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Abstract. A sharp inequality named “the property of four elements” has recently been proved
and studied in [6] and [12]. One particular reason for this is that the inequality is closely related
to the isotonicity of the projection operator onto a closed convex set in an ordered Hilbert space.

In this paper we prove and study a dual reversed sharp inequality. Moreover, we introduce
the concept of antiprojection operator onto a compact non-empty set of a Hilbert space and prove
that our new inequality is closely related to the isotonicity of such an operator. Moreover, we
prove that both of these inequalities hold also in the reversed direction but of course with other
constants.

1. Introduction

The aim of this paper is the study of some inequalities related to the isotonicity of
the metric projection operator PD onto a closed convex subset D of a Banach space
(E, ‖ ‖) . The Banach space E is supposed to satisfy some special properties. It is
well known that the metric projection operator PD is an important tool in Numerical
Analysis [1], [3], [18], in Optimization [7], [8], [14], [15], in the study ofComplementarity
Problems [6], [9], [10], [16], [17], in the study of Variational Inequalities [16], [17], [18]
and certainly it has many applications in Functional Analysis [19]. Several authors have
studied the metric projection operator from several points of view (cf. the references in
[6]). After 1986, the metric projection operator has been considered from the point of
view of isotonicity, with respect to an ordering compatible with the vectorial structure
on Hilbert spaces, on Banach spaces and on modular spaces [2], [6], [7], [8], [9], [10],
[11], [12], [13]. Related to the isotonicity a special inequality was introduced in [6],
named “the property of four elements”, shortly (PFE) . This paper now, is related to
the study of some inequalities close to the property of four elements.

Let (E, ‖ ‖) be a Banach space ordered by a closed pointed convex cone K ⊂ E .
Suppose that E with respect to the ordering defined by K (that is x � y ⇐⇒ y− x ∈
K ) is a vector lattice. Denote x∧ y = inf(x, y) and x∨ y = sup(x, y) for any x, y ∈ E .

Mathematics subject classification (1991): Primary: 26D20, 47B99; Secondary: 26D15, 46E15,
46E20, 47A99.

Key words and phrases: Inequalities, Banach spaces, Hilbert spaces, modular spaces, projection
operators, antiprojection operators, isotone operators, isotone additive functionals, Lyapunov functionals.

c© � � , Zagreb
Paper MIA-01-06

85



86 G. ISAC AND L.-E. PERSSON

We say that E satisfies the property (PFE)p ; 1 � p < ∞ , of four elements if for every
x1, x2, x3, x4 ∈ E such that x1 � x3 we have

‖x1 − x2‖p + ‖x3 − x4‖p � ‖x1 − x2 ∨ x4‖p + ‖x3 − x2 ∧ x4‖p.

This notion for the case when E is a Hilbert space and p = 2 was introduced and
motivated by Isac [6] and in this generalized form by Isac–Persson [12]. Recently,
the property (PFE)p was considered for modular spaces by Isac–Lewicki [13]. For
example it was proved in [12] that the space Lp = Lp(Ω,μ) satisfies (PFE)p . If some
conditions are satisfied we have on some modular spaces a similar property [13]. The
starting point of this investigation was to prove a new sharp inequality (see Theorem
2.1) of independent interest.

In this paper we prove a reversed counterpart of this inequality (see Theorem 2.2).
This inequality motivated us to introduce the notion of (upper) property of four elements,
(PFE)p , 1 � p < ∞ ; E satisfies (PFE)p if, for every x1, x2, x3, x4 ∈ E such that
x1 � x3 we have

‖x1 − x2‖p + ‖x3 − x4‖p � ‖x1 − x2 ∧ x4‖p + ‖x3 − x2 ∨ x4‖p.

In particular, our results show that the space Lp satisfies also (PFE)p . The property
(PFE)p will be studied in Hilbert spaces with p = 2 . In paper [12] the property of
four elements for a Lyapunov functional V , (PFE)V was introduced. This notion is
closely related with the isotonicity of the projection operator according to the following
theorem:

THEOREM A. [12] Let (E, ‖ ‖, K) be an ordered Banach space which is uniformly
convex and uniformly smooth. If the cone K satisfies the property (PFE)V , then for
every latticially closed, convex set D ⊂ E , the projection operator PV

D is isotone with
respect to the order defined by K .

Guided by this result and the inequalities proved in Section 2 we introduce the no-
tion of lower (resp. upper) property of four elements (denoted respectively by (LPFE)
and (UPFE) ) in a general Banach space. Similar properties are also introduced in
Section 6 for Lyapunov functionals. The property (UPFE) is related with antiisotonic-
ity (isotonicity in the reversed direction) of some corresponding projection operator,
named the antiprojection operator. This operator can not be studied for unbounded sets
as in Theorem A and we get problems with the uniqueness. In Section 5 we prove a
variant of Theorem A for the antiprojection operator. Finally, in Section 6 we consider
the properties (LPFE) and (UPFE) in more general spaces and two open problems
are defined.

2. Some inequalities related with the properties (PFE)p and (PFE)p

Let F denote a non-empty set and let L denote an additive set of real valued
functions defined on F (i.e., if f , g ∈ L , then f + g ∈ L ). We also consider an
isotone additive functional A : L → R , i.e. A satisfies the following properties:
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i) A(f + g) = A(f ) + A(g) , for all f , g ∈ L ,
ii) f , g ∈ L and f (t) � g(t) for all t ∈ F imply A(f ) � A(g) .

For 0 < p < ∞ we say that f ∈ Ap if Ap(f ) :=
(
A(|f |p)

)1/p
< ∞ . First we

recall the following result:

THEOREM 2.1. [12] Let A be an isotone additive functional and let 1 � p < ∞ .
If f 1, f 2, f 3, f 4 ∈ Ap and f 1 � f 3 , then

Ap
p(f 1 − f 2) + Ap

p(f 3 − f 4)

� Ap
p(f 1 − f 2 ∨ f 4) + Ap

p(f 3 − f 2 ∧ f 4) + 2Ap
p((f 4 ∧ f 1 − f 3 ∨ f 2) ∨ 0) (1)

If 0 < p � 1 , then the inequality (1) holds in the reversed direction.

We shall prove the following reversed counter part of this theorem.

THEOREM 2.2. Let A be an isotone additive functional and let 1 � p < ∞ . If
f 1, f 2, f 3, f 4 ∈ Ap and f 1 � f 3 , then

Ap
p(f 1 − f 2) + Ap

p(f 3 − f 4)

� Ap
p(f 1 − f 2 ∧ f 4) + Ap

p(f 3 − f 2 ∨ f 4) − 2Ap
p((f 1 ∧ f 2 − f 3 ∨ f 4) ∨ 0) (2)

If 0 < p � 1 , then the inequality (2) holds in the reversed direction.

The proof of THEOREM 2.2 is based on the following corresponding numerical
lemma:

LEMMA 2.3. Let a1, a2, a3, a4 be real numbers such that a1 � a3 . If p � 1 , then

|a1 − a2|p + |a3 − a4|p � |a1 − a2 ∧ a4|p + |a3 − a2 ∨ a4|p
−2|(a1 ∧ a2 − a3 ∨ a4) ∨ 0|p. (3)

Proof. First we remark that if a2 � a4 , then the third term on the right hand side
of (3) is equal to zero so the inequality (3) reduces to an equality. Thus, we may without
loss of generality assume that a2 � a4 . Let p � 1 . We need to consider the following
six cases:

i) a3 � a1 � a4 � a2 . Put a = a1 − a3 , b = a4 − a1 and c = a2 − a4 and
consider the function h(a) = (a+ b+ c)p − (a+ b)p . We note that h is nondecreasing
so that, in particular, h(a) � h(0) , i.e.

(a + b)p + (b + c)p � bp + (a + b + c)p. (4)

Therefore

|a1 − a2|p + |a3 − a4|p = (b + c)p + (a + b)p

� bp + (a + b + c)p

= |a1 − a4|p + |a3 − a2|p,
and we have proved that (3) holds.
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ii) a4 � a2 � a3 � a1 . Put a = a2 − a4 , b = a3 − a2 and c = a1 − a3 . In this
case the third term on the right hand side in (3) is again equal to zero. We have

|a1 − a2|p + |a3 − a4|p = (b + c)p + (a + b)p,

|a1 − a4|p + |a3 − a2|p = (a + b + c)p + bp

and the proof follows by using (4).
iii) a3 � a4 � a1 � a2 . Put a = a4 − a3 , b = a1 − a4 and c = a2 − a1 . In this

case we have

|(a1 ∧ a2 − a3 ∨ a4) ∨ 0|p = |a1 − a4|p = bp,

|a1 − a2|p + |a3 − a4|p = cp + ap,

|a1 − a2 ∧ a4|p + |a3 − a2 ∨ a4|p = bp + (a + b + c)p

and the proof follows by using the inequality ap + bp + cp � (a + b + c)p , where a ,
b , c are nonnegative real numbers.

iv) a4 � a3 � a2 � a1 . The proof follows by arguing as in part (iii) taking
a = a3−a4 , b = a2−a3 , c = a1−a2 and using the inequality ap+bp+cp � (a+b+c)p .

Also the proofs of the remaining cases v) a4 � a3 � a1 � a2 and vi) a3 � a4 �
a2 � a1 , are exactly similar, so we omit the details. Finally we note that all inequalities
used in the proof presented above hold in the reversed direction when 0 < p � 1 and
the proof follows similarly in this case. �

Proof of Theorem 2.2. Apply the functional A to

f (t) = |f 1(t) − f 2(t)|p + |f 3(t) − f 4(t)|p,
and

g(t) = |f 1(t) − f 2(t) ∧ f 4(t)|p + |f 3(t) − f 2(t) ∨ f 4(t)|p
− 2|(f 1(t) ∧ f 2(t) − f 3(t) ∨ f 4(t)) ∨ 0|p

and use Lemma 2.3 together with the isotonicity and additivity properties of A (note
that A(|x|p) = Ap

p(x) ). �
COROLLARY 2.4. If f 1, f 2, f 3, f 4 ∈ Lp(Ω,μ) , 1 < p < ∞ , and f 1(x) � f 3(x)

a.e., then

‖f 1 − f 2‖p
p + ‖f 3 − f 4‖p

p

� ‖f 1 − f 2 ∨ f 4‖p
p + ‖f 3 − f 2 ∧ f 4‖p

p + 2‖(f 4 ∧ f 1 − f 3 ∨ f 2) ∨ 0‖p
p, (θ)p

and

‖f 1 − f 2‖p
p + ‖f 3 − f 4‖p

p

� ‖f 1 − f 2 ∧ f 4‖p
p + ‖f 3 − f 2 ∨ f 4‖p

p − 2‖(f 1 ∧ f 2 − f 3 ∨ f 4) ∨ 0‖p
p. (θ)p

For the case 0 < p < 1 both inequalities (θ)p and (θ)p hold in the reversed direction
and for the case p = 1 we have equality in both cases.

Proof. Apply Theorems 2.1 and 2.2 with A(f ) =
∫
Ω f dμ .

Let p > 0 be a real number. Corollary 2.4 suggests us the following definition:
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DEFINITION 1. We say that an ordered Banach space (E, ‖ ‖, �) which is a vector
lattice satisfies the lower property of four elements of order p (denoted by (LPFE)(p) )
if, for every x1, x2, x3, x4 ∈ E such that x1 � x3 we have

‖x1 − x2‖p + ‖x3 − x4‖p � ‖x1 − x2 ∨ x4‖p + ‖x3 − x2 ∧ x4‖p.

DEFINITION 2. We say that an ordered Banach space (E, ‖ ‖, �) which is a vector
lattice satisfies the upper property of four elements of order p (denoted by (UPFE)(p) )
if, for every x1, x2, x3, x4 ∈ E such that x1 � x3 we have

‖x1 − x2‖p + ‖x3 − x4‖p � ‖x1 − x2 ∧ x4‖p + ‖x3 − x2 ∨ x4‖p.

REMARK 2.5. By Corollary 2.4 we obtain immediately that for any 1 � p < ∞
the space Lp = Lp(Ω) , has both the property (LPFE)(p) and the property (UPFE)(p) .

In [6] it is proved that in an ordered Hilbert space which is a vector lattice the
property (LPFE)(2) is satisfied if and only if the space is Hilbert lattice. Recently, in
[13] it is showed that in some modular spaces the property (LPFE) is also satisfied.

3. Digression from theorems 2.1 and 2.2

In this section we shall show that the inequalities in Theorem 2.1 and 2.2 can be
reversed up to an absolute constant.

THEOREM 3.1. Let A : L → R be an isotone linear functional and let 1 � p <
∞ . If f 1, f 2, f 3, f 4 ∈ Ap , and f 1 � f 3 , then

Ap
p(f 1 − f 2) + Ap

p(f 3 − f 4) � 3p−1
{

Ap
p(f 1 − f 2 ∨ f 4)

+ Ap
p(f 3 − f 2 ∧ f 4) + CpA

p
p((f 4 ∧ f 1 − f 3 ∨ f 2) ∨ 0)

}
, (5)

where Cp = max(1 + 31−p, 2p · 31−p) . If 0 < p � 1 , then (5) holds in the reversed
direction with Cp = min(1 + 31−p, 2p · 31−p) .

If T1(f 1, f 2, f 3, f 4) and T2(f 1, f 2, f 3, f 4) are two real valued expressions defined
on Ap we say that T1 ≈ T2 if and only if there exist two positive constants λ1 and λ2

such that

λ1T2(f 1, f 2, f 3, f 4) � T1(f 1, f 2, f 3, f 4) � λ2T2(f 1, f 2, f 3, f 4).

REMARK 3.2. We note that in (5), Cp � 2 for all p � 1 and Cp � 2 for all
0 < p < 1 . Therefore Theorems 2.1 and 3.1 imply that the following equivalence
holds:

Ap
p(f 1 − f 2) + Ap

p(f 3 − f 4) ≈ Ap
p(f 1 − f 2 ∨ f 4)

+ Ap
p(f 3 − f 2 ∧ f 4) + 2Ap

p((f 4 ∧ f 1 − f 3 ∨ f 2) ∨ 0)

for all p , 0 < p < ∞ , and with the embedding constants 1 and 3p−1 for all cases.
The proof of Theorem 3.1 follows by arguing as in the proof of Theorems 2.1–2.2

and using the following corresponding numerical lemma.
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LEMMA 3.3. Let a1 , a2 , a3 and a4 be real numbers such that a1 � a3 . If p � 1 ,
then

|a1 − a2|p + |a3 − a4|p � 3p−1
{
|a1 − a2 ∨ a4|p

+ |a3 − a2 ∧ a4|p + Cp|(a4 ∧ a1 − a3 ∨ a2) ∨ 0|p
}

. (6)

If 0 < p � 1 , then the inequality holds in the reversed direction. (Cp is the constant
defined in Theorem 3.1.)

Proof. If a2 � a4 , then the third term on the right hand side of (6) is equal to zero
and (6) reduces to an equality. Hence, we may without loss of generality assume that
a2 � a4 . Let p � 1 . We need to consider the following six cases:

(i) a3 � a1 � a2 � a4 . Put a = a1 − a3 , b = a2 − a1 and c = a4 − a2 . Then,
according to elementary inequalities, we have

|a1 − a2|p + |a3 − a4|p = bp + (a + b + c)p

� bp + 3p−1(ap + bp + cp)

� 3p−1(ap + cp + 2bp) � 3p−1
[
(a + b)p + (b + c)p

]
= 3p−1

(|a1 − a4|p + |a3 − a2|p
)

and the inequality is proved.
(ii) a2 � a4 � a3 � a1 . Put a = a4 − a2 , b = a3 − a4 and c = a1 − a3 and

argue exactly as in the proof of case (i) .
(iii) a3 � a2 � a1 � a4 . Put a = a2 − a3 , b = a1 − a2 and c = a4 − a1 . Then,

by using again elementary inequalities:

|a1 − a2|p + |a3 − a4|p = bp + (a + b + c)p

� bp + 3p−1(ap + bp + cp)

� 3p−1(ap + cp + Cpb
p)

= 3p−1
(|a1 − a4|p + |a3 − a2|p + Cp|a4 ∧ a1 − a3 ∨ a2|p

)
and the proof of this case is also complete.

(iv) a2 � a3 � a4 � a1 . Put a = a3 − a2 , b = a4 − a3 and c = a1 − a4 . Then
the proof follows similarly as in part (iii) .

(v) a2 � a3 � a1 � a4 . Put a = a3 − a2 , b = a1 − a3 and c = a4 − a1 . Then

|a1 − a2|p + |a3 − a4|p = (a + b)p + (b + c)p

� 2p−1(ap + bp) + 2p−1(bp + cp)

� 3p−1(ap + cp + Cpb
p)

= 3p−1
(|a1 − a4|p + |a3 − a2|p + Cp|a4 ∧ a1 − a3 ∨ a2|p

)
and the inequality is proved.

(vi) a3 � a2 � a4 � a1 . The proof is completely similar as that of part (v) .
Finally, we note that every inequality we have used, holds in the reversed direction

when 0 < p < 1 and the proof is complete. �
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THEOREM 3.4. Let A : L → R be an isotone linear functional and let 1 � p <
∞ . If f 1, f 2, f 3, f 4 ∈ Ap , and f 1 � f 3 , then

Ap
p(f 1 − f 2) + Ap

p(f 3 − f 4) � 31−p
{

Ap
p(f 1 − f 2 ∧ f 4)

+ Ap
p(f 3 − f 2 ∨ f 4) − CpA

p
p

(
(f 1 ∧ f 2 − f 3 ∨ f 4) ∨ 0

)}
, (7)

where Cp = 1 + 3p−1 . If 0 < p � 1 , then (7) holds in the reversed direction.

REMARK 3.5. We note that Cp � 2 for all p � 1 and Cp � 2 for all p ,
0 < p � 1 . Therefore, Theorems 2.2 and 3.4 imply that the following equivalence
holds:

Ap
p(f 1 − f 2) + Ap

p(f 3 − f 4) ≈ Ap
p(f 1 − f 2 ∧ f 4)

+ Ap
p(f 3 − f 2 ∨ f 4) − 2Ap

p

(
(f 1 ∧ f 2 − f 3 ∨ f 4) ∨ 0

)
for all f 1 � f 3 and all p , 0 < p < ∞ , and with the embedding constants 1 and 31−p

for all cases.
The proof of Theorem 3.4 follows by arguing as in the proofs of Theorems 2.1 and

2.2 and using the following corresponding numerical lemma:

LEMMA 3.6. Let a1 , a2 , a3 and a4 be real numbers such that a1 � a3 . If p � 1 ,
then

|a1 − a2|p + |a3 − a4|p � 31−p
{
|a1 − a2 ∧ a4|p

+ |a3 − a2 ∨ a4|p − (1 + 3p−1)|(a1 ∧ a2 − a3 ∨ a4) ∨ 0|p
}

. (8)

If 0 < p � 1 , then the inequality (8) holds in the reversed direction.

Proof. We need to consider the same six cases as in the proof of Lemma 2.3. We
omit the details. �

COROLLARY 2.12. If f 1, f 2, f 3, f 4 ∈ Lp(Ω,μ) , 1 < p < ∞ , and f 1(x) � f 3(x)
a.e., then

‖f 1 − f 2‖p
p + ‖f 3 − f 4‖p

p � ‖f 1 − f 2 ∨ f 4‖p
p

+ ‖f 3 − f 2 ∧ f 4‖p
p + 2‖(f 4 ∧ f 1 − f 3 ∨ f 2) ∨ 0‖p

p, (9)

‖f 1 − f 2‖p
p + ‖f 3 − f 4‖p

p � 3p−1
{
‖f 1 − f 2 ∨ f 4‖p

p

+ ‖f 3 − f 2 ∧ f 4‖p
p + Cp‖(f 4 ∧ f 1 − f 3 ∨ f 2) ∨ 0‖p

p

}
, (10)

where Cp = max(1 + 31−p, 2p · 31−p) � 2 ,

‖f 1 − f 2‖p
p + ‖f 3 − f 4‖p

p � ‖f 1 − f 2 ∧ f 4‖p
p

+ ‖f 3 − f 2 ∨ f 4‖p
p − 2‖(f 1 ∧ f 2 − f 3 ∨ f 4) ∨ 0‖p

p, (11)
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and

‖f 1 − f 2‖p
p + ‖f 3 − f 4‖p

p � 31−p
{
‖f 1 − f 2 ∧ f 4‖p

p

+ ‖f 3 − f 2 ∨ f 4‖p
p − Cp‖(f 1 ∧ f 2 − f 3 ∨ f 4) ∨ 0‖p

p

}
, (12)

where Cp = 1 + 3p−1 � 2 .
If 0 < p � 1 , then all these inequalities (9)–(12) hold in the reversed direction

with Cp in case (10) changed to Cp = min(1 + 31−p, 2p · 31−p) .

4. The properties (LPFE) and (UPFE) in Hilbert spaces

It is natural to consider the properties (LPFE) and (UPFE) in Hilbert spaces with
p = 2 . Let (H, 〈 , 〉 ) be a Hilbert space and K ⊂ H a closed pointed convex cone,
that is (i) K + K ⊆ K ; (ii) λK ⊆ K for all λ ∈ R+ and (iii) K ∩ (−K) = {0} .
Let � be the ordering defined by K i.e., x � y if and only if y − x ∈ K . We say
that H is a vector lattice if for every x, y ∈ H , there exists x ∨ y := sup(x, y) and
x ∧ y := inf(x, y) . The dual cone of K is, by definition

K∗ = {y ∈ H | 〈 x, y〉 � 0, for all x ∈ K}.
If (H, 〈 , 〉 , K) is a vector lattice, then in this case we can define x+ = 0 ∨ x ;
x− = 0∨ (−x) and |x| = x+ + x− for every x ∈ H . In an ordered Hilbert space which
is a vector lattice the properties (LPFE)(2) and (UPFE)(2) are also well defined.
Finally, we say that an ordered Hilbert space (H, 〈 , 〉 , K) is a Hilbert lattice if and
only if, the following properties are satisfied:

i) H is a vector lattice,
ii) ‖ |x| ‖ = ‖x‖ for all x ∈ H ,
iii) 0 � x � y implies ‖x‖ � ‖y‖ .

THEOREM 4.1. [6] An ordered Hilbert space (H, 〈 , 〉 , K) which is a vector lattice
has the property (LPFE)(2) if and only if, (H, 〈 , 〉 , K) is a Hilbert lattice.

About the property (UPFE)(2) in ordered Hilbert spaces we have the following
result:

THEOREM 4.2. If (H, 〈 , 〉 , K) is an ordered Hilbert space, which is a vector
lattice and the cone K is sub-adjoint (i.e., K ⊆ K∗ ), then the property (UPFE)(2) is
satisfied.

Proof. We must show that the following property is true:

(UPFE)(2) :

{
for all x1, x2, x3, x4 ∈ H such that x1 � x3 we have

‖x1 − x2‖2 + ‖x3 − x4‖2 � ‖x1 − x2 ∧ x4‖2 + ‖x3 − x2 ∨ x4‖2.

Since H is a vector lattice we have:

x2 ∨ x4 − x2 = x4 − x2 ∧ x4.
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Using the properties of an inner-product and the properties of the latticial operations ∨
and ∧ , we have:

‖x1 − x2‖2 + ‖x3 − x4‖2 − ‖x1 − x2 ∧ x4‖2 − ‖x3 − x2 ∨ x4‖2

= ‖(x1 − x2 ∧ x4) + (x2 ∧ x4 − x2)‖2 + ‖(x3 − x2 ∨ x4) − (x4 − x2 ∨ x4)‖2

− ‖x1 − x2 ∧ x4‖2 − ‖x3 − x2 ∨ x4‖2

= ‖x1 − x2 ∧ x4‖2 + ‖x2 ∧ x4 − x2‖2

+ 2〈 x1 − x2 ∧ x4, x2 ∧ x4 − x2〉 + ‖x3 − x2 ∨ x4‖2 + ‖x4 − x2 ∨ x4‖2

− 2〈 x3 − x2 ∨ x4, x4 − x2 ∨ x4〉 − ‖x1 − x2 ∧ x4‖2 − ‖x3 − x2 ∨ x4‖2

= 2‖x2 ∧ x4 − x2‖2 + 2
[〈 x1 − x2 ∧ x4, x2 ∧ x4 − x2〉

− 〈 x3 − x2 ∨ x4, x4 − x2 ∨ x4〉
]

= 2‖x2 ∧ x4 − x2‖2 + 2
[〈 x1 − x2 ∧ x4 − x3 + x2 ∨ x4, x2 ∧ x4 − x2〉

]
= 2‖x2 ∧ x4 − x2‖2 + 2

[〈 x1 − x3, x2 ∧ x4 − x2〉
− 〈 x2 ∧ x4 − x2, x2 ∧ x4 − x2〉 − 〈 x2 − x2 ∨ x4, x2 ∧ x4 − x2〉

]
= 2

[〈 x1 − x3, x2 ∧ x4 − x2〉 − 〈 x2 − x2 ∧ x4, x4 − x2 ∧ x4〉
]
.

Hence, we obtain

‖x1 − x2‖2 + ‖x3 − x4‖2 − ‖x1 − x2 ∧ x4‖2 − ‖x3 − x2 ∨ x4‖2

= 2
[〈 x1 − x3, x2 ∧ x4 − x2〉 − 〈 x2 − x2 ∧ x4, x4 − x2 ∧ x4〉

]
.

We observe that K ⊆ K∗ implies

〈 x1 − x3, x2 ∧ x4 − x2〉 − 〈 x2 − x2 ∧ x4, x4 − x2 ∧ x4〉 � 0

and the theorem is proved. �
From Theorems 4.1 and 4.2 we have the following result:

COROLLARY4.3. In anyHilbert lattice, both the property (LPFE)(2) and (UPFE)(2)
are satisfied.

Proof. The Corollary is a consequence of Theorems 4.1 and 4.2, and of the fact
that in any Hilbert lattice (H, 〈 , 〉 , K) the cone K is self-adjoint, i.e. K ⊆ K∗ . �

5. The properties (LPFE) and (UPFE) .
Relations with projections and antiprojections

In [6] and [12] it is proved that in any Hilbert lattice (H, 〈 , 〉 , K) and in any
Lp(Ω,μ) space, with 1 < p < ∞ ordered by the natural ordering, the projection
operator PD onto a latticially closed convex set is an isotone operator. Moreover, this
property of PD is a consequence of the property (LPFE) . A similar result we have for
more general spaces [6], [12], [13]. In this section we show that the property (UPFE)
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is related to the antiisotonicity of the antiprojection operator. We consider the case of
Hilbert spaces.

Let (H, 〈 , 〉 , K) be an ordered Hilbert space which is a vector lattice and such
that the cone K is sub-adjoint. Let D ⊂ H be a compact non-empty subset. For every
x ∈ H an antiprojection of x onto D is an element Pa

D(x) ∈ D (generally not unique)
such that

‖x − Pa
D(x)‖ = sup

y∈D
‖x − y‖.

Because D is supposed to be compact and the norm is continuous, by Weierstrass’
Theorem we have that Pa

D(x) exists.

THEOREM 5.1. Let (H, 〈 , 〉 , K) be an ordered Hilbert space which is a vector
lattice and K is a sub-adjoint cone. Let D ⊂ H be a non-empty latticially closed,
compact subset and x, y ∈ H such that y � x . If D is latticially closed and Pa

D(x) ,
Pa

D(y) each is a singleton, then Pa
D(x) � Pa

D(y) .

Proof. By Theorem 4.2 we have that the property (UPFE)(2) is satisfied in H .
Since D is latticially closed, then by the definition of Pa

D we have

‖x − Pa
D(x)‖ � ‖x − Pa

D(x) ∧ Pa
D(y)‖

and
‖y − Pa

D(y)‖ � ‖y − Pa
D(x) ∨ Pa

D(y)‖.
Since the property (UPFE)(2) is satisfied we have (using the fact that y � x )

‖x − Pa
D(x)‖2 + ‖y − Pa

D(y)‖2 � ‖x − Pa
D(x) ∧ Pa

D(y)‖2 + ‖y − Pa
D(x) ∨ Pa

D(y)‖2

which implies

‖x − Pa
D(x)‖2 � ‖x − Pa

D(x) ∧ Pa
D(y)‖2

� ‖x − Pa
D(x)‖2 + ‖y − Pa

D(y)‖2 − ‖y− Pa
D(x) ∨ Pa

D(y)‖2

� ‖x − Pa
D(x)‖2.

Hence, we deduce ‖x − Pa
D(x)‖ = ‖x − Pa

D(x) ∨ Pa
D(y)‖ , and because Pa

D(x) is a
singleton it follows Pa

D(x) = Pa
D(x) ∧ Pa

D(y) , that is, we have Pa
D(x) � Pa

D(y) and the
theorem is proved. �

REMARK 5.2. Following the proof of Therem 5.1 we can show that Theorem 5.1
is valid in each Lp(Ω,μ) space with 1 < p < ∞ .

6. On the properties (LPFE) and (UPFE) in other spaces

The properties (LPFE) and (UPFE) can be related to the projection and the
antiprojection operators in more general vector spaces.

Let L be a vector space over R or C . A function ρ : L → [0, +∞] is called a
modular if and only if:

1. ρ(x) = 0 , if and only if x = 0 ,
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2. ρ(αx) = ρ(x) if α ∈ C , |α| = 1 ,
3. ρ(αx + βy) � ρ(x) + ρ(y) if α, β � 0 and α + β = 1 .

If a modular ρ is given on the vector space L , the set

Lρ = {x ∈ L | lim
λ→0

ρ(λx) = 0}

is called a modular space. Lρ is a vector subspace of L . If a modular space Lρ
satisfies some special properties and D ⊂ Lρ is a closed convex subset, then the
projection of an arbitrary element x over D , denoted by Pρ(x, D) , is well defined.
About this result the reader is referred to [13].

Suppose that (Lρ, �) is an ordered modular space which is a vector lattice.

DEFINITION 3. We say that a latticially closed, closed convex set D ⊂ Lρ satisfies
the property (LPFE)ρ if, for every x1, x3 ∈ Lρ such that x1 � x3 and every x2, x4 ∈ D ,
we have

ρ(x1 − x2) + ρ(x3 − x4) � ρ(x1 − x2 ∨ x4) + ρ(x3 − x2 ∧ x4).

DEFINITION 4. We say that a latticially closed, closed convex set D ⊂ Lρ satisfies
the property (UPFE)ρ if, for every x1, x3 ∈ Lρ such that x1 � x3 and every x2, x4 ∈
D , we have

ρ(x1 − x2) + ρ(x3 − x4) � ρ(x1 − x2 ∧ x4) + ρ(x3 − x2 ∨ x4).

The property (LPFE)ρ implies the isotonicity of Pρ(·, D) and it was recently
studied in [13]. The property (UPFE)ρ was never studied, but certainly, when this
property is satisfied using a similar proof as for Theorem5.1we can show that (UPFE)ρ
implies the antiisotonicity of Pa

ρ(·, D) , with D being a latticially closed, compact set
(Pa

ρ(·, D) is the antiprojection defined by the modular ρ ).
Let (E, ‖ ‖) be a uniformly convex and uniformly smooth Banach space and let

E∗ be the topological dual of E . Suppose that E is ordered by a closed pointed convex
cone K ⊂ E . Suppose that E∗ is ordered by the dual cone K∗ of K , i.e.,

K∗ = {y ∈ E∗ | 〈 y, x〉 � 0 for all x ∈ K}.
Denote the ordering defined on E by K , by �K and the ordering on E∗ defined by
K∗ , by �K∗ .

As in [6], consider the Lyapunov function U(ϕ, x) = ‖ϕ‖2
E∗ − 2〈ϕ, x〉 + ‖x‖2

E ,
defined for every x ∈ E and ϕ ∈ E∗ , where 〈 , 〉 is the canonical bilinear form of
the duality 〈E, E∗〉 . By definition (see [6] and references), for every ϕ ∈ E∗ , the
projection of ϕ onto a closed convex set D ⊂ E is the unique element PU

D(ϕ) such
that

U(ϕ, PU
D(ϕ)) = inf

x∈D
U(ϕ, x).

Suppose that J : E → E∗ is a duality mapping. Consider the Lyapunov functional

V(J(x), ξ) = ‖J(x)‖2
E∗ − 2〈 J(x), ξ〉 + ‖ξ‖2

E

defined for every x, ξ ∈ E .
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Following the definition given in [12] the projection of an element x ∈ E onto a
closed convex set D ⊂ E is the element PV

D(x) ∈ D such that

V(J(x), PV
D(x)) = inf

ξ∈D
V(J(x), ξ).

Now, we can introduce the following definitions. Suppose that E (resp. E∗ ) are vector
lattices.

DEFINITION 5. We say that a latticially closed, closed convex set D ⊂ E satisfies
the property (LPFE)U (resp. (UPFE)U ) if, for every ϕ1,ϕ3 ∈ E∗ such that ϕ3 �K∗
ϕ1 , and every x2, x4 ∈ D , we have

U(ϕ1, x2) + U(ϕ3, x4) � U(ϕ1, x2 ∨ x4) + U(ϕ3, x2 ∧ x4)

resp.

U(ϕ1, x2) + U(ϕ3, x4) � U(ϕ1, x2 ∧ x4) + U(ϕ3, x2 ∨ x4).

DEFINITION 6. We say that a latticially closed, closed convex set D ⊂ E satisfies
the property (LPFE)V (resp. (UPFE)V ) if, for every x1, x3 ∈ E such that x1 � x3 ,
and every x2, x4 ∈ D , we have

V(J(x1), x2) + V(J(x3), x4) � V(J(x1), x2 ∨ x4) + V(J(x3), x2 ∧ x4)

resp.

V(J(x1), x2) + V(J(x3), x4) � V(J(x1), x2 ∧ x4) + V(J(x3), x2 ∨ x4).

In [6] it is revealed that the property (LPFE)U is related to the isotonicity of the
projection operator PU

D and in [12] it is showed that the property (LPFE)V is related to
the isotonicity of the projection operator PV

D . Certainly the properties (UPFE)U and
(UPFE)V are related to the antiisotonicity of antiprojections.

REMARK 6.1. When D = E and the property (LPFE) (resp. (UPFE) ) is satisfied
we say that the space E satisfies property (LPFE) (resp. (UPFE) ).

OPEN PROBLEM 1. It is interesting to study the property (UPFE) in modular
spaces or in a general uniformly convex and uniformly smooth Banach space.

OPEN PROBLEM 2. It is interesting to give examples of Banach or modular spaces
with the property that, the space does not satisfy properties (LPFE) and (UPFE) but
some subsets satisfies these properties.

FINAL REMARK. The inequalities proved in this paper are obviously formally sim-
ilar to inequalities which can be derived from well known extensions of the original
Clarkson inequality [5]. However, these two types of inequalities are not comparable
and the cases of equality are completely different. C.f. also Remark 3.3 in [12].



INEQUALITIES RELATED TO ISOTONICITY OF PROJECTION AND ANTIPROJECTION OPERATORS 97

RE F ER EN C ES

[1] BAUSCHKE H. H. AND BORWEIN J. M., On projection algorithms for solving convex feasibility problems,
SIAM Review 38, 3 (1996), 367–426.

[2] BERNAU S. J., Isotone projection cones, (Preprint), Depth. Math. Sciences, Univ. of Texas at El Paso,
1993.

[3] DEUTSCH FR., The method of alternating orthogonal projections, Approximation Theory, Spline
Functions and Applications (Ed. S. P. Singh), Kluwer Academic Publishers, NATO, ASI Series (1992),
105–121.

[4] DYKSTRA R. L., An algorithm for restricted least square regression, J. Amer. Statistical Assoc. 78 Nr.
384 (1983), 837–842.

[5] CLARKSON J. A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.
[6] ISAC G., On the order monotonicity of the metric projection operator, Approximation Theory, Wavelets

and Applications (Ed.. S. P. Singh), Kluwer Academic Publishers NATO, ASI Series (1995), 365–379.
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