

1− p
q

� K1

⎧⎪⎨
⎪⎩

∞∑
i=0

μ
p

p−q
qi+1

⎡
⎢⎣
⎛
⎝qi+1−1∑

n=qi+1

βn

⎞
⎠

q/(q−p)

+ βqi+1β
p

q−p
qi+1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1− p
q

� K2

⎧⎨
⎩K +

∞∑
i=0

μ
p

p−q
qi+1

(
qi+2∑

n=qi+1

βn

)q/(q−p)
⎫⎬
⎭

1− p
q

� K3

⎧⎪⎨
⎪⎩2K +

∞∑
i=0

μ
p

p−q
qi+1

⎛
⎝ qi+2∑

n=qi+1+1

βn

⎞
⎠

q/(q−p)
⎫⎪⎬
⎪⎭

1− p
q

. (3.16)

In the next step we utilize (3.14) as follows:

⎛
⎝ qi+2∑

n=qi+1+1

βn

⎞
⎠

q/(q−p)

=

⎛
⎝ qi+2∑

n=qi+1+1

βn

⎞
⎠
⎛
⎝ qi+2∑

n=qi+1+1

βn

⎞
⎠

p/(q−p)

� K
qi+2∑

n=qi+1+1

βnB
p/(q−p)
qi+2

� K
qi+2∑

n=qi+1+1

βnB
p/(q−p)
n . (3.17)

Putting this estimation into the last sum in (3.16), furthermore using the mono-
tonicity of {μn} and (2.4), we get

∞∑
i=0

μ
p

p−q
qi+1

qi+2∑
n=qi+1+1

βnB
p/(q−p)
n

�
∞∑
i=0

qi+2∑
n=qi+1+1

βn

(
Bn

μn

)p/(q−p)

< ∞. (3.18)

Combining (3.15)–(3.18) we have (1.6) with γn = 1.

If γn are arbitrary nonnegative numbers we set

cn := cnγ 1/q
n ,

and get the conclusion of Theorem 2 as in Theorem 1.

4. Application. Utilizing the result of Theorem 2 we present new conditions for
the absolute

∣∣C,α > 1
2

∣∣ -summability of general orthogonal series.
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Since condition (1.6) and the conditions (2.2) and (2.4) jointly are equivalent,
thus it is clear that if a condition of type (1.6) implies a certain property of a general
orthogonal series

∞∑
n=1

cnϕn(x), (4.1)

then the suited conditions (2.2) and (2.4) jointly yield the same property of (4.1). The
same assertion is true regarding the conditions of Theorem 1. By this equivalence
we could present several new sufficient conditions in pair utilizing Theorems 1 and 2.
However, we shall establish only one sample result applying Theorem 2. Namely, in
connection with Theorem 1, or more precisely with Theorem A which is a special case
of Theorem 1, we have already the improvement of Orlicz’s theorem as an applicat of
Theorem A.

We establish the following result.

THEOREM 3. If there exists a sequence μ := {μn} of positive numbers such that
{μnn−2} is nonincreasing and

∞∑
n=1

c2
nμn < ∞ (4.2)

and
∞∑
n=1

1
nμn

< ∞, (4.3)

then series (4.1) is
∣∣C,α > 1

2

∣∣ -summable almost everywhere in (0, 1).

Proof. Theorem 2 with p = 1, q = 2, γn = n2 and βn = n−2 implies that
conditions (4.2) and (4.3) are equivalent to

∞∑
m=1

1
m2

(
m∑

n=1

n2c2
n

)1/2

< ∞. (4.4)

In [6] we proved that the condition (4.4) is equivalent to

∞∑
m=1

⎛
⎝ 2m+1∑

n=2m+1

c2
n

⎞
⎠

1/2

< ∞ (4.5)

(see Proposition 1 with νm = 2m, γ (x) ≡ 1, λ (x) = x and q = 2 ).
Finally, in [2] (seeSatz I)weproved that the condition (4.5) implies the

∣∣C,α > 1
2

∣∣ -
summability of series (4.1) almost every in (0, 1).

These results clearly convey the statement of Theorem 3, as desired.
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Szeged, Hungary H-6720

e-mail:leindler@math.u-szeged.hu

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


