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SHARP MULTIDIMENSIONAL MULTIPLICATIVE

INEQUALITIES FOR WEIGHTED Lp SPACES

WITH HOMOGENEOUS WEIGHTS

SORINA BARZA, VICTOR BURENKOV ∗ , JOSIP PEČARIĆ

AND LARS-ERIK PERSSON ∗

(communicated by D. Hinton)

Abstract. Let Ω be an arbitrary cone in IRn with the origin as a vertex. A multidimensional
multiplicative inequality for weighted Lp(Ω) -spaces with homogeneous weights is proved. The
inequality is sharp and all cases of equality are pointed out. In particular, this inequality may be
regarded as a weighted multidimensional extension of previous inequalities of Carlson, Beurling
and Levin.

1. Introduction

Let f be a nonnegative function on [0,∞) such that f 2(x) and x2f 2(x) are
integrable on [0,∞) . Then the inequality

∫ ∞

0
f (x)dx �

√
π
(∫ ∞

0
f 2(x)dx

)1/4(∫ ∞

0
x2f 2(x)dx

)1/4

(1)

holds and
√
π is the best possible constant. This is the well-known Carlson inequality

[2]. It was generalized in many directions. We formulate next a general result obtained
by V. I. Levin [3]. For other generalizations see the books [4, 5] and the references given
there.

THEOREM 1. ([3]) Let p > 1 , q > 1 , λ > 0 , μ > 0 and let f be a nonnegative
function such that xp−1−λ f p(x) and xq−1+μ f q(x) are integrable on [0,∞) . Then∫ ∞

0
f (x)dx � C

(∫ ∞

0
xp−1−λ f p(x)dx

)s (∫ ∞

0
xq−1+μ f q(x)dx

)t

(2)
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where1

C =
(

1
ps

)s( 1
qt

)t ( 1
λ + μ

B

(
s

1 − s − t
,

t
1 − s − t

))1−s−t

and

s =
μ

pμ + qλ
, t =

λ
pμ + qλ

.

The constant C is best possible.

We note that the inequality (2) is equivalent to the inequality

∫ ∞

−∞
f (x)dx �21−s−tC

(∫ ∞

−∞
|x |p−1−λ f p(x)dx

)s(∫ ∞

−∞
|x |q−1+μ f q(x)dx

)t

. (3)

In particular, the inequality (1) is equivalent to the inequality

∫ ∞

−∞
f (x)dx �

√
2π
(∫ ∞

−∞
f 2(x)dx

)1/4 (∫ ∞

−∞
x2f 2(x)dx

)1/4

first established by A. Beurling [1]. Indeed, in order to deduce (2) from (3) it is enough
to apply (3) to the even extension of f from [0,∞) to (−∞,∞) . On the other hand
from (2) and Hölder’s inequality for sums it follows that

∫ ∞

−∞
f (x)dx =

∫ 0

−∞
f (x)dx +

∫ ∞

0
f (x)dx

� C

((∫ 0

−∞
| x |p−1−λ f p(x)dx

)s(∫ 0

−∞
| x |q−1+μ f q(x)dx

)t

+
(∫ ∞

0
| x |p−1−λ f p(x)dx

)s (∫ ∞

0
| x |q−1+μ f q(x)dx

)t
)

� 21−s−tC

(∫ ∞

−∞
| x |p−1−λ f p(x)dx

)s (∫ ∞

−∞
| x |q−1+μ f q(x)dx

)t

since a1b1 + a2b2 � 21−s−t
(
a1/s

1 + b1/s
1

)s (
a1/t

2 + b1/t
2

)t
, ai, bi � 0 .

Our aim is to give generalizations of (2) and (3) to the multidimensional case and
general homogeneous weights.

Acknowledgment. The authors thank Dr. Tamara Tararykova for a generous sug-
gestion, which has improved the final proof of Theorem 2.

1Here B(σ, τ), σ, τ > 0 , is the beta-function: B(σ, τ) = Γ(σ)Γ(τ)
Γ(σ+τ) , where Γ(σ), σ > 0 , is the

gamma-function.
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2. The Main Result

Let Ω be an arbitrary infinite cone in IRn with the origin as a vertex, i.e.,

Ω = {x ∈ IRn : x = ρσ, 0 < ρ < ∞, σ ∈ S} (4)

where S ⊆ Sn = {x ∈ IRn : |x| = 1} is a measurable set. We note that for arbitrary
positive ε we have εΩ = Ω .

THEOREM 2. Let Ω be defined by (4) and wi, i = 0, 1, 2 , be functions defined
on Ω . Suppose that wi are positive, measurable and homogeneous2 of orders αi ∈
IR, i = 0, 1, 2 . Moreover, suppose that

0 < p0 < p1, p2 < ∞, 0 < θ < 1, (5)

and put

di = αi +
n
pi

, i = 0, 1, 2.

1. In order that for some A > 0 and for all functions f measurable on Ω and
satisfying ‖f wi‖Lpi (Ω) < ∞, i = 1, 2 ,

‖f w0‖Lp0 (Ω) � A‖f w1‖θLp1 (Ω)‖f w2‖1−θ
Lp2 (Ω), (6)

it is necessary and sufficient that

d0 = θd1 + (1 − θ)d2, d1 �= d2, (7)

and ∥∥∥∥∥ w0

wθ
1w1−θ

2

∥∥∥∥∥
Lq(S)

< ∞, (8)

where
1
q

=
1
p0

− θ
p1

− 1 − θ
p2

. (9)

2. If (7) and (8) are satisfied, then the minimal possible value A∗ of A in (6) has
the form

A∗ =
(
θ
p1

)− θ
p1
(

1 − θ
p2

)− 1−θ
p2

(p1p2)
− 1

p0

(
B(θ q

p1
, (1 − θ) q

p2
)

| d1 − d2 |

)1/q

×

×
(

1
p0

− 1
q

)− 1
q
∥∥∥∥∥ w0

wθ
1w1−θ

2

∥∥∥∥∥
Lq(S)

. (10)

2I.e., for each x ∈ Ω and ε > 0 , wi(εx) = εαiwi(x) .
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3. Equality in (6) with A = A∗ holds if and only if, for some
B � 0, γ > 0,

|f (x)| = Bf∗(γ x) (11)

for almost all x ∈ Ω , where

f∗ =
(

k
wp0

0

wp1
1

) 1
p1−p0

. (12)

and the positive function k is uniquely defined by(
k1/p1

w0

w1

)r1

=
(

(1 − k)1/p2
w0

w2

)r2

, (13)

where
1
ri

=
1
p0

− 1
pi

, i = 1, 2. (14)

REMARK 1. It is enough to proveTheorem2 for the case in which p0 = 1 , w0 = 1 .

The general case follows from this case if we replace wi by
(

wi
w0

)p0

, pi by pi
p0

, i = 1, 2

and f by (f w0)p0 .

3. Proof of The Main Result

First we state the following lemma of independent intrest:

LEMMA 1. Let Ω ⊆ IRn be a measurable set and let w0, w1, w2 be positive and
measurable functions on Ω . Moreover, suppose that 0 < p0 < p1, p2 < ∞ , and
δ > 0 . If f is measurable on Ω and ‖f wi‖Lpi (Ω) < ∞, i = 1, 2 , then

‖f w0‖Lp0 (Ω) �
(
Mp0

1 (δ)‖f w1‖p0

Lp1 (Ω) + Mp0
2 (δ)‖f w1‖p0

Lp1 (Ω)

)1/p0

, (15)

where

Mi(δ) =
∥∥∥∥a1/p0

i,δ
w0

wi

∥∥∥∥
Lri (Ω)

, i = 1, 2 ,

and ri are defined by (14).

Here 0 < a1,δ (x) < 1 , x ∈ Ω , is uniquely defined by

(
a1/p1

1,δ (x)
w0(x)
w1(x)

)r1

= δ
(

(1 − a1,δ (x))
1/p2 w0(x)

w2(x)

)r2

(16)

and a2,δ (x) = 1 − a1,δ (x) .
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Inequality (15) is sharp. Moreover equality holds if, and only if, for some nonneg-
ative λ ,

|f | = λ
(

a1,δ
wp0

0

wp1
1

) 1
p1−p0

(17)

almost everywhere on Ω .

Proof. Let the functions a1, a2 be positive and measurable on Ω and a1+a2 = 1 .
Then ∫

Ω
|f |p0wp0

0 dx =
∫
Ω

a1

(
w0

w1

)p0

(|f |w1)
p0 dx +

∫
Ω

a2

(
w0

w2

)p0

(|f |w2)
p0 dx.

For p > 1 we use as usual the notation p′ = p
p−1 . Since pi > p0 we have, by Hölder’s

inequality,∫
Ω
|f |p0wp0

0 dx �
∥∥∥∥a1

(
w0

w1

)p0
∥∥∥∥

L( p1
p0

)′ (Ω)

∥∥(|f |w1)
p0
∥∥

L p1
p0

(Ω)

+
∥∥∥∥a2

(
w0

w2

)p0
∥∥∥∥

L( p2
p0

)′ (Ω)

∥∥(|f |w2)
p0
∥∥

L p2
p0

(Ω)

=

(∥∥∥∥a1/p0

1
w0

w1

∥∥∥∥
Lr1 (Ω)

‖f w1‖Lp1 (Ω)

)p0

+

(∥∥∥∥a1/p0

2
w0

w2

∥∥∥∥
Lr2 (Ω)

‖f w2‖Lp2 (Ω)

)p0

. (18)

Next we choose a1 and a2 in the optimal way keeping in mind that in (18) equality
holds if and only if, for some λ1 , λ2 � 0

(|f |w1)
p1 = λ1

(
a1

(
w0

w1

)p0
)( p1

p0

)′
,

(|f |w2)
p2 = λ2

(
a2

(
w0

w2

)p0
)( p2

p0

)′

almost everywhere on Ω , or

|f | = λ
(

a1
wp0

0

wp1
1

) 1
p1−p0

where λ = λ1
1/p1 and



58 S. BARZA, V. BURENKOV, J. PEČARIĆ AND L.-E. PERSSON

(
a1/p1

1
w0

w1

)r1

= δ
(

a1/p2

2
w0

w2

)r2

where δ =
(
λ2

1/p2λ1
−1/p1

)p0

.

Hence the statement of the lemma follows.

Next we state a corollary of Lemma 1, which is useful for our later purposes.

LEMMA 2. Let Ω be defined by (4) and wi be functions defined on Ω which are
positive, measurable and homogeneous of orders αi, i = 1, 2 . Moreover, suppose that
0 < p0 < p1, p2 < ∞ and ε > 0 .

If f is measurable on Ω and ‖f wi‖Lpi (Ω) < ∞, i = 1, 2 , then, for every ε > 0 ,

‖f w0‖Lp0 (Ω) �
((

ε(d1−d0)A1 ‖f w1‖Lp1 (Ω)

)p0

+
(
ε(d2−d0)A2 ‖f w2‖Lp2 (Ω)

)p0
)1/p0

, (19)

where

Ai =
∥∥∥∥k1/p0

i
w0

wi

∥∥∥∥
Lri (Ω)

, i = 1, 2, (20)

k1 ≡ k , k2 ≡ 1 − k and di , ri and k are defined in Theorem 2.
Inequality (19) is sharp. Moreover, equality holds if, and only if, for some μ � 0

|f (x)| = μf∗(εx), (21)

where f∗ is defined by (12).

Proof: Replacing x by εx in (13) we get(
k1/p1 (εx)

w0(x)
w1(x)

)r1

= ε(α0−α2)r2−(α0−α1)r1

(
(1 − k(εx))1/p2 w0(x)

w2(x)

)r2

= ε(d0−d2)r2−(d0−d1)r1

(
(1 − k(εx))1/p2 w0(x)

w2(x)

)r2

.

Consequently, if δ = ε(d0−d2)r2−(d0−d1)r1 and ai,δ (x) = ki(εx) , then the equality (16)
is satisfied.

Hence, by Lemma 1, the inequality (15) is valid, where

Mi(δ) =
∥∥∥∥k1/p0

i (εx)
w0(x)
wi(x)

∥∥∥∥
Lri (Ω)

= ε−
n
ri

∥∥∥∥k1/p0
i (y)

w0( y
ε )

wi( y
ε )

∥∥∥∥
Lri (εΩ)

= ε−
n
ri
−α0+αi

∥∥∥∥k1/p0
i

w0

wi

∥∥∥∥
Lri (Ω)

= εdi−d0Ai
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and (19) follows.
Furthermore, by (17), equality in (19) holds if, and only if,

|f (x)| = λ
(

k(εx)
wp0

0 (x)
wp1

1 (x)

) 1
p1−p0

= λε
α1p1−α0p0

p1−p0 f∗(εx) = μf∗(εx).

The proof is complete.

Proof of Theorem 2. Our proof is organized in six steps:

1. Let (7) and (8) be satisfied. According to (7) it yields that d1 − d0 =
(1 − θ)(d1 − d2) and d2 − d0 = −θ(d1 − d2) . We set ε(d1−d2)p0 = δ in Lemma 2.
Since d1 �= d2 , by (19) we have, for all δ > 0 ,

‖f w0‖Lp0 (Ω) �
(
δ 1−θ

(
A1 ‖f w1‖Lp1 (Ω)

)p0

+δ−θ
(
A2 ‖f w2‖Lp2 (Ω)

)p0
)1/p0

.

Since for a, b > 0

min
δ>0

(aδ 1−θ + bδ−θ) = (aδ 1−θ + bδ−θ)
∣∣∣
δ= θ

1−θ
b
a

= (θθ (1 − θ)1−θ)−1aθb1−θ

we obtain, by setting in (19) ε = ε0 , where

ε0 = ε0(f ) =

((
θ

1 − θ

)1/p0 A2 ‖f w2‖Lp2 (Ω)

A1 ‖f w1‖Lp1 (Ω)

) 1
d1−d2

, (22)

that inequality (6) is valid with A = Ã , where

Ã =
(
θθ(1 − θ)1−θ

)−1/p0

Aθ
1A1−θ

2 . (23)

2. Let there be equality in (6) with A = Ã . Then, for ε = ε0(f ) defined by (22)
there is equality in (19). Hence, by (21), for some μ � 0 ,

|f (x)| = μf∗ (ε0(f )x) . (24)

Thus an extremal function in (6) is necessarily of the form (11).
Let us verify that each function f defined by (11) is extremal. By Lemma 2 with

ε = 1 and the elementary arithmetic-geometric mean inequality

xθy1−θ � θθ(1 − θ)1−θ(x + y), x, y � 0, 0 < θ < 1, (25)

it follows that

‖f∗w0‖Lp0 (Ω) =
((

A1 ‖f∗w1‖Lp1 (Ω)

)p0

+
(
A2 ‖f∗w2‖Lp2 (Ω)

)p0
)1/p0

� Ã ‖f∗w1‖θLp1 (Ω) ‖f∗w2‖1−θ
Lp2 (Ω) . (26)
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Consequently, keeping in mind inequality (6) for f = f∗ with A = Ã , we see that there
is equality in (26).

Thus Ã is the minimal possible value of A in (6) and f∗ is an extremal function,
if ‖f∗wi‖Lpi (Ω) < ∞, i = 1, 2 . This will be proved in step 4 of the proof. Moreover for
every B � 0 and γ > 0 the function f defined by (11) is also an extremal function.
This easily follows if we replace γ x by y and apply the relation (7).

3. Next we note that

‖f∗wi‖Lpi (Ω) =
∥∥∥∥k1/p0

i
w0

wi

∥∥∥∥
ri
pi

Lri (Ω)
= A

ri
pi
i , i = 1, 2. (27)

Since equality in (25) holds if, and only if, x
θ = y

1−θ (= x + y) and there is equality in
(26), we have, applying in addition (27), that

Ar1
1

θ
=

Ar2
2

1 − θ
= ‖f∗w0‖p0

Lp0 (Ω) . (28)

In particular, we note that due to (28) equation (22) is satisfied for the function f
defined by (24). Moreover, we use (23) and (27) and find that

Ã =
(
θθ(1 − θ)1−θ

)−1/p0

θ
θ
r1 (1 − θ)

1−θ
r2 ‖f∗w0‖

p0

(
θ
r1

+ 1−θ
r2

)
Lp0 (Ω)

= θ− θ
p1 (1 − θ)−

1−θ
p2

∥∥∥∥k 1
p1

w0

w1

∥∥∥∥
r1
q

Lr1 (Ω)
. (29)

4. Since the functions wi(x) are homogeneous of orders αi we have wi(x) =
ραiwi(σ) for x ∈ Ω , where ρ = |x| and σ = x

|x| ∈ S . Substituting this into (13) we
get

k
r1
p1 (x) =

(
w1(σ)
w0(σ)

)r1
(

w0(σ)
w2(σ)

)r2

ρ(α0−α2)r2−(α0−α1)r1 (1 − k(x))
r2
p2

or

k
1

p1r2 (x) =
(

w1(σ)
w0(σ)

) 1
r2
(

w0(σ)
w2(σ)

) 1
r1

ρ( θ
r1

+ 1−θ
r2

)(d1−d2) (1 − k(x))
1

p2r1 .

Thus

k
1

p1rq (x) = (w(σ)ρ)
d1−d2

q (1 − k(x))
1

p2r1 ,

where

w(σ) =

((
w1(σ)
w0(σ)

) 1
r2
(

w0(σ)
w2(σ)

) 1
r1

) q
d1−d2

.
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Consequently

k(x) = ϕ (w(σ)ρ)

where the function ϕ of one variable is defined by

ϕ1/p1r2(z) = z
d1−d2

q (1 − ϕ(z))1/p2r1 . (30)

Furthermore,

‖f∗w0‖p0

Lp0 (Ω) =
∫
Ω

(
k1/p1(x)

w0(x)
w1(x)

)r1

dx

=
∫

S

(∫ ∞

0
ϕr1/p1 (w(σ)ρ)

(
w0(σ)
w1(σ)

)r1

ρ(α0−α1)r1+n−1dρ
)

dσ

=
∫

S
w(σ)−(d0−d1)r1

(
w0(σ)
w1(σ)

)r1

dσ
∫ ∞

0
ϕr1/p1(z)z(d0−d1)r1−1dz

=
∫

S

(
w0

wθ
1w1−θ

2

)q

dσ
∫ ∞

0
ϕr1/p1(z)z−(1−θ)(d1−d2)r1−1dz. (31)

The latter integral can be evaluated in the following way: Substitute ϕ(z) = y so that,

by (30), z =
(
y

1
p1r2 (1 − y)−

1
r1p2

) q
d1−d2 . Then

∫ ∞

0
ϕr1/p1(z)z−(1−θ)(d1−d2)r1−1dz

=
∫ 1

0
y

r1
p1

(
y

1
p1r2 (1 − y)−

1
r1p2

)−[q(1−θ)(d1−d2)r1+1]
|d1−d2| |z′(y)|dy

=
1

p1r2

q
|d1 − d2|B

(
θ

q
p1

, (1 − θ)
q
p2

+ 1

)

+
1

r1p2

q
|d1 − d2|B

(
θ

q
p1

+ 1, (1 − θ)
q
p2

)
.

We now only use the facts that B(a, b + 1) = a
a+bB(a, b) and B(a, b) = B(b, a) and

find that

∫ ∞

0
ϕr1/p1(z)z−(1−θ)(d1−d2)r1−1dz =

B
(
θ q

p1
, (1 − θ) q

p2

)
|d1 − d2|(θp2 + (1 − θp1))

. (32)

Hence ‖f∗wi‖Lpi (Ω) < ∞, i = 1, 2 , and Ã = A∗ where A∗ is defined by (10).
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5. Let us prove that the first condition (7) and condition (8) are necessary. Suppose
that inequality (6) is valid for all functions measurable on Ω satisfying ‖f wi‖Lpi (Ω) <
∞, i = 1, 2 . Consider a fixed function f 0 which is not equivalent to zero, satisfying
these conditions and apply (6) to f 0

(
x
ε
)
, ε > 0 . Replacing x

ε by y , we obtain

‖f 0

( x
ε

)
wi(x)‖Lpi (Ω) = εn/pi‖f 0wi(εy)‖Lpi (

1
ε Ω) = εdi‖f 0wi‖Lpi (Ω).

Hence εd0−θd1−(1−θ)d2 � A1 for all ε > 0 , where A1 is independent of ε , and it
follows that d0 = θd1 + (1 − θ)d2 .

Next we set wi,N(x) = wi(x)χN

(
x
|x|
)

,i = 0, 1, 2, and f∗,N(x) = f∗(x)χN

(
x
|x|
)

,

where N ∈ IN and χN is the characteristic function of the set SN ⊂ S of those σ ∈ S
for which wi(σ) � N, i = 0, 1, 2 . Then, according to step 4,

A �
‖f∗,Nw0‖Lp0 (Ω)

‖f∗,Nw1‖θLp1 (Ω) ‖f∗,Nw2‖1−θ
Lp2 (Ω)

=
‖f∗,Nw0,N‖Lp0 (Ω)

‖f∗,Nw1,N‖θLp1 (Ω) ‖f∗,Nw2,N‖1−θ
Lp2 (Ω)

= C

∥∥∥∥∥ w0

wθ
1w1−θ

2

∥∥∥∥∥
Lq(SN)

,

where C is independent of N . If

∥∥∥∥ w0

wθ
1 w1−θ

2

∥∥∥∥
Lq(SN)

= ∞ , then, by passing to the limit

as N → ∞ , we see that for any A > 0 inequality (6) cannot be valid. We conclude
that also (8) holds.

6. Finally, we prove that also the second condition d1 �= d2 in (7) is necessary.
Suppose that the first condition (7) and condition (8) are satisfied and d1 = d2 . Hence
by the first condition (7) it yields that d0 = d1 = d2 . Consider the family of functions

f ε(x) = f∗(x)|x|εχ(x),

where ε > 0 , χ is the characteristic function of the unit ball in IRn and f∗ is defined
by (12). By step 4 it follows that the function k depends on σ = x

|x| only, i.e., k is
homogeneous of order 0 . Consequently,

‖f εwi‖Lpi (Ω) =

(∫
Ω

(
k(x)

wp0
0 (x)

wp1
1 (x)

) pi
p1−p0

wpi
i (x)|x|εpiχ(x)dx

) 1
pi
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=

(∫
S

(
k(σ)

wp0
0 (σ)

wp1
1 (σ)

) pi
p1−p0

wpi
i (σ)dσ

) 1
pi

×

×
(∫ 1

0
ρ(α0p0−α1p1

p1−p0
+αi+ε)pi+n−1dρ

) 1
pi

= ‖f∗wi‖Lpi (S)

(∫ 1

0
ρ(−di+αi+ε)pi+n−1dρ

) 1
pi

= p
− 1

pi
i ‖f∗wi‖Lpi (S) ε

− 1
pi = Ciε−

1
pi .

We note that ‖f∗wi‖Lpi (S) < ∞, i = 0, 1, 2 . This follows from (8) and the inequality

(f∗wi)
pi �

(
w0

wθ
1w1−θ

2

)q

, i = 0, 1, 2.

In fact, if ξ = θq
r1

, then 1 − ξ = (1−θ)q
r2

and (13) implies that

(f∗w0)
p0 =

(
k

1
p1

w0

w1

)r1

=
(

k
1
p1

w0

w1

)ξr1
(

(1 − k)
1
p2

w0

w2

)(1−ξ)r2

� wξr1+(1−ξ)r2

0

wξr1
1 w(1−ξ)r2

2

=

(
w0

wθ
1w1−θ

2

)q

.

(Note that 0 < k < 1 .) Furthermore

(f∗w1)
p1 =

(
k

1
p0

w0

w1

)r1

= k

(
k

1
p1

w0

w1

)r1

� (f∗w0)
p0

and similarly we find that (f∗w2)
p2 � (f∗w0)

p0 .
Now taking f = f ε in (6), we get

A �
‖f εw0‖Lp0 (Ω)

‖f εw1‖θLp1 (Ω) ‖f εw2‖1−θ
Lpq (Ω)

= C0C
−θ
1 C−(1−θ)

2 ε−
1
q .

Passing to the limit as ε → 0+ , we see that for any A > 0 inequality (6) cannot be
valid, and we have got a contradiction so that we also have d1 �= d2 . The proof is
complete.
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4. Concluding remarks and results

Our proof of Theorem 2 shows that the multiplicative inequality (6) can in fact be
replaced by some corresponding additive ones. This fact is described in the following
remark:

REMARK 2. We note that the inequality

‖f w0‖Lp0 (Ω) � A∗‖f w1‖θLp1 (Ω)‖f w2‖1−θ
Lp2 (Ω) (33)

where A∗ is defined by (10), the inequality

‖f w0‖Lp0 (Ω) �
(
θθ(1 − θ)1−θ

)1/p0

A∗
(
‖f w1‖p0

Lp1 (Ω) + ‖f w2‖p0

Lp2 (Ω)

)1/p0

(34)

and the inequality

‖f w0‖Lp0 (Ω) �
((
εd1−d0B1,∗‖f w1‖Lp1 (Ω)

)p0 +
(
εd2−d0B2,∗‖f w2‖Lp2 (Ω)

)p0
)1/p0

(35)

for arbitrary ε > 0 , where

B1,∗ =
(
θ

θ
p′
1 (1 − θ)−

1−θ
p2 Aq

∗

)1/r1

,

B2,∗ =
(
θ

θ
p1 (1 − θ)

− 1−θ
p′
2 Aq

∗

)1/r2

are equivalent. Indeed, taking into consideration (29), (31) and (32), the implication
(35) =⇒ (33) was established in the proof of Theorem 2. Moreover, by (25) it follows
that (33) implies (34). Finally, applying (34) to f

(
x
δ
)
, δ > 0 , using the relation∥∥∥f ( x

δ

)
wi(x)

∥∥∥
Lpi (Ω)

= δ di‖f wi‖Lpi (Ω)

and choosing appropriate δ one gets (35).
Moreover, similar argument shows that (33) is also equivalent to

‖f w0‖Lp0 (Ω) � θθ(1 − θ)1−θA∗
(‖f w1‖Lp1 (Ω) + ‖f w2‖Lp2 (Ω)

)
(36)

and to

‖f w0‖Lp0 (Ω) �
(
θθ(1 − θ)1−θ

)1/p′0 (
εd1−d0B1,∗‖f w1‖Lp1 (Ω) + εd2−d0B2,∗‖f w2‖Lp2 (Ω)

)
.

(37)
Thus all the inequalities (33)–(37) are sharp.
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COROLLARY 1. Let Ω be defined by (4), αi ∈ IR , and let (7) and (9) be satisfied.
Then, for each function f which is measurable on Ω and satisfying ‖f (x)|x|αi‖Lpi (Ω) <

∞, i = 1, 2 , it yields that

‖f (x)|x|α0‖Lp0 (Ω) � C1‖f (x)|x|α1‖θLp1 (Ω)‖f (x)|x|α2‖1−θ
Lp2 (Ω), (38)

where

C1 = θ− θ
p1 (1 − θ)−

1−θ
p2

(
B(θ q

p1
, (1 − θ) q

p2
)

|d1 − d2|(θp2 + (1 − θ)p1)

)1/q

(measn−1S)1/q .

The constant C1 is the best possible. Moreover, equality in (38) holds if and only if, for
some B � 0 and γ > 0 ,

|f (x)| = B
(
ϕ(γ |x|)|x|α0p0−α1p1

) 1
p1−p0 ,

where the function ϕ is defined by (30).

REMARK 3. Let Ff denote the Fourier transform of a function f on IRn , i.e.,

Ff (ξ) = (2π)−n/2
∫

IRn
e−ix·ξ f (x)dx.

We apply Corollary 1 with p0 = 1 , p1 = p2 = 2 , α0 = α1 = 0 and α2 = l , where l
is an integer. Then d0 = n , d1 = n

2 , d2 = l + n
2 , θ = 1 − n

2l and q = 2 , and, also by
using Parseval’s relation, we find that

‖f ‖L∞(IRn) =
∥∥F−1Ff

∥∥
L∞(IRn)

= (2π)−n/2

∥∥∥∥
∫

IRn
eix·ξ (Ff )(ξ)dξ

∥∥∥∥
L∞(IRn)

� (2π)−n/2 ‖Ff ‖L1(IRn)

� C ‖Ff ‖1− n
2l

L2(IRn)

∥∥|ξ |l(Ff )(ξ)
∥∥ n

2l
L2(IRn)

= C ‖Ff ‖1− n
2l

L2(IRn)

∥∥|F(∇lf )|∥∥ n
2l
L2(IRn)

= C ‖f ‖1− n
2l

L2(IRn)

∥∥|∇lf |∥∥ n
2l
L2(IRn) ,

where

C =

(
(2π)−n/2

(
1 − n

2l

)−(1− n
2l ) ( n

2l

)− n
2l B

(
1 − n

2l ,
n
2l

)
2l

σn

)1/2

and σn is the surface area of the unit sphere in IRn .



66 S. BARZA, V. BURENKOV, J. PEČARIĆ AND L.-E. PERSSON

Here ∇lf is the weak gradient of order l of the function f :

∇lf =
(

∂ lf
∂xi1 . . . ∂xil

)n

i1,...,il=1

.

Moreover, since σn = 2πn/2

Γ( n
2 ) and B(1 − n

2l ,
n
2l ) = Γ(1 − n

2l )Γ( n
2l ) = π

sin nπ
2l

we have

C =
(

2−nπ1−n/2

lΓ( n
2 ) sin nπ

2l

(
1 − n

2l

)−(1− n
2l) ( n

2l

)− n
2l
)1/2

. (39)

Thus Corollary 1 implies the following precise version of Sobolev’s inequality: If
l > n/2 , then

‖f ‖L∞(IRn) � C ‖f ‖1−n/2l
L2(IRn)

∥∥ |∇lf | ∥∥n/2l

L2(IRn) , (40)

where C is defined by (39).
Moreover, the inequality (40) is sharp and equality occurs if and only if f = Ff (x) ,

where

Ff (ξ) = B
1

b + |ξ |2n
, ξ ∈ IRn,

for some B ∈ C and b > 0 .
In particular, for the case n = l (40) has the form

‖f ‖L∞(IRn) �
(

2−nπ1−n/2

Γ( n
2 + 1)

) 1
2

‖f ‖1/2
L2(IRn) ‖∇nf ‖1/2

L2(IRn) .

REMARK 4. Inequality (6) is a multidimensional generalization of both of the inequal-
ities (2) and (3): In fact, let p0 = 1 and α0 = 0 . If n = 1 and Ω = [0,∞) , then
meas0S = 1 and we get (2). If n = 1 and Ω = (−∞,∞) , then meas0S = 2 and we
get (3).

REMARK 5. If in Theorem 2, p1 = p2 = p , then the optimal constant A∗ has the
following forms:

A∗ =
(
θ−θ(1 − θ)−(1−θ)

)1/p
(

B(θ r
p , (1 − θ) r

p )

|d1 − d2|p

)1/r ∥∥∥∥∥ w0

wθ
1w1−θ

2

∥∥∥∥∥
Lr(S)

=
(
θ−θ(1 − θ)−(1−θ)

)1/p
∥∥∥∥ w0

(wp
1 + wp

2)1/p

∥∥∥∥
Lr(Ω)

,

where
1
r

=
1
p0

− 1
p
.

In fact, the first equality is just (10) for p1 = p2 = p , while the second one follows
from (29) since in this case (see (13))

k =
wp

1

wp
1 + wp

2

.
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