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Abstract. The inequality

n∑
k=1

akbk �
( n∑

k=1
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)1/p( n∑
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bq
k

)1/q

(1)

was proved in slightly different form by Rogers in 1888 and then by Hölder in 1889 (Hölder even
refered to Rogers!). Today everybody refer to (1) as the Hölder inequality. We will try to explain
the history of this and closely related fundamental inequalities with the answer to the question:
why the Rogers inequality is called the Hölder inequality? We claim that the Hölder inequality
ought to be referred to as the Rogers inequality or at least as the Rogers-Hölder inequality.

The classical Rogers–Hölder inequality reads:

THEOREM 1. (Rogers – 1888, Hölder – 1889). If p > 1 , 1
p

+ 1
q

= 1 , and ak > 0 ,

bk > 0 , k = 1, 2, . . . , n , then

n∑
k=1

akbk �
( n∑

k=1

ap
k

)1/p( n∑
k=1

bq
k

)1/q

(1)

with equality if and only if ap
k = Cbq

k for all k = 1, 2, . . . , n .

A proof as well as extensions, inverse or applications of this inequality can be
found in many books about inequalities, real functions, analysis, functional analysis or
Lp -spaces but with the name Hölder’s inequality (cf. [1], [2], [11], [21]).

The special case of inequality (1) for p = 2 is most common and known as the
Cauchy–Bunyakovski–Schwarz inequality

n∑
k=1
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k
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. (CBS)
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The (CBS) inequality goes back very far. It is a consequence of a well-known identity

n∑
k=1

a2
k

n∑
k=1

b2
k −

( n∑
k=1

akbk

)2

= 1
2

n∑
k=1

n∑
i=1

(aibk − akbi)2, (L)

due to Lagrange [17, p. 662–3] which he proved it in 1773 for n = 3 . Cauchy [4, pp.
373–374] proved (CBS) inequality for finite sums in 1821 by showing (L) for every
natural n . Bunyakovski [3, p. 4] proved it in 1859 for Riemann integrals and H. A.
Schwarz [27] rediscovered it in 1885 by showing that the quadratic function

n∑
k=1

(xak + bk)2 = x2
n∑

k=1

a2
k + 2x

n∑
k=1

akbk +
n∑

k=1

b2
k

is positive for any real x , which gives that the discriminant � 0 and this is the CBS-
inequality.

Observe that these two simple proofs of the CBS-inequality fail for general p > 1 .
L. J. Rogers [26] first proved in 1888 the following generalized inequality between

the arithmetic and the geometric means: If ak > 0 , xk > 0 , k = 1, 2, . . . , n , then

xa1
1 xa2

2 . . . xan
n �

(
a1x1 + a2x2 + . . . + anxn

a1 + a2 + . . . + an

)a1+a2+...+an

, (R)

which can be written in the following equivalent form: If xk > 0 , αk > 0 , k =
1, 2, . . . , n and α1 + α2 + . . . + αn = 1 , then

n∏
k=1

xαk
k �

n∑
k=1

αkxk. (AG)

Equality in (AG) holds if and only if x1 = x2 = . . . = xn .

The inequality (AG) in the case α1 = α2 = . . . = αn = 1
n

gives a basic
arithmetic-geometric means inequality

(x1x2 . . . xn)1/n � x1 + x2 + . . . + xn

n
, (C)

which was proved for the first time in 1821 by Cauchy [4, pp. 375-377]. Sometimes
the inequality (C) is therefore called the Cauchy inequality. In the Bullen–Mitrinovic–
Vasic book [2] there are given 52 proofs of this inequality and mathematicians still find
new proofs (!).

Rogers main result in [26, p. 146] was to prove the inequality (R) by using the
Cauchy inequality (C). We will show later on, in Theorem 3, that the inequality (C) and
(R) and the classical Bernoulli inequality all are equivalent.

After that Rogers [26, p. 149] used the inequality (R) in the proof, as we can
call now, the Rogers inequality: If 0 < r < s < t < ∞ and ak > 0 , bk > 0 ,
k = 1, 2, . . . , n , then( n∑

k=1

akb
s
k

)t−r

�
( n∑

k=1

akb
r
k

)t−s( n∑
k=1

akb
t
k

)s−r

. (2)
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This inequality for a1 = a2 = . . . = an = 1 is known in literature as Lyapunov’s
inequality (cf [19], [21]) and means that the norm in lp -space is logarithmically convex
as a function of p. Again, Lyapunov proved it in 1901, i.e., later than Rogers (!).

Rogers proof of the implication (R) =⇒ (2) was the following: denote Sr =
n∑

k=1
akbr

k . By putting akbs
k instead of ak to the inequality (R) and xk = bt−s

k , and then

also xk = br−s
k we obtain

(
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s
2

2 . . . banbs
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(
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n
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(
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,

or, equivalently (
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)Ss �
(
b

a1b
s
1

1 b
a2b

s
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2 . . . b
anbs

n
n
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.

Combining these inequalities we get

(
Ss/Sr

)Ss/(s−r) �
(
St/Ss

)Ss/(t−s)
.

Taking the Ss th root and reducing we have

(
Ss/Sr

)t−s �
(
St/Ss

)s−r
,

or (
Ss)t−r �

(
Sr
)t−s(

St
)s−r

,

which is exactly the inequality (2).
The (AG)-inequality can also be written as

− ln

( n∑
k=1

αkxk

)
� − ln

( n∏
k=1

xαk
k

)
= −

n∑
k=1

αk ln xk,

or equivalently

ϕ
( n∑

k=1

akxx/

n∑
k=1

ak

)
�
∑n

k=1 akϕ(xk)∑n
k=1 ak

, with ϕ(u) = − ln u. (H)

In 1889 O. Hölder [14] proved that the inequality (H) is still true for any function ϕ
which satisfies ϕ′′ � 0 and the inequality (H) is reversed if ϕ′′ � 0 . His nice proof

was the following: Let ϕ′′ � 0 and denote M =
n∑

k=1
akxk/

n∑
k=1

ak . Then, according to

Taylor’s formula,

ϕ(xk) = ϕ(M) + (xk − M)ϕ′(M) + (xk − M)2ϕ′′(ξk)
2
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and, thus,

n∑
k=1

akϕ(xk)

n∑
k=1

ak

= ϕ(M) +

n∑
k=1

ak(xk − M)2ϕ′′(ξk)

2
n∑

k=1
ak

� ϕ(M).

As we now know, due to Jensen [15], the inequalities ϕ′′ � 0 or ϕ′′ � 0 are the
characterizations of convex or concave functions. Moreover, Jensen also established an
integral version of inequality (H).

Hölder has clearly written that he, after Rogers, proved a more general version
of the inequality (H), and then used it to get Hölder’s inequality ( r = 0 , s = 1 ): If
1 < t < ∞ and ak > 0 , bk > 0 , k = 1, 2, . . . , n , then( n∑

k=1

akbk

)t

�
( n∑

k=1

ak

)t−1( n∑
k=1

akb
t
k

)
. (3)

The last inequality follows from the (H) inequality used to the function ϕ(u) = ut ,
t > 1 , for which we have ϕ′′(u) = t(t − 1)ut−2 � 0 .

In 1902 A. Pringsheim [22, pp. 174–176] used the inequality (3) and referred here
to Hölder [13, p. 44] but he also gave an elementary proof of (3), without using the
differential calculus as Hölder did. His proof was based upon the generalized Bernoulli
inequality (he gave here an elementary proof – cf. our Remark 1) and induction.

In 1906. J. L. W. V. Jensen [15] also showed that if ϕ is a continuous and 1
2 -convex

function on an interval I , i.e. if ϕ
(

1
2
u + 1

2
v
)

� 1
2
ϕ(u) + 1

2
ϕ(v) for all u, v ∈ I , then

ϕ

⎛
⎜⎜⎝

n∑
k=1

akxk

n∑
k=1

ak

⎞
⎟⎟⎠ �

n∑
k=1

akϕ(xk)

n∑
k=1

ak

∀x1, . . . , xn ∈ I (J)

an ak > 0 , k = 1, 2, . . . , n . Then, since ϕ(u) = ut , t > 1 , is a continuous and
1
2 -convex function on [0,∞) we obtain from (J) the inequality (3).

Jensen also observed that by taking a concave function ϕ(u) = ln u we obtain
from (J) the Rogers inequality (R) and for the convex function ϕ(u) = u ln u we get
the inequality:(

a1x1 + a2x2 + . . . + anxn

a1 + a2 + . . . + an

)a1x1+a2x2+...+anxn

� xa1x1
1 xa2x2

2 . . . xanxn
n .

Jensen, instead of the above inequality, has written incorrectly inequality (12) on page
185 with the information that the special case of a1 = a2 = . . . = an = 1 was done by
Rogers. This is also not correct since it was done by Hölder [14, p. 45].

In the end of Jensen’s paper [15] in addendum he was written “After having the
above results I have observed that the fundamental formula (J) was not totally new,
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which I had believed. In the paper by Mr A. Pringsheim [22], I found a citation of a note
by Mr O. Hölder [14] in which one could find the formula in question demonstrated. As
a matter of fact Mr Hölder’s hypothesis is rather different from mine in that he supposed
that ϕ′′ exists”.

Before Jensen the notion of convexity was also used by J. Hadamard [7].
In 1907 E. Landau [18] proved the following equivalence: Let p > 1 and ak > 0 ,

bk > 0 ( k = 1, 2, . . . ). Then
∞∑
k=1

akbk < ∞ for every sequence {ak} such that

n∑
k=1

ap
k < ∞ if and only if

n∑
k=1

bp/(p−1)
k < ∞ . His proof, in one direction, contains the

inequality ( n∑
k=1

akbk

)p

�
n∑

k=1

ap
k

( n∑
k=1

bp/(p−1)
k

)p−1

and he referred here to Hölder [14, p. 44], Pringsheim [22, p. 174] and Jensen [15, p.
181].

In 1910 F. Riesz used the name Cauchy-Hölder inequality for the inequality (1)
and referred to Landau’s paper [18]. F. Riesz was the first who obtained and used form
(1) of the Rogers–Hölder inequality (see also [29], p. 359). We should again mention
here that Rogers proved inequality (2) and Hölder proved inequality (3). Then in 1913
F. Riesz, in his book [24, p. 43], again has written the inequality (1) with the references
to Cauchy for p = 2 and to Hölder for p > 1 .

In 1920 G. H. Hardy [8] (where it is given an inequality which is now well-known
as the Hardy classical inequality) wrote “By the well known inequality∑

ab �
(∑

aκ
)1/κ(∑

bκ/(κ−1)
)(κ−1)/κ

which seems to be due to Hölder: see E. Landau [17]”.
In 1927 Hellinger-Toeplitz [12] used the inequality (1) with the Hölder name but

they referred here to Rogers [26], Hölder [14] and Jensen [15, p. 181].
In 1929 Hardy in the addenda to [9] said: “The proofs of Hölder’s inequality, for

sums and integrals, given on pp. 67–68 and 71, were based on proofs contained in the
printed but unpublished notes of Prof. Littlewood’s lectures, which have been in my
possession for some years. They are, however, the same in principle as the proof of the
inequality for integrals given by F. Riesz [25]”.

In 1934 in the well known book of Hardy–Littlewood–Pólya [11], p. 25 it was
written in an footnote that “Hölder states the theorem in a less symmetrical form given
a little earlier by Rogers”.

We can see here that the Hölder was lucky because Pringsheim, Landau and then
Hardy–Littlewood–Pólya put the name Hölder’s inequality instead Rogers’ inequality
and now almost everybody refer to it as Hölder’s inequality. However, U. Dudley [6]
in his book in Th. 5.1.2. put the name Rogers–Hölder inequality and he is probably
the first who observed such priority. For such historical reasons we call the inequality
(1) the Rogers-Hölder inequality (or the Rogers–Hölder–Riesz inequality). For the
sake of clarity we prove now that all these three inequalities of Rogers, Hölder and
Rogers–Hölder are equivalent.
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THEOREM 2. (Equivalence Theorem). The Rogers–Hölder inequality (1), the
Rogers inequality (2) and the Hölder inequality (3) are equivalent.

Proof. (1) =⇒ (2). Take p = t−r
t−s

. Then q = s−r
t−r

, r
p

+ t
q

= s , and

( n∑
k=1

akb
s
k

)t−r

=
( n∑

k=1

a1/p+1/q
k br/p+t/q

k

)t−r

=
( n∑

k=1

a1/p
k br/p

k a1/q
k bt/q

k

)t−r

[by the Rogers-Hölder inequality (1)]

�
( n∑

k=1

akb
r
k

)(t−r)/p( n∑
k=1

akb
t
k

)(t−r)/q

=
( n∑

k=1

akb
r
k

)t−s( n∑
k=1

akb
t
k

)s−r

.

(2) =⇒ (1). Let r = 1 , 1 < s < t < ∞ and p = (t − 1)/(t − s) . Then

n∑
k=1

akbk =
n∑

k=1

at/(t−s)
k b−1/(s−1)

k

(
at/(t−s)

k a−1/(t−s)
k b1/(s−1)

k

)s

[by the Rogers inequality (2)]

�
( n∑

k=1

at/(t−s)
k b−1/(s−1)

k a−1/(t−s)
k b1/(s−1)

k

)(t−s)/(t−1)

×

×
( n∑

k=1

at/(t−s)
k b−1/(s−1)

k

(
a−1/(t−s)

k b1/(s−1)
k

)t)(s−1)/(t−1)

=
( n∑

k=1

a(t−1)/(t−s)
k

)(t−s)/(t−1)( n∑
k=1

b(t−1)/(s−1)
k

)(s−1)/(t−1)

=
( n∑

k=1
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k

)1/p( n∑
k=1

bq
k

)1/q

.

(3) =⇒ (1). Let p = t
t−1

. Then

n∑
k=1

akbk =
n∑

k=1

at/(t−s)
k bka

−1/(t−1)
k

[by the Hölder inequality (3)]

�
( n∑

k=1

at/(t−s)
k

)1−1/t( n∑
k=1

at/(t−s)
k

(
bka

−1/(t−1)
k

)t)1/t

=
( n∑

k=1

ap
k

)1/p( n∑
k=1

bt
k

)1/t

=
( n∑

k=1

ap
k

)1/p( n∑
k=1

bq
k

)1/q

.
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(1) =⇒ (3). Let p = t
t−1 . Then

n∑
k=1

akbk =
n∑

k=1

a1/p
k a1−1/p

k bk

[by the Rogers-Hölder inequality (1)]

�
( n∑

k=1

ak

)1/p( n∑
k=1

(
a1−1/p

k bk

)q)1/q

=
( n∑

k=1

ak

)1−1/t( n∑
k=1

akb
t
k

)1/t

.

First proof of the Rögers-Hölder inequality (1). This proof for the first time was
given by F. Riesz [25, pp. 78–79] in 1928.

First step. The essential point in this step is the AG-inequality for n = 2 :

xαy1−α � αx + (1 − α)y for all x � 0, y � 0 and 0 < α < 1 (4)

or equivalently

uv � up

p
+

vq

q
for all u � 0, v � 0, and p > 1, 1

p
+ 1

q
= 1. (4’)

If either x = 0 or y = 0 , then inequality (4) is obvious. Assume that x > 0 and
y > 0 . An application of the differential calculus to the function

f (x) = αx + (1 − α)y − xαy1−α , x > 0,

gives derivative

f ′(x) = α − αx1−αy1−α = α[1 − (y/x)1−α ],

i.e., f is decreasing on (0, y] and increasing on [y,∞) and so

f (x) � f (y) = αy + (1 − α)y − yαy1−α = y − y = 0.

A longer but more elementary proof is the following: for

x1 = x2 = . . . = xm = x and xm+1 = xm+2 = . . . = xn = y

the Cauchy inequality (C) becomes

(xmyn−m)1/n � mx + (n − m)y
n

or
xm/ny1−m/n � m

n
x +

(
1 − m

n

)
y,

where m , n are natural numbers and 1 � m � n − 1 . Equality holds if all terms are
equal, i.e., x = y .

Since any rational fraction α , 0 < α < 1 , has a form m
n

our inequality (4) holds
for all x > 0 , y > 0 and any fraction α between 0 and 1.
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If 0 < α < 1 is irrational, then there exists sequence {rk} of rational numbers in
(0, 1) convergent to α . Then

xαy1−α = lim
k→∞

xrky1−rk � lim
k→∞

[rkx + (1 − rk)y] = αx + (1 − α)y.

Second step. Put uk =
ak(

n∑
k=1

ap
k

)1/p
and vk =

bk(
n∑

k=1
bq

k

)1/q
, ( k = 1, 2, . . . , n )

into (4′) . Then

ukvk � 1
p

ap
k(

n∑
k=1

ap
k

) + 1
q

bq
k(

n∑
k=1

bq
k

)
and summing over k from 1 to n we obtain

n∑
k=1

ukvk � 1
p

n∑
k=1

ap
k

n∑
k=1

ap
k

+ 1
q

n∑
k=1

bq
k

n∑
k=1

bq
k

= 1
p

+ 1
q

= 1,

or
n∑

k=1

[
ak(

n∑
k=1

ap
k

)1/p

bk(
n∑

k=1
bq

k

)1/q

]
� 1

which is the inequality (1).

REMARK 1. The inequality (4) is equivalent to the following generalized Bernoulli
inequality (Jacob Bernoulli in 1689 proved in fact that xn � 1 + n(x − 1) for every
natural n ): if x � 0 and 0 < α < 1 , then

xα � 1 + α(x − 1). (GB)

Namely, by substitution x
y

as x and multiplication by y , we obtain from (GB) the

inequality (4). The inequality (GB) was already proved in 1900 by Stolz–Gmeiner in
their book [28, pp. 202–204]. A simple proof of (GB) was given by Pringsheim [22,
pp. 174–176] in 1902 and repeated by Hardy [9, pp. 68–69] (see also [1, pp. 12–13] and
[11, pp. 40–41]).

REMARK 2. Inequality (4′) for u , v > 0 follows also easily from the convexity
of the exponential function. Namely

uv = exp[ln(uv)] = exp
[1
p

ln up + 1
q

ln vq
]

� 1
p

exp[ln up] + 1
q

exp[ln vq] = 1
p
up + 1

q
vq.

Second proof of the Rogers–Hölder inequality (1). In this proof we use almost the
Jensen argument in [15, pp. 181–182]. The function ϕ(x) = xp , p > 1 is convex, i.e.,
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the inequality (H) holds. By using this inequality with ak = bq
k and xk = akb

−q/p
k we

obtain ⎛
⎜⎜⎝

n∑
k=1

bq
kakb

−q/p
k

n∑
k=1

bq
k

⎞
⎟⎟⎠

p

�

n∑
k=1

bq
k(akb

−q/p
k )p

n∑
k=1

bq
k

,

which after reduction is ⎛
⎜⎜⎝

n∑
k=1

akb
q−q/p
k

n∑
k=1

bq
k

⎞
⎟⎟⎠

p

�

n∑
k=1

ap
k

n∑
k=1

bq
k

,

or ( n∑
k=1

akbk

)p

�
n∑

k=1

ap
k

( n∑
k=1

bq
k

)p−1

.

Taking the p th root we get the inequality (1).

As we mentioned before the important Rogers inequality (R) is equivalent to the
Cauchy inequality (C) but as we can see also to the classical Bernoulli inequality.

THEOREM 3. The classical Bernoulli inequality

xn � 1 + n(x − 1) ∀x > 0, n ∈ N, (B)

the Cauchy inequality

(x1x2 · · · xn)1/n � x1 + x2 + . . . + xn

n
∀xk > 0, k = 1, 2, . . . , n, (C)

and the Rogers inequality

xa1
1 xa2

2 · · · xan
n �

(
a1x1 + a2x2 + . . . + anxn

a1 + a2 + . . . + an

)a1+a2+...+an

∀ak > 0, xk > 0, k = 1, 2, . . . , n, (R)

are equivalent.

Proof. (B) =⇒ (C). Denote Ak =
x1 + x2 + . . . + xk

k
. Since

Ak

Ak−1
> 0 for

k = 2, 3, . . . , n it follows from the inequality (B) that(
Ak

Ak−1

)k

� 1 + k
Ak

Ak−1 − 1
=

Ak−1 + kAk − kAk−1

Ak−1

=
kAk − (k − 1)Ak−1

Ak−1
=

xk

Ak−1
,

i.e., Ak
k � xkA

k−1
k−1 .

Therefore

An
n � xnA

n−1
n−1 � xnxn−1A

n−2
n−2 � . . . � xnxn−1 . . . x2A

1
1 = xnxn−1 . . . x2x1.
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(C) =⇒ (B). For n = 1 inequality (B) is obvious. For n � 2 and 0 < x � 1− 1
n

we have xn > 0 � 1 + n(x − 1) , i.e. (B) holds. Therefore assume that n � 2 and
x > 1 − 1

n . Then 1 + n(x − 1) > 0 and by using (C) with the positive numbers
1 + n(x − 1), 1, 1, . . . , 1 [ (n − 1) -times 1] we obtain

xn =
{

1 + n(x − 1) + 1 + 1 + . . . + 1
n

}n

�
{
[1 + n(x − 1)] · 1 · 1. . . . · 1} = 1 + n(x − 1).

(R) =⇒ (C). By putting either a1 = a2 = . . . = an = 1
n or a1 = a2 = . . . =

an = 1 into (R) we get immediately (C).
(C) =⇒ (R). This main implication was proved by Rogers [26, p. 146]. His

proof was the following: Firstly when the numbers a1, a2, . . . , an are integers, then
we have a1 quantities, each equal to x1, a2 quantities, each equal to x2 , etc. up to the
an quantities, each equal to xn . Here we use the Cauchy inequality (C) to the whole
number of them being a1 + a2 + . . . + an and obtain (R).

Secondly when the numbers a1, a2, . . . , an are fractions, then we consider the least
common measure of their denominators by N to get

Na1 = A1, Na2 = A2, . . . , Nan = An.

Then, by the above proved step, we have

xA1
1 xA2

2 . . . xAn
n �

[
A1x1 + A2x2 + . . . + Anxn

A1 + A2 + . . . + An

]A1+A2+...+An

.

Taking the N th root of each side we get after reducing the bracketted fraction, the
inequality

xa1
1 xa2

2 . . . xan
n =

(
xA1
1 xA2

2 . . . xAn
n

) 1
N

�
[
A1x1 + A2x2 + . . . + Anxn

A1 + A2 + . . . + An

] A1+A2+...+An
N

,

=
[
a1x1 + a2x2 + . . . + anxn

a1 + a2 + . . . + an

]a1+a2+...+an

,

which is the inequality (R).
Thirdly for irrational numbers a1, a2, . . . , an we are using the approximation by

rational numbers.

REMARK 3. The proofs of Rogers and Hölder from which we can get inequality
(1) have the following structures:

Rogers arguments: inequality (C) =⇒ inequality (R) =⇒ (2),
Hölder arguments: ϕ(u) = ut , t > 1 , is convex =⇒ inequality (H) =⇒ (3).
Probably the most elementary way to prove the Rogers-Hölder inequality (1) is

to start with the classical Bernoulli inequality (B) (this inequality can be proved by
only algebraic manipulations, cf. [22, pp. 174–175] or [11, p. 40]). Then, by Theorem
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3, we get inequality (C) and then also inequality (R). Now it is enough to repeat the
Rogers arguments for the implication (R) =⇒ (2) and Theorem 2 will give the last
consequence (2) =⇒ (1).

REMARK 4. The Rogers-Hölder inequality (1) implies the next fundamental in-
equality, namely the so called Minkowski inequality [20, pp. 115–117]: if p > 1 and
ak, bk > 0 , k = 1, 2, . . . , n then( n∑

k=1

(ak + bk)p

)1/p

�
( n∑

k=1

ap
k

)1/p

+
( n∑

k=1

bp
k

)1/p

. (5)

The idea of the most natural deduction of the Minkowski inequality from the Rogers-
Hölder inequality is due to F. Riesz [24, pp. 45–46]. We have identity

S =
n∑

k=1

(ak + bk)p =
n∑

k=1

ak(ak + bk)p−1 +
n∑

k=1

bk(ak + bk)p−1.

Applying Rogers-Hölder inequality (1) to each sum, and observing that q(p − 1) = p
we obtain

S �
( n∑

k=1

ap
k

)1/p( n∑
k=1

(ak + bk)(p−1)q
)1/q

+
( n∑

k=1

bp
k

)1/p( n∑
k=1

(ak + bk)(p−1)q
)1/q

=
[( n∑

k=1

ap
k

)1/p

+
( n∑

k=1

bp
k

)1/p]( n∑
k=1

(ak + bk

)p)1/q

=
[( n∑

k=1

ap
k

)1/p

+
( n∑

k=1

bp
k

)1/p]
S1/q,

which is (5). There is no difficulty to find conditions giving equality in (5): ak = Cbk

for k = 1, 2, . . . , n .

REMARK 5. The Minkowski inequality (5) also follows easy from the so called
quasi-linearization, i.e., the equality

max

{ n∑
k=1

akbk : bk � 0 and
n∑

k=1

bq
k = 1

}
=
( n∑

k=1

ap
k

)1/p

. (QL)

The inequality � in (QL) follows immediately from the Rogers–Hölder inequality

(1) and the equality in (QL) is attained when bk =
ap−1

k( n∑
k=1

ap
k

)1/q
, k = 1, 2, . . . , n .

REMARK 6. The fundamental inequalities (1) and (5) are reversed for p < 1 ,
p �= 0 .

REMARK 7. The inequalities proved for finite sums may often be extended to
integrals by the usage of simple functions and the limiting processes. For example, is
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easy to extend all the inequalities (1), (2), (3) and (5) to the corresponding integral
ineqaulities.

My priority discussion seems to confirm the Boyer’s Law “mathematical formulas
and theorems are usually not named after their original discoverers” (cf. [16]) or the
L. Fejér’s nice setence “the history of mathematics serves to prove that nobody has
discovered anything: there was always somebody who knew it before”.

I would prefer to say, in such situations, that some mathematicians are lucky and
some other unlucky in getting their names to the results they proved. Hölder here was
lucky and Rogers unlucky to get his name in the inequality (1). But I hope that all my
above discussion will motivate mathematicians to use at least the name Rogers–Hölder
inequality for the inequality (1).

In the end of the above commentaries I would like to say something about both
authors of these inequalities since their personalities are not so well-known. My infor-
mations are taken mainly from articles of Dixon [5], Ernst Hölder [13] (the son of Otto
Hölder) and the obituary by van der Waerden [30].
Leonard James Rogers was born on 30 March, 1862, in Oxford, where his father, Thorold
Rogers, was Professor of Political Economy. In his childhood he had a serious illnes, and, though
his recovery was complete, he was not sent to school. Mr. J. Griffith, of Jesus College, himself
a well known Oxford mathematician with a strong interest in elliptic functions, noticed Rogers’
marked mathematical ability, and taught him during his boyhood. In 1879 he was elected to a
Scholarship in Mathematics at Balliol College, and he matriculated in October, 1880. Besides
first classes in the Mathematical Schools, and the Senior and Junior Mathematical Scholarship,
he took a second class in Classical Moderations in 1882, and the degree of Bachelor of Music in
1884. In the period 1888-1919 he was Professor of Mathematics at Yorkshire College, now the
University of Leeds. His very serious illnes obliged him to retire in 1919. He made a remarkable
recovery, however, and returned to live in Oxford, where he continued his mathematical work,
did a little teaching and examining, and increased his fame as a gifted musician. He was elected
a Fellow of the London Royal Society in 1924. He died on 12 September, 1933, in Oxford.

Rogers was a man of extraordinary gifts in many fields, and everything he did, he did well.
Besides his mathematics and music he had many interests; he was a born linguist and phonetician,
a wonderful mimic who delighted to talk broad Yorkshire, a first-class skater, and a maker of
rock gardens. Hi did things well because he liked doing them. Music was the first necessity in
his intellectual life, and after that came mathematics. He had very little ambition or desire for
recognition.

Rogers’ most important work in mathematics was done in transformation and manipulation
of theta function series and products. Such names as Rogers–Ramanujan identities, Rogers–
Ramanujan continued fractions and Rogers transformations are known in the theory of partitions
and combinatorics.

The Rogers–Ramanujan identities are, for example,

1 +
∞X

m=1

qm2

(1 − q)(1 − q2) . . . (1 − qm)
=

∞Y
m=0

1

(1 − q5m+1)(1 − q5m+4)
,

1 +
∞X

m=1

qm2+m

(1 − q)(1 − q2) . . . (1 − qm)
=

∞Y
m=0

1

(1 − q5m+2)(1 − q5m+3)
,

4

∞Z

0

xe−x
√

5

cosh x
dx = 1|

|1 + 12|
|1 + 12|

|1 + 22|
|1 + 22|

|1 + . . . .

They were discovered by Rogers in 1894 and discovered by Ramanujan in 1913 and I. Schur in
1917. We can quote here Hardy who has written on page 91 of [10]:
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“The formulae have a very curious history. They were found first in 1894 by Rogers, a
mathematician of great talent but comparatively little reputation, now remembered mainly from
Ramanujan’s rediscovery of his work. Rogers was a fine analyst, whose gifts were, on a smaller
scale, not unlike Ramanujan’s; but no one paid much attention to anything he did, and the
particular paper in which he proved the formulae was quite neglected.

Ramanujan rediscovered the formulae sometime before 1913. He had then no proof (and
knew that he had none), and none of the mathematicians to whom I comunicated the formulae
could find one. They are therefore stated without proof in the second volume of MacMahon’s
Combinatory Analysis.

The mistery was solved, trebly, in 1917. In that year Ramanujan, looking through old
volumes of the Proceedings of the London Mathematical Society, came accidentally across
Rogers’ paper. I can remember very well his suprise, and the admiration which he expressed for
Rogers’ work. A correspondence followed in the course of which Rogers was led to a considerable
simplification of this original proof”.

Rogers published more than thirty papers in mathematics.

Otto Ludwig Hölder was born on 22 December, 1859, in Stuttgart, where his father, Otto
Hölder was a Professor of French language at the Polytechnikum. His mother was the former
Pauline Ströbel. In Stuttgart, he attended one of the first Gymnasium devoted to science and
there he studied engineering for a short time. In 1877 he came to Berlin at the University
of Berlin, where he attended lectures by K. Weierstrass, L. Kronecker, and E. E. Kummer.
Already in 1877 he attended the Weierstrass lecturing on the theory of functions covering the
fundamentals of analysis. Weierstrass did a big impression on Hölder and this fact strongly
influented Hölder’s way of thinking in the future. Later he studied in Tübingen. Influenced by
the rigorous foundation of analysis given by Weierstrass, he developed the continuity condition
for volume density which now is well-known as the “Hölder condition” on a function f , i.e. the
inequality |f (x) − f (y)| � |x − y|α for all x and y from the domain of f with 0 < α � 1 .
It appeared in his Ph. D. Dissertation “Beiträge zur Potentialtheorie”, which he presented at
Tübingen in 1882. His referee was Paul du Bois-Reymond.

Next he investigated analytic functions and summation procedures by arithmetic means.
His generalization of the summation method of arithmetical averages introduced in 1882 is called
now the Hölder summation method. After completing fis Ph. D. in Tübingen he went to Leipzig.

In his Habilitationsschrift submitted in 1884 at Götingen, Hölder examined the convergence
of the Fourier series of a function that was not assumed to be either continuous or bounded. The
notion of “improper integral” (uneigentliches Integral) appeared here. He become also a lecturer
in 1884. Five years later he discovered the inequality (3) which in form (1) now is named Hölder
inequality but as we know inequality (1) ought to have the name Rogers–Hölder inequality.

Hölder became interested in group theory through Kronecker and Klein. He proved the
uniqueness of the factor groups in a composition series, the theorem which now is called Jordan-
Hölder theorem. In 1892 Hölder initiated the range problem in group theory, i.e. classification
of all simple groups whose orders are in a given range. Hölder proved that the only two simple
groups whose orders lie between 1 and 200 are A5 of order 60 and PSL (2, 7) of order 168. He
considered his method to be “of some interest so long as we do not possess a better one suitable
for handling the problem generally”. Such a general method is still lacking, despite the progress
and great efforts of a recent years.

In further works Hölder treated the structure of composite groups having the orders:
p3, pq2, pqr, p4 , where p, q, r are primes, and n , where n is square-free.

The first third of Hölder’s career in research was the most fruitful. A period of depression
seems to have occured at Königsberg, where he succeded Minkowski in 1894. He was happy to
leave that city in 1899, when he accepted an offer from Leipzig to succeed Sophus Lie. In the
same year he married Helene Lautenschläger, who also came from Stuttgart.

In 1899–1928 Hölder was a Professor of the Leipzig University.
From 1900 he became interested in the geometry of the projective line and axioms for

physics (see his books [1] and [2] below). Between 1914 and 1923 these interests lead him to the
lexico-philosophical studies of the foundations of mathematics which are included in his book [3]
below.
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In his last years one of Hölder’s favorite topics was elementary number theory — his third
great teacher in Berlin had been Kummer.

In 1899 Hölder was elected a memeber of the Saxon Academy of Sciences. He was active
in the academy and for several years served as president. He was also a memeber of the Prince
Jablonowski Society. In 1927 Hölder became a corresponding member of the Bavarian Academy
of Sciences.

He was editor of the Mathematische Annalen in the period 1908–1928. He retired in 1928.
To the last years of his life he showed an indefatigable interests to mathematics. He died on

29 August, 1937, in Leipzig.
As stated by van derWaerden anybodywho come in close contact withHölder have respected

his inteligence, umblemished character and nobility.
Hölder was the author over 60 papers and three books in German:
1. Anschauungen und Denken in der Geometrie, Teubner, Leipzig 1900, 75 pages (also

Darmstad 1968),
2. Die Arithmetik in strenger Begründung. Programmabhandlung der philosophischen

Fakultät, Teubner, Leipzig 1914, IV+74 pages (2nd ed., Springer, Berlin 1929),
3. Die Mathematische Methode. Logisch-erkenntnistheoretische Untersuchungen im Gebi-

ete der Mathematik, Mechanik und Physik [Mathematical Methods. Logic Investigations in the
Fields of Mathematics, Mechanics and Physics], Berlin 1924, X+563 pages.
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