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INEQUALITIES RELATED TO ISOTONICITY OF

PROJECTION AND ANTIPROJECTION OPERATORS

GEORGE ISAC AND LARS-ERIK PERSSON

Abstract. A sharp inequality named “the property of four elements” has recently been proved
and studied in [6] and [12]. One particular reason for this is that the inequality is closely related
to the isotonicity of the projection operator onto a closed convex set in an ordered Hilbert space.

In this paper we prove and study a dual reversed sharp inequality. Moreover, we introduce
the concept of antiprojection operator onto a compact non-empty set of a Hilbert space and prove
that our new inequality is closely related to the isotonicity of such an operator. Moreover, we
prove that both of these inequalities hold also in the reversed direction but of course with other
constants.
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[7] ISAC G. AND NÉMETH A. B., Monotonicity of metric projections onto positive cones in order Euclidean

spaces, Ark. Math. 46 (1986), 568–576 (and Corrigendum).
[8] , Every generating isotone projection cone is latticial and correct, J. Math. Anal. Appl. 147

(1990), 56–62.
[9] , Isotone projection cones in Hilbert spaces and the complementarity problem, Boll. Un. Math.

Ital. 7 (1990), 773–802.
[10] , Projection methods, isotone projection cones and the complementarity problem, J. Math. Anal.

Appl. 153 (1990), 258–275.
[11] , Isotone projection cones in Euclidean spaces, Ann. Sci. Math. Québec 16 (1992), 35–52.
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