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AN UPPER BOUND FOR THE ZEROS
OF THE CYLINDER FUNCTION C,(x)

ARPAD ELBERT AND ANDREA LAFORGIA

(communicated by J. Pecaric)

Abstract. For large values of v (v > 0) the k-th positive zero of the cylinder function
Cy(x) = Jy(x)cos o — Yy(x)sina, 0 < o < 7, has the asymptotic expansion

3 _ _
Jvk = V+YKV1/3 + EY;%V 1/3 +0(v

where kK = k — o/, VY = —aK2_1/ 3 and ax is the k-th negative zero of the function
Ai(x) cos o + Bi(x) sin and Ai(x), Bi(x) denote the Airy functions of the first and the second
kind, respectively [1]. We prove that the sum of the first three terms of the asymptotic expansion

gives an upper bound for jyi , provided yx > 3/35/4 = 2.0606427... or K > Ky =

1.13019788 - -+ = 2 — o /m where o is determined by the equation cos ocoAi<— & 35/4) +
sin ocoBi<— 3 35/4) = 0. This result covers the cases jyz,jy3,... and yya,Vys,... , for all

v > 0. The main tool used is the well-known Watson formula for djyx /dv .

1. Introduction and preliminary results

Let j,x denote the k -th positive zero of the cylinder function C,(x) =J,(x)cos oz —
Yy(x)sino, 0 < a < m where J,(x) and Y,(x) are the Bessel functions of the first
and the second kind, respectively, and x = k — o/, (see [4]). In [3] we proved that
Jvk has the asymptotic expansion

, 3, 5-v
Jue = v+ 4 0% 3 —35gK v
4797 + 207 53, 20231y. — 27550y 45 4
- e T 0] 1.1
63000 sogsoo0 v OV (LD
where ¥ = —a, -27'/? and ay is the k-th negative zero of Ai(x)cos a + Bi(x) sin a

and Ai(x), Bi(x) denote the Airy functions of the first and the second kind, respectively.
Recently, L. Lorch and R. Uberti [6] have proved that the sum of the first three terms in
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(1.1) for ¥ = 1,2,3, gives an upper bound for jy1,jy2,jv3 atleastfor 0 < v < 10. In
[5] T. Lang and R. Wong dealt with the case v > 10 for k = 1,2.
In this paper we prove the following general result.

THEOREM. Let jy be the k-th positive zero of the cylinder function Cy(x) and
let Yy« be defined as above. Then for y > \3/35/4 = 2.0606427 ... or K > Ky =
1.13019788.. .. the following upper bound

3
Jue < v+y,<v1/3+1—0 2y v>o0 (1.2)

holds where kg =2 — o/ T, and cos O(gAi(— \3/35/4) + SinOCOBi(f \3/35/4) =0.

REMARK. According to the asymptotic formula (1.1) we can not expect an ex-
tension of inequality (1.2) to all k > O because the coefficient of v~! in (1.1) is
positive for ¥, < V5 = 1.709976 . ... Thus, for example, we can not extend (1.2)
to the first zero y,; of Y,(x) for every v > 0 because in this case k = 1/2 and
Y12 = 09315768 ..., [1,p. 371;9.5.15].

The proof of our Theorem is based on the well-known Watson formula [7, p. 508]

dj . > : o3 —2vt
— =12 Ko(2jsinht)e™"" dr (1.3)
dv 0
where j = jy and Ko(x) denotes the modified Bessel function of the third kind.
The upper bound (1.2) can be thought of as complementing the lower bound
A3N\1/3
J'w<>v+y,<(v+y—§) L ov>0, k>1/2, (1.4)
K
where Ay = 2¥,v/2Y«/3, (see Remark in [2, p. 185]).
As in [3] we introduce the functions

Fi(ﬁ):/ Ko(u)u'e ™ %du, i=0,1,2,... (1.5)
0
where
o 9
F, — K —ucos ¥ _ 1.
0(0) = [ Kowe 0 = (16)
and
%Fi(ﬁ)
Firi(0)=="——7—, i=0,1,2,.... 1.7
+1( ) sin O l ( )
In particular we have
2 29 —3si 4
F2(19):19+ Y cos” ¥ 3SIHI9COSI9:—+£192+.... (1.8)

sin® © 15 35

Clearly, these functions are analytic in |3] < 7.
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2. Proof of the Theorem

We introduce the notations

X=X(v)=yv >0, 7= (2.1)
Then (1.2) is equivalent to
3
j<v{l+X—&-EX2}, V>0, j=ju. (22)

Let ¢(v) and y(v) € (0, 7—;) be defined by

% 1
cos(v) =—, cosy(v)= ——=— forv>0. (2.3)
J

1+ X+ —X?
+ +10

Concerning the function @(v) we have also the restriction 0 < @(v) < 7/2
because in our case jy > jy1 > VvV > 0, [7, p. 485]. So by these notations, the
inequality in (2.2) is equivalent to

0< o(v) < w(v) < g (2.4)

By the asymptotic relation (1.1) the inequalities in (2.4) hold at least for sufficiently
large v, because the coefficient of v~! in (1.1) is negative. Hence the difference
w(v) — @(v) is surely positive for sufficiently large v. We have to prove that this
difference remains positive for all v > 0. Suppose the contrary and define

vi=inf{V >0, y(v)—@(v) >0, v>7V}.
Then we have the (indirect) relation
w(v) —o(v) =0, y'(v') - ¢'(v) >0 (2:5)

where ' indicates the derivative with respect to v. We are going to show that (2.5)

leads to contradiction. By (2.1), (2.3) we have
d 1 3. \dX 2 2
£ - _v(1 _X)_:f_Xf—Xz. 2.6
Vav cosy(v) v(i+ 5%)av T 3775 (26)

On the other hand, by (1.3) and (2.3)

!

!

d 1 ! —J
v—izv(i) _Jv—i
dv cos o(v) % v

=2j / Ko(2jsinht)e2Vdt — . (27)
0

cos (V)
If we prove the inequality ¢’(v) > w’'(v) under the restriction y(v) = ¢@(v), then
clearly we shall have contradiction with (2.5). Due to (2.6) and (2.7) the inequality
@' (v) > y'(v) can be written as

1

o 1
j =2 / Ko(2jsinh)e™>V'dt > 1 + X - EX2 (2.8)
0
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S 3 oo .. .
under the restriction j = v(l +X+ EX ) . By the substitution u = 2jsinh7 in (2.8),
we have
> o _ovsinh—te  d
7 =2 / Ko(2j sinh £)e~2"ds — / Ko(u)e 2vsm ™ 5 __dn
0 0 X )
T
o0 v, d
> / Ko(u)e 7 "
0 | u?
T

Since (1+z)~"/2>1-2/2, 2> 0 and v/j = cos ¢, therefore

o0 2 o0
i> / Ko(u)e_”cow(l - u—,z)du = / Ko(u)e ™ %du
0 8j 0
1

1 * 2 —ucos
— @/0 Ko(u)u“e Pdu = Fo(p) — @Fg(qo),

where the functions Fy and F, have been defined in (1.6), (1.8), respectively. By (2.1)

and (2.3) we find
1 v 1 cos? 3
FOEVC
hence instead of (2.8) it is sufficient to prove the inequality
Fo( )>1+1X—ixz+ix3cos2 (o) (2.9)
ol@ 3 10 8y3 [ 2@ .
under the condition that
1
cos@(v) = — (2.10)
I+ X+ —X?
At 10
We shall prove (2.9) in two steps:
4/3 4.
Fa(@)(cos @) < F2(0) = = (2.11a)
1 1 2
Fo(@) > 14 =X — —X* + —X3(cos ¢)*/>. (2.11b)

3 10 525

Clearly (2.11a) and (2.11b) imply inequality (2.8) for y* > 35/4.
For the proof of (2.11a) we use (1.8), and we have to prove that

4 sin’ @ —4/3 3sin @ cos @ /)
. - — >0, 0 —.
cos o9 1+2cos?o ’ <=3

Gle) = 15 1+2cos? ¢
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We get G(0) = 0, so it is sufficient to show that

 4sin? @ (4 + 31 cos? ¢ + 10cos* ¢ — 45 cos’/? @)

G/
(¢) 45c08"3 @ (1 +2cos? 9)?

> 0.

With the substitution cos ¢ = z* the expression in parenthesis of the numerator becomes
(1 —2)(4 + 47+ 42° + 423 4 42* + 42° +352° — 1077 — 102° — 102° — 10z'° — 10z').

Since 0 < z < 1, then for i <, 7 > 7 and the new expression in parenthesis is
larger than

420 +47° + 42° + 425 + 420 + 42° + 3528 — 102°
—10z° — 102° — 102° — 10z° = (59 — 50)z° > 0

which proves (2.11a).
For the proof of (2.11b) we need the inequality

FO(@):$>A+Bcos(p+Ccosz(p+D0053(p+Ecos4 0, 0<p< 7—; (2.12)
where 488 55 16 10 8
315’ 63’ ¢ 35’ 63’ 315

To this end let us consider the function

®(p) = ¢ — sin@[A + Bcos @ + Ccos®> ¢ + Dcos’ ¢ + E cos* ¢).

Since ®(0) = 0 and %(D((p) = 68—3(1 —cos @)® > 0, this proves (2.12).
Now we define 3 :
H=1+X+ X =
10 cos @
so we have 0 0 10
X?=—H-— - —X
3 3 3
and 10 100 70 100
X'= —HX - —H+ —X+—.
3 9 * 9 + 9
Hence the right-hand side of (2.11b) can be written as
4 1 2 4 4 8 8
3730 A3 T3 T 135 T 189 189

where the coefficient of X is positive. Therefore we look for an upper bound of X in
terms of H , as follows:

aH*3 + bH'? + cH™'3 +d > X, (2.13)
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19 51 23 33 .
where a = 75 b = 30 c = ~30 d = ~3s5- To show (2.13) we consider the

function
Y(X)=aH? +bH'P + cH ' +d - X (2.14)

3
where we recall that H = H(X) = 1+ X + EXZ' The coefficients a, b, ¢, d above

have been chosen so that

79
Y(X)=——X"+0(X°), X—0.
Therefore ¥(X) > 0 at least for small values of X.
Suppose now that the inequality ¥(X) > 0 does not hold for all X > 0. Then
let X; > O be the first positive zero of W(X): ¥(X;) = 0. Then clearly we have

d 3
Y'(X) = W\P(Xl) < 0. By direct calculations we get aH(X) =1+ §X, hence
2 1 1 3
W(x0)=(Sab 1 4 2o = Sel 4P (14 2x) — 1
( 1) 361 + 3 3C + 5 1
2

1 1 3
:(galﬁrl/3 + b - ch—4/3) [1 + <@t bH e d)} -1

where the last equality is a consequence of (2.14) taken at X = X .
Using the notation z* = H , we get

(z—1)* B8664z° 459347 + 3565z + 1587

W(X,) =
(¥1) 1575 2500

which is clearly positive because z > 1. This contradicts the existence of a zero of
Y(X), thus inequality (2.13) is proved.
To complete the proof of (2.11b), we have still to show the inequality

B C D E 4 1

L:A+E+ﬁ+ﬁ+ﬁ>g—§H+(aH2/3+bH1/3+cH’l/3+d)><
2 4 28 8§ 8
S Mgy Sy S S iy
><(3+315 * 945 )+189 189

Using again the substitution z°> = H, we get:

(z—1)?*

L=M= 355

(600 + 200z + 6000z” + 82507° + 6000z* — 3900z° — 138007°
— 1605077 — 3000z° + 126972° + 183127'° + 76477'].
Since z > 1, 7 > # if i > j, hence the polynomial in the brackets has the lower bound
[—3900 — 13800 — 16050 — 3000 + 12697 + 18312 + 7647]z = 1906z* > 0.

This completes the proof of inequality (2.11b) and of our Theorem as well.
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