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SHARP MULTIDIMENSIONAL MULTIPLICATIVE
INEQUALITIES FOR WEIGHTED L, SPACES
WITH HOMOGENEOUS WEIGHTS

SORINA BARZA, VICTOR BURENKOV *, JOSIP PECARIC
AND LARS-ERIK PERSSON *

(communicated by D. Hinton)

Abstract. Let Q be an arbitrary cone in IR” with the origin as a vertex. A multidimensional
multiplicative inequality for weighted Ly () -spaces with homogeneous weights is proved. The
inequality is sharp and all cases of equality are pointed out. In particular, this inequality may be
regarded as a weighted multidimensional extension of previous inequalities of Carlson, Beurling
and Levin.

1. Introduction

Let f be a nonnegative function on [0,00) such that f?(x) and x*f?(x) are
integrable on [0, 00) . Then the inequality

/Ooof(x)dx <A (/waz(x)dx> v (/Ooo xzfz(x)dx> v (1)

holds and +/7 is the best possible constant. This is the well-known Carlson inequality
[2]. It was generalized in many directions. We formulate next a general result obtained
by V. 1. Levin [3]. For other generalizations see the books [4, 5] and the references given
there.

THEOREM 1. ([3])Let p>1, g>1, A >0, u >0 andlet f be a nonnegative
function such that x*~'=*fP(x) and x3~"*"f9(x) are integrable on [0,00). Then

/0 T rwdr < C ( /0 T ”(x)dX> S ( /OOO xHf q(x)dx)t .
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S t 1—s—1
() @) m (=)
ps qt A+u \1l—-s—t"1—5—1t

u A
5= , t= .
pu -+ gA pu -+ gA
The constant C is best possible.

where!

and

We note that the inequality (2) is equivalent to the inequality

[t e s ([ s o

In particular, the inequality (1) is equivalent to the inequality

/o:of(x)dx <V2rm </Zf2(x)dx> v (/Z xzfz(x)dx) v

first established by A. Beurling [1]. Indeed, in order to deduce (2) from (3) it is enough
to apply (3) to the even extension of f from [0,00) to (—o0,00). On the other hand
from (2) and Holder’s inequality for sums it follows that

/ Zf(x)dx -/ Omf<x>dx + [ " W
<c (( / Ow | i f”(X)dX>S ( / Ow % I"‘”"‘f"(X)dX>t
([T rwa) ([T I"‘”“f"(X)dxy)
c2=me( [T pwa) ([T e

s t
since by + ab, <2 (@} 4 b)) (@ +8Y") @i, bi >0,
Our aim is to give generalizations of (2) and (3) to the multidimensional case and
general homogeneous weights.

Acknowledgment. The authors thank Dr. Tamara Tararykova for a generous sug-
gestion, which has improved the final proof of Theorem 2.

I'(o)I(t)
T(0+7)

'Here B(o,7), 0,7 > 0, is the beta-function: B(0,7) =
gamma-function.

, where I'(0), 0 > 0, is the
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2. The Main Result
Let Q be an arbitrary infinite cone in IR" with the origin as a vertex, i.e.,
Q={xeR" :x=p0,0<p<o0, 0€S} (4)

where S C §" = {x € R" : |[x| = 1} is a measurable set. We note that for arbitrary
positive € we have €Q = Q.

THEOREM 2. Let Q be defined by (4) and w;, i = 0,1,2, be functions defined
on Q. Suppose that w; are positive, measurable and homogeneous® of orders 0; €
R, i =0,1,2. Moreover, suppose that

0<po<pi,pp<oo, 0<O<I, (5)
and put
d=o+2 i=012
1. In order that for some A > 0 and for all functions f measurable on Q and
satisfying |[f wil|,, @) < oo, i=1,2,

1 wollzyy e < Al w1, oy llF w2} (6)

it is necessary and sufficient that

dy = 0d, + (1 — Q)dz, d; # ds, (7)
and
Wo
.10 < 00, (8)
172 Ly (S)
where

i o)

q Do P P2

2. If (7) and (8) are satisfied, then the minimal possible value A, of A in (6) has
the form

_0 _1=0 1/q
1 — 2 1 Bel, 1791
A — (2) p (1 9> ™ o) B (65, (1-6):%) y
P1 P2 | dy —d |

<1 1>$
>< —_ =
Po q

’Le., foreach x € Q and € > 0, wi(ex) = €% wj(x) .

(10)

Lyg(S)
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3. Equality in (6) with A = A, holds if and only if, for some
B>0,v >0,

If ()| = Bf«(rx) (11)

%j#%
*:_1 . 12
f(w,l, (12)

and the positive function k is uniquely defined by
r rn
[V R O AN Y/ 13
(k) = (a=rpe2) (13

—=———, i=12 14
ri Po Pi ( )

REMARK 1. Itis enough to prove Theorem 2 for the case in which pg =1, wp = 1.

for almost all x € Q, where

where

P .
The general case follows from this case if we replace w; by (X—(’)) ' , pi by I’j—(’) ,i=1,2
and f by (fwo).

3. Proof of The Main Result

First we state the following lemma of independent intrest:

LEMMA 1. Let Q C R" be a measurable set and let wy, wi, wp be positive and
measurable functions on Q. Moreover, suppose that 0 < py < p1,p> < oo, and
8 > 0. If f is measurable on Q and |[f wi|r,, ) < oo, i=1,2, then

1/po
w0l < (M@ wll? @)+ M@l ) " (19)
where
1 wWo
Mt(a): ’aj,ép[); ) = 1a27
TIL; (Q)

and r; are defined by (14).
Here 0 < a;5(x) < 1, x € Q, is uniquely defined by

(a2~ 5 (11— austoy 220 (16)

wyp (x)

and ay5(x) =1 —a; 5(x).
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Inequality (15) is sharp. Moreover equality holds if, and only if, for some nonneg-

ative A,
N
Ifl =2 (al,SF?l) (17)

almost everywhere on Q.

Proof. Letthe functions a;, a, be positive and measurableon Q and a;+a; = 1.

Then
Po Po
Lmgas= [a () rmyavs [an () triwey ax
Q Q w1 Q w2

For p > 1 we use as usual the notation p’ = 1% . Since p; > po we have, by Holder’s

inequality,
po
Lirpogar < o (2)
Q wi

||(UC‘W1)WHL,i (@

L 1(Q)
(%) "

+la <W0>p0 |‘(V‘W )Po|
2\ —— 2
w2 Lipyyr(Q) LZ—ﬁ @
(%)
po
1 wWo
= ‘ al/po_ [Ifwi HL,,l(Q)
Ly (Q)
Po
1/po WO
+<]a/”°— szle(Q)) . (18)
Ly, (Q)

Next we choose a; and a, in the optimal way keeping in mind that in (18) equality
holds if and only if, for some A;, A, > 0

(If lw)" =M (a1 (x_?)’“)( )'7
(If [w2)” = X2 (az (x_;))”")( )

almost everywhere on Q, or

'ul'u
S|=

'ul'u
ShS

WP\ P
1-1(e)

where A = A;'/” and
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wo n W 2
1/p 1/p2 WO
al/ = = 5 (12/ =

w1 wo

where § = (?Lzl/m/lfl/pl po.

Hence the statement of the lemma follows.
Next we state a corollary of Lemma 1, which is useful for our later purposes.

LEMMA 2. Let Q be defined by (4) and w; be functions defined on Q which are
positive, measurable and homogeneous of orders o, i = 1,2. Moreover, suppose that
0<po<pi,pr <0 and € >0.

If f is measurable on Q and wai”Lp-(Q) < o0, i = 1,2, then, for every € >0,

1/po

_ Po _ Po
I wolleyy @) <( (4D lwill,, @) +(e DAzl wally, @) )+ (19)
where
A = ||[k/p 0 ,i=1,2, (20)
WillL, (@)

ki =k, ko =1—k and d;, r; and k are defined in Theorem 2.
Inequality (19) is sharp. Moreover, equality holds if, and only if, for some u > 0

If ()] = uf«(ex), (21)
where f is defined by (12).
Proof: Replacing x by ex in (13) we get

(kl/pl (E.X) WO(-X)> 1 _ E(Otgfaz)rzf(lxo*al)i’l ((1 _ k(gx))l/pz WO()C)) 2

wyp (x)

— S(do—dz)rz—(do—dl)rl (1 _ k(sx))l/PZ WO()C " )
wa (x)

Consequently, if § = gl=®)2=(db=d)n and g 5(x) = k;(ex), then the equality (16)
is satisfied.
Hence, by Lemma 1, the inequality (15) is valid, where

wo(x)
wi (x)

M;(8) = |[k}/™ (ex)

Lri (Q)
wo(y)
wi(3)

kL/po Wo
1
Wi

n

=& 7 |Ik/P(y)

Ly; (eQ)

— gt

= Edi_dUAi
Ly (Q)
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and (19) follows.
Furthermore, by (17), equality in (19) holds if, and only if,

f ()] = A <k<gx) ;v)?j ED—

p1—%Po

=Ae nn f.(ex) = uf.(ex).

The proof is complete.

Proof of Theorem 2. Our proof is organized in six steps:

1. Let (7) and (8) be satisfied. According to (7) it yields that d; — dy =
(1—-0)(dy —dy) and dy —dy = —0(dy — dy). We set gld—d)p — § in Lemma 2.
Since d; # dy, by (19) we have, forall § >0,

1/po

1—0 po _p po
I woll ) <(8' (A1 I willy, o)) +67° (42 w2l ie)) )
Since for a, b > 0

_ (60(1 _ 9)1*0)—1a0b1—0

b
a

min(ad' =0 + 65°) = (a8'~® + b5~°) ‘
6>0 ,%

we obtain, by setting in (19) € = &, where

1
=) = (12 )UMZWWHL”@) )
1-6 Arllfwill, @) ’

that inequality (6) is valid with A = A, where
- —1/p
A= (99(1 - 9)1‘9) " A%AL-0. (23)

2. Let there be equality in (6) with A = A. Then, for € = &/(f) defined by (22)
there is equality in (19). Hence, by (21), for some u > 0,

If ()] = wf'« (&(f )x) - (24)

Thus an extremal function in (6) is necessarily of the form (11).
Let us verify that each function f defined by (11) is extremal. By Lemma 2 with
€ = 1 and the elementary arithmetic-geometric mean inequality

WOV 0%(1-0) (x+y), x,y>0,0<0 <1, (25)

it follows that

Po bo

Hf*w0||LpU(9) - ((Al “f*WIHLPI(Q)) +(A2 |V*W2||L"2(Q>) )
. 0 1-6

Allfiw HLm (@) ‘V*W2||L,,2 (@) - (26)

1/po

WV
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Consequently, keeping in mind inequality (6) for f = f. with A = A, we see that there
is equality in (26).

Thus A is the minimal possible value of A in (6) and f. is an extremal function,
if ||fswi]] Ly(@) < OO i = 1,2. This will be proved in step 4 of the proof. Moreover for
every B > O and y > 0 the function f defined by (11) is also an extremal function.
This easily follows if we replace yx by y and apply the relation (7).

3. Next we note that

.
IFawill, = kil/po@ =AM, i=1,2. (27)
" il (@)
Since equality in (25) holds if, and only if, 725 (= x + ) and there is equality in
(26), we have, applying in addition (27), that
Al Ar2
A faml, (28)

In particular, we note that due to (28) equation (22) is satisfied for the function f
defined by (24). Moreover, we use (23) and (27) and find that

9+ —0

- —1/po 6
A = (9"(1—9)1‘9) "on(1-0)7 |f. onLp("> )

n
W, q
k.ﬂl—o

wi

= 0 .171(1—9)

. (29)
Ly (Q)

4. Since the functions w;(x) are homogeneous of orders o; we have w;(x) =
p%w;(o) for x € Q, where p = |x| and 0 = f € S Substituting this into (13) we

get
I:_llx _ wi(o) " wo(0) " (a—0o)r2—(c0—an)r (1 _ f(y 7
kP (x) (WO(G)) <W2(G)> P (1 — k(x))
() — wi(o) n wo(0) g 2+ =) (1 _ X))
knm () (wo<a>) <wQ<o>> g ok
Thus
kP (x) = (w(0)p) T (1 — k(x)) 77 ,
where

q

o= ((35)" (8))
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Consequently
k(x) = @ (w(o)p)

where the function ¢ of one variable is defined by

di—dy

PPy =27 (1- ()", (30)

Furthermore,

Hf*w0||i;0 ©Q =

L
A
I

(o) (do—di)r <wo(o')>r1 . /00 ol (Z)Z(dofdl)nfldz
0

Wl(O')

4 o0
w ’ (11— — ) —
N L(w?wz 9) do/o @7 (2)z (-0d=din=lgy, (31)

The latter integral can be evaluated in the following way: Substitute ¢(z) =y so that,
q
by (30), 2= (yP% (1 = y) 7% ) " . Then

/(X) (prl/Pl (Z)Z_(l_e)(dl_dz>rl_ldz
0
—dy)ry+1]

L, I
=/ yor (ym(l—y)_m) el |2'(y)|dy
0

1 q q q )
=— 9 pleL 1-02L+1
ry |dy — do ( p1 ( )pz
1 q q q )
+——2 ploLli1,u-021).
np2 |dy — da| ( D1 ( )Pz

We now only use the facts that B(a,b + 1) = ;43B(a,b) and B(a,b) = B(b,a) and
find that

rl/pl Z (1 9)(d1 dz)rl ld ( P1 P2 . 32

/o o) |dy — d>|(6p2 + (1 — Opy)) (32)

Hence ||[f«wil|L,,@) < oo, i=1,2,and A = A, where A, is defined by (10).
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5. Let us prove that the first condition (7) and condition (8) are necessary. Suppose
that inequality (6) is valid for all functions measurable on Q satisfying ||f wi||z,, @) <
00, i = 1,2. Consider a fixed function f, which is not equivalent to zero, satisfying
these conditions and apply (6) to fo (%) ,€ > 0. Replacing 7 by y, we obtain

X n/pi i
IFo () i)l ) = €77 [forwi(nll, iy = € Ifowilly

Hence gd—0di—(1-0)d: < A; for all € > 0, where A; is independent of €, and it
follows that dy = 6d; + (1 — 0)d,.

Next we set wiy (¥) = wix)zw () i = 0,12, and fun(x) = £, (0w (7).
where N € IN and yy is the characteristic function of the set Sy C § of those 0 € §
for which w;(0) < N, i =0, 1,2. Then, according to step 4,

[1f«.xwo ||L,,U (@)

4> 6 -6
‘V*,NWI HLPI Q) |V*,NW2”LPZ(Q)
. “f*,NWO,N”LpO Q)
- 6 -6
Hf*,NWI,N HLI’I ) Hf*,NWZ,N HLI’z Q)
wo
= ¢ wiwl =0 ’
12 Ly(SN)
where C is independent of N. If WBZ}LB = 00, then, by passing to the limit
P2 1Lg(Sh)

as N — oo, we see that for any A > 0 inequality (6) cannot be valid. We conclude
that also (8) holds.

6. Finally, we prove that also the second condition d; # d, in (7) is necessary.
Suppose that the first condition (7) and condition (8) are satisfied and d; = d . Hence
by the first condition (7) it yields that dy = d; = d, . Consider the family of functions

fe(x) = fu(@)Ix[*2(x),

where € > 0, y is the characteristic function of the unit ball in R" and f, is defined
by (12). By step 4 it follows that the function k& depends on o = |"7| only, i.e., k is
homogeneous of order 0. Consequently,

1

feowill, @ = ( / (k(x):j?fg;)”ng(x)xwfx(@dx)
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([ (o))

1
pi
0‘0.170 ap1
( P =Po +ao+e)pi+n— ldp>

1

pi
Hf Wl”Lp ( —di+0i+€)pi+n— ldp>

= ~1” “f Wl”L g pz = Cie~ pz,

We note that ||f.wi| Lys(s) < 09, i =0,1,2. This follows from (8) and the inequality

q
(f*wi)pi g (%) ) i= Oa 172

wiw,

In fact, if & = (z—f ,then 1 — & = % and (13) implies that

(Fawo)™ = (k’” @>

(Note that 0 < k < 1.) Furthermore

r 1
(fowr)" = (kﬂ_lo @) =k <k1’1 @> < (Fawo)™

w1

and similarly we find that (f,w2)" < (fowo)™
Now taking f = f, in (6), we get

ewoll,, (o

=z 0
Fewr 1z, @ Ifew:lly, (o)

Passing to the limit as € — 0T, we see that for any A > 0 inequality (6) cannot be
valid, and we have got a contradiction so that we also have d; # d,. The proof is
complete.
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4. Concluding remarks and results
Our proof of Theorem 2 shows that the multiplicative inequality (6) can in fact be

replaced by some corresponding additive ones. This fact is described in the following
remark:

REMARK 2. We note that the inequality

I wollzy(@) < Asllf willz, @ w2l T (33)
where A, is defined by (10), the inequality
_ 1/[’0 1/po
I wolle < (691 = 0)'°) AL (Irwillp @) + Pl ) (34)
and the inequality

1/po
w0l @) < (65~ Buallf w1y @)" + (€5 *Bocllfwally@)™)  (39)

for arbitrary € > 0, where

are equivalent. Indeed, taking into consideration (29), (31) and (32), the implication
(35) = (33) was established in the proof of Theorem 2. Moreover, by (25) it follows
that (33) implies (34). Finally, applying (34) to f (%), 8 > 0, using the relation

I (5) s

and choosing appropriate 8 one gets (35).
Moreover, similar argument shows that (33) is also equivalent to

= 8Ulf willz,, (@
» (Q) L’l( )

—0
fwollz,, @) < 8°(1 — 0)' A, (If willz,, @ + If wallz,, @) (36)

and to

_o\ /P
1f wollz,, @) < (99(1*9)1 9) (e 0By willy,, @) + €Y Ba [ walln, @) -
(37)
Thus all the inequalities (33)—(37) are sharp.
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COROLLARY 1. Let Q be defined by (4), 0 € R, and let (7) and (9) be satisfied.
Then, for each function f which is measurable on Q and satisfying ||f (x)|x|*% HL,,~(Q)

o0, 1 = 1,2, it yields that
I ) bel 1 02) < Cullf ()Rl “ 1, (@ If @)1 ey (38)

1/q
0 1-0 B(in(l *9)1)
Ci=07n(1-0) 7 o L i18)'4.
1 71 ( )" (dl e T o) (meas,—_15)

The constant C is the best possible. Moreover, equality in (38) holds if and only if, for
some B> 0 and y > 0,

If ()] = B (¢(y|x]) x| oro—com) 7o
where the function @ is defined by (30).

REMARK 3. Let Ff denote the Fourier transform of a function f on R”", i.e

B = m) " [ e (s

We apply Corollary 1 with po =1, p1 =p>» =2, 0 = oy =0 and op = [, where [
is an integer. Then dy = n, d; = 5,d, =1+ 35,0 =1 — 5 and g = 2, and, also by
using Parseval’s relation, we find that

HfHLOO(R”) = HF_IFfHLOO(]R")
= o2 [ e
n L()O(Rn>
< @r) "2 Ff Il e
1__
< CIEF i [1EIEF)( HLZ -
- chfH;‘ y II\F VO

CIIf s ||\Vlf\|\Lz R

where

C= ((277:)_”/2 (1 — %)_(1_%) (21) i B(1 21217 5) G,,) "

and 0, is the surface area of the unit sphere in IR".
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Here V/f is the weak gradient of order [ of the function f :

o'f "
Ly _
V= (8)611 "'8x11>i1 .:1'

. _ 271/? non\ _ n n\y _ m
Moreover, since 0, = {7y and B(1 — 4, %) =T(1 = 5)I'(§) = Tz We have

o—n 1—n/2 —(1—2 _n 1/2
C— 7'[' ﬂ(l—l) ( 21)(2) 2l ) (39)
IT'(%) sin & 21 21
Thus Corollary 1 implies the following precise version of Sobolev’s inequality: If

1> n/2,then

I o rny < CUF e 91 e (40)

where C is defined by (39).
Moreover, the inequality (40) is sharp and equality occurs if and only if f = Ff (x),
where

Ff(§)=8B EeR,

for some B€ C and b > 0.
In particular, for the case n = [ (40) has the form

1
b+ &

2—nﬁl—n/2 12 e 1)2
van<(?@;ﬁ)vum|Vﬂuw.

REMARK 4. Inequality (6) is a multidimensional generalization of both of the inequal-
ities (2) and (3): In fact,let pp = 1 and op = 0. If n = 1 and Q = [0, 0), then
measpS = 1 and we get (2). If n =1 and Q = (—o00,0), then measyS = 2 and we
get (3).

REMARK 5. If in Theorem 2, p; = p» = p, then the optimal constant A, has the
following forms:

1/r
1/p ( B(O:,(1 —0)%
A, = (9—9(179)—0—0)) p (B0 ( )y) W? ~
|di — do|p w?w2 L(s)

wo

1/p
= (6791 —0)~1-9 e
(=0 ) " e

where
I 1 1

ropo p
In fact, the first equality is just (10) for p; = p» = p, while the second one follows
from (29) since in this case (see (13))

it

k:w’f+w’2"
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