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AN UPPER BOUND FOR THE ZEROS

OF THE CYLINDER FUNCTION Cν(x)
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(communicated by J. Pečarić)

Abstract. For large values of ν (ν > 0) the k -th positive zero of the cylinder function
Cν(x) = Jν(x) cosα − Yν(x) sinα , 0 � α < π , has the asymptotic expansion

jνκ = ν + γκ ν1/3 +
3
10

γ 2
κν−1/3 + O(ν−1)

where κ = k − α/π , γκ = −aκ 2−1/3 and aκ is the k -th negative zero of the function
Ai(x) cosα + Bi(x) sinα and Ai(x) , Bi(x) denote the Airy functions of the first and the second
kind, respectively [1]. We prove that the sum of the first three terms of the asymptotic expansion
gives an upper bound for jνκ , provided γκ � 3

√
35/4 = 2.0606427 . . . or κ � κ0 =

1.13019788 · · · = 2 − α0/π where α0 is determined by the equation cosα0Ai
(
− 3

√
35/4

)
+

sinα0Bi
(
− 3

√
35/4

)
= 0 . This result covers the cases jν2, jν3, . . . and yν2, yν3, . . . , for all

ν > 0 . The main tool used is the well-known Watson formula for d jνκ /dν .

1. Introduction and preliminary results

Let jνκ denote the k -th positive zero of the cylinder function Cν(x)=Jν(x)cosα−
Yν(x) sinα , 0 � α < π where Jν(x) and Yν(x) are the Bessel functions of the first
and the second kind, respectively, and κ = k − α/π , (see [4]). In [3] we proved that
jνκ has the asymptotic expansion

jνκ = ν + γκν1/3 +
3
10

γ 2
κ ν

−1/3 +
5 − γ 3

κ
350

ν−1

− 479γ 4
κ + 20γκ

63000
ν−5/3 +

20231γ 5
κ − 27550γ 2

κ
8085000

ν−7/3 + O(ν−3) (1.1)

where γκ = −aκ · 2−1/3 and aκ is the k -th negative zero of Ai(x) cosα + Bi(x) sinα
and Ai(x) , Bi(x) denote the Airy functions of the first and the second kind, respectively.
Recently, L. Lorch and R. Uberti [6] have proved that the sum of the first three terms in
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(1.1) for κ = 1, 2, 3 , gives an upper bound for jν1, jν2, jν3 at least for 0 < ν � 10 . In
[5] T. Lang and R. Wong dealt with the case ν > 10 for κ = 1, 2 .

In this paper we prove the following general result.

THEOREM. Let jνκ be the k -th positive zero of the cylinder function Cν(x) and
let γκ be defined as above. Then for γκ � 3

√
35/4 = 2.0606427 . . . or κ � κ0 =

1.13019788 . . . the following upper bound

jνκ < ν + γκν1/3 +
3
10

γ 2
κ ν

−1/3, ν > 0 (1.2)

holds where κ0 = 2 − α0/π , and cosα0 Ai
(− 3

√
35/4

)
+ sinα0 Bi

(− 3
√

35/4
)

= 0 .

REMARK. According to the asymptotic formula (1.1) we can not expect an ex-
tension of inequality (1.2) to all κ > 0 because the coefficient of ν−1 in (1.1) is
positive for γκ < 3√5 = 1.709976 . . . . Thus, for example, we can not extend (1.2)
to the first zero yν1 of Yν(x) for every ν > 0 because in this case κ = 1/2 and
γ1/2 = 0.9315768 . . . , [1, p. 371; 9.5.15].

The proof of our Theorem is based on the well-known Watson formula [7, p. 508]

dj
dν

= 2j
∫ ∞

0
K0(2j sinh t)e−2νt dt (1.3)

where j = jνκ and K0(x) denotes the modified Bessel function of the third kind.
The upper bound (1.2) can be thought of as complementing the lower bound

jνκ > ν + γκ
(
ν +

A3
κ
γ 3
κ

)1/3
, ν � 0, κ � 1/2, (1.4)

where Aκ = 2γκ
√

2γκ/3 , (see Remark in [2, p. 185]).
As in [3] we introduce the functions

Fi(ϑ) =
∫ ∞

0
K0(u)uie−u cosϑdu, i = 0, 1, 2, . . . (1.5)

where

F0(ϑ) =
∫ ∞

0
K0(u)e−u cos ϑdu =

ϑ
sinϑ

(1.6)

and

Fi+1(ϑ) =

d
dϑ

Fi(ϑ)

sinϑ
, i = 0, 1, 2, . . . . (1.7)

In particular we have

F2(ϑ) =
ϑ + 2ϑ cos2 ϑ − 3 sinϑ cosϑ

sin5 ϑ
=

4
15

+
6
35

ϑ2 + . . . . (1.8)

Clearly, these functions are analytic in |ϑ | < π .
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2. Proof of the Theorem

We introduce the notations

X = X(ν) = γ ν−2/3 > 0, γ = γκ . (2.1)

Then (1.2) is equivalent to

j < ν
[
1 + X +

3
10

X2
]
, ν > 0, j = jνκ . (2.2)

Let ϕ(ν) and ψ(ν) ∈ (
0,
π
2

)
be defined by

cosϕ(ν) =
ν
j
, cosψ(ν) =

1

1 + X +
3
10

X2
for ν > 0. (2.3)

Concerning the function ϕ(ν) we have also the restriction 0 < ϕ(ν) < π/2
because in our case jνκ > jν1 > ν > 0 , [7, p. 485]. So by these notations, the
inequality in (2.2) is equivalent to

0 < ϕ(ν) < ψ(ν) <
π
2

. (2.4)

By the asymptotic relation (1.1) the inequalities in (2.4) hold at least for sufficiently
large ν , because the coefficient of ν−1 in (1.1) is negative. Hence the difference
ψ(ν) − ϕ(ν) is surely positive for sufficiently large ν . We have to prove that this
difference remains positive for all ν > 0 . Suppose the contrary and define

ν∗ = inf
{
ν > 0, ψ(ν) − ϕ(ν) > 0, ν > ν

}
.

Then we have the (indirect) relation

ψ(ν∗) − ϕ(ν∗) = 0, ψ ′(ν∗) − ϕ′(ν∗) � 0 (2.5)

where ′ indicates the derivative with respect to ν . We are going to show that (2.5)
leads to contradiction. By (2.1), (2.3) we have

ν
d
dν

1
cosψ(ν)

= ν
(
1 +

3
5
X
)dX

dν
= −2

3
X − 2

5
X2. (2.6)

On the other hand, by (1.3) and (2.3)

ν
d
dν

1
cosϕ(ν)

= ν
( j
ν

)′
=

j′ν − j
ν

= 2j
∫ ∞

0
K0(2j sinh t)e−2νtdt − 1

cosϕ(ν)
. (2.7)

If we prove the inequality ϕ′(ν) > ψ ′(ν) under the restriction ψ(ν) = ϕ(ν) , then
clearly we shall have contradiction with (2.5). Due to (2.6) and (2.7) the inequality
ϕ′(ν) > ψ ′(ν) can be written as

j′ = 2j
∫ ∞

0
K0(2j sinh t)e−2νtdt > 1 +

1
3
X − 1

10
X2 (2.8)
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under the restriction j = ν
(
1 + X +

3
10

X2
)

. By the substitution u = 2j sinh t in (2.8),
we have

j′ = 2j
∫ ∞

0
K0(2j sinh t)e−2νtdt =

∫ ∞

0
K0(u)e−2ν sinh−1 u

2j
du√

1 +
u2

4j2

>

∫ ∞

0
K0(u)e−

ν
j u du√

1 +
u2

4j2

.

Since (1 + z)−1/2 > 1 − z/2 , z > 0 and ν/j = cosϕ , therefore

j′ >

∫ ∞

0
K0(u)e−u cos ϕ

(
1 − u2

8j2

)
du =

∫ ∞

0
K0(u)e−u cosϕdu

− 1
8j2

∫ ∞

0
K0(u)u2e−u cos ϕdu = F0(ϕ) − 1

8j2
F2(ϕ),

where the functions F0 and F2 have been defined in (1.6), (1.8), respectively. By (2.1)
and (2.3) we find

1
j2

=
ν2

j2
1
ν2

= cos2 ϕ · X3

γ 3
κ

hence instead of (2.8) it is sufficient to prove the inequality

F0(ϕ) > 1 +
1
3
X − 1

10
X2 +

1
8γ 3

X3 cos2 ϕ · F2(ϕ) (2.9)

under the condition that

cosϕ(ν) =
1

1 + X +
3
10

X2
. (2.10)

We shall prove (2.9) in two steps:

F2(ϕ)(cosϕ)4/3 � F2(0) =
4
15

; (2.11a)

F0(ϕ) > 1 +
1
3
X − 1

10
X2 +

2
525

X3(cosϕ)2/3. (2.11b)

Clearly (2.11a) and (2.11b) imply inequality (2.8) for γ 3 � 35/4 .
For the proof of (2.11a) we use (1.8), and we have to prove that

G(ϕ) =
4
15

· sin5 ϕ
1 + 2 cos2 ϕ

· cos−4/3 ϕ − ϕ +
3 sinϕ cosϕ
1 + 2 cos2 ϕ

> 0, 0 < ϕ <
π
2

.



AN UPPER BOUND FOR THE ZEROS OF THE CYLINDER FUNCTION Cν(x) 109

We get G(0) = 0 , so it is sufficient to show that

G′(ϕ) =
4 sin2 ϕ (4 + 31 cos2 ϕ + 10 cos4 ϕ − 45 cos7/3 ϕ)

45 cos7/3 ϕ (1 + 2 cos2 ϕ)2
> 0.

With the substitution cosϕ = z3 the expression in parenthesis of the numerator becomes

(1− z)(4 + 4z + 4z2 + 4z3 + 4z4 + 4z5 + 35z6 − 10z7 − 10z8 − 10z9 − 10z10 − 10z11).

Since 0 < z < 1 , then for i < j , zi > zj and the new expression in parenthesis is
larger than

4z6 + 4z6 + 4z6 + 4z6 + 4z6 + 4z6 + 35z6 − 10z6

− 10z6 − 10z6 − 10z6 − 10z6 = (59 − 50)z6 > 0

which proves (2.11a).
For the proof of (2.11b) we need the inequality

F0(ϕ)=
ϕ

sinϕ
>A + B cosϕ + C cos2 ϕ + D cos3 ϕ + E cos4 ϕ, 0 < ϕ <

π
2

(2.12)

where

A =
488
315

, B = −55
63

, C =
16
35

, D = −10
63

, E =
8

315
.

To this end let us consider the function

Φ(ϕ) = ϕ − sinϕ[A + B cosϕ + C cos2 ϕ + D cos3 ϕ + E cos4 ϕ].

Since Φ(0) = 0 and
d

dϕ
Φ(ϕ) =

8
63

(1 − cosϕ)5 > 0 , this proves (2.12).

Now we define

H = 1 + X +
3
10

X2 =
1

cosϕ
so we have

X2 =
10
3

H − 10
3

− 10
3

X

and

X3 =
10
3

HX − 100
9

H +
70
9

X +
100
9

.

Hence the right-hand side of (2.11b) can be written as

4
3
− 1

3
H + X

[2
3

+
4

315
H1/3 +

4
135

H−2/3
]

+
8

189
H−2/3 − 8

189
H1/3

where the coefficient of X is positive. Therefore we look for an upper bound of X in
terms of H , as follows:

aH2/3 + bH1/3 + cH−1/3 + d > X, (2.13)
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where a =
19
25

, b =
51
50

, c = −23
50

, d = −33
25

. To show (2.13) we consider the

function
Ψ(X) = aH2/3 + bH1/3 + cH−1/3 + d − X (2.14)

where we recall that H = H(X) = 1 + X +
3
10

X2 . The coefficients a , b , c , d above

have been chosen so that

Ψ(X) =
79

16200
X4 + O(X5), X → 0.

Therefore Ψ(X) > 0 at least for small values of X .
Suppose now that the inequality Ψ(X) > 0 does not hold for all X > 0 . Then

let X1 > 0 be the first positive zero of Ψ(X) : Ψ(X1) = 0 . Then clearly we have

Ψ′(X1) =
d
dX

Ψ(X1) � 0 . By direct calculations we get
d
dX

H(X) = 1 +
3
5
X , hence

Ψ′(X1)=
(2

3
aH−1/3 +

1
3
bH−2/3 − 1

3
cH−4/3

)(
1 +

3
5
X1

)
− 1

=
(2

3
aH−1/3 +

1
3
bH−2/3 − 1

3
cH−4/3

)[
1 +

3
5
(aH2/3 + bH1/3 + cH−1/3 + d)

]
−1

where the last equality is a consequence of (2.14) taken at X = X1 .
Using the notation z3 = H , we get

Ψ′(X1) =
(z − 1)3

15z5
· 8664z3 + 5934z2 + 3565z + 1587

2500

which is clearly positive because z > 1 . This contradicts the existence of a zero of
Ψ(X) , thus inequality (2.13) is proved.

To complete the proof of (2.11b), we have still to show the inequality

L = A +
B
H

+
C
H2

+
D
H3

+
E
H4

>
4
3
− 1

3
H + (aH2/3 + bH1/3 + cH−1/3 + d)×

×
(2

3
+

4
315

H1/3 +
28
945

H−2/3
)

+
8

189
− 8

189
H1/3 = M.

Using again the substitution z3 = H , we get:

L − M =
(z − 1)4

23625
[600 + 200z + 6000z2 + 8250z3 + 6000z4 − 3900z5 − 13800z6

− 16050z7 − 3000z8 + 12697z9 + 18312z10 + 7647z11].

Since z > 1 , zi > zj if i > j , hence the polynomial in the brackets has the lower bound

[−3900 − 13800− 16050− 3000 + 12697 + 18312 + 7647]z8 = 1906z8 > 0.

This completes the proof of inequality (2.11b) and of our Theorem as well.



AN UPPER BOUND FOR THE ZEROS OF THE CYLINDER FUNCTION Cν(x) 111

RE F ER EN C ES

[1] M. ABRAMOWITZ AND I. A. STEGUN, eds., Handbook of mathematical functions, Dover Publications,
Inc., New York, 10th ed., 1972.
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Università di Roma 3

Via Corrado Segre, 60
00146 Roma

Italy
e-mail: laforgia@dma.uniroma3.it

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


