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SOME HILBERT SPACE CHARACTERIZATIONS
AND BANACH SPACE INEQUALITIES
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(communicated by J. Pecaric)

Abstract. 1t is well known that if X is a normed linear space with dimension not less than three
such that the radial projection from X onto the closed unit ball is nonexpansive, then X must be
an inner product space. Using this fact, we are able to give a characterization of Hilbert spaces.
Two other Hilbert space characterizations and some Banach space inequalities are established
via duality maps.

Let X be a real normed linear space. We denote by B the closed unit ball of X
and by P the radial projection from X onto B, i.e.,
X if x € B,
Pe= if x¢B. (1)
[l
The following characterization of inner product spaces will be used in order to prove
our first result.

LEMMA [4]. A normed linear space (X,|| - ||) with dimension not less than three
is an inner product space if and only if the radial projection P : X — B given by (1)
is nonexpansive, i.e.,

|Px— Pyl < v — yll, forall x,y € X.
In [7], Kim and Shin proved the following result.

THEOREM. Let X be a uniformly convex Banach space satisfying Condition A
(see definition below), C a nonempty closed convex subset of X and f : C — X a
nonexpansive mapping (i.e., ||f (x) —f (x)|| < |lx —y|l, x,y € C) such that f(C) is
bounded and f (0C) C C, where OC is the boundary of C. For each k € [0,1), let
Xy € C be the unique fixed point of the contraction Ty : C — X defined by

Tix =kTx+ (1 —k)y, xe€C,

where y is a fixed point in C. Then the strong limgy x; exists and is a fixed point of
T.
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DEFINITION [7]. A normed linear space (X, | - ) is said to satisfy Condition A if
givenr >0,yeS, ={xeX:|x|=r}andw ¢ B, :={xeX: x| <r} we
have

Iy —w| <|ly—Aw| forall A > 1. (2)

Clearly Condition (A) is equivalent to the validity of the inequality (2) for all
y,w € X such that |ly]| = 1 and ||w| > 1. In this note we shall prove that Condition
A in fact characterizes inner product spaces with dimension not less than three; hence
the above Theorem is reduced precisely to the Theorem of Singh and Watson [10] (see
[1], [6], [12] for more and latest results about the strong convergence of {x;}). Two
more characterizations of Hibert spaces and certain inequalities in Banach spaces will
also be obtained via the duality map (see below for definition).

PROPOSITION 1. A normed linear space (X, || -||) satisfies Condition A if and only
if (X,]|-|) is an inner product space.

Proof. 1t is easily seen that an inner product space satisfies Condition A. To show
the converse assertion, by the Lemma above, it suffices to show that the radial projection
P given by (1) is nonexpansive. Towards this end, we distinguish two cases.

Case 1: ||x]] < 1, |ly|| > 1. It follows from Condition A (with r := ||x|| ) that

||Px — Py|| = Hx s H < Hx
Iyl [yl
= [x=yl (et A ={y]).

Case 2: |jx|| > 1, ||y]| = 1. Without loss of generality we assume ||y|| > ||| .
Forany € > 0 and A > 1, Condition A yields that

yH (VA > 1)

X y
IPx = (1+ )Pyl = || 5 = (14 ) 2|
] ]

< “Hi—”—k(l—&-s)ﬁ”

_ H L H
= —||lx —
[l HYH
< Hx—wm: o sl >
Taking A = (1 + €)||y||/||x]| and then letting € — 0 we get ||Px — Py|| < |lx — ]|
Therefore P is nonexpansive. [J

REMARK. The above proof shows that the conclusion of Proposition 1 remains
valid if the strict “ < " in (2) is replaced by the nonstrict “< ", i.e., [[y —x|| < [[y — Aw/||
forallye B, w ¢ B,and A > 1.

Recall that the (normalized) duality map J : X — X* is defined by
J@) = {x" e X (xx") = 1P = I[P}, xex.

It is known (cf. [5]) that X is smooth if and only if J is single-valued on X .
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In [8] and [9], Park studied the convergence of the Mann iteration for accretive
operators by imposing the following assumption on the underlying smooth Banach
space X :

(x—y,J(x) ~JO) < |x— > forall x,y € X. (3)

Our next result shows that the assumption (3) also characterizes Hilbert spaces; thus
reducing the main results of [8] and [9] to a Hilbert space setting which have been proved
already (cf. Bruck [2]). We shall work in a more general setting; i.e., we do not assume
smoothness, instead we use the following assumption:

(x =yjx —Jy) < Hx_y”z Vi € J(x), Vjy € J(y), x,y € X. (4)
It is obvious that if X is smooth, then (4) is reduced to (3).

PROPOSITION 2. Assume that a Banach space (X, || - ||) satisfies the condition (4).
Then X is a Hilbert space.

Proof. Let x,y € X and ¢t > 0 and let j,1,y € J(x + ty) satisfy

Sllp{<y,]> J € J(X+ ty)} = <yajx+ty> .
Then we have for any j, € J(x),

£—Hert)’Hz ZHX—Hy—Hsz allx+ oyl
dt 2 310 P

= sup{(y,j) :j € J(x+1y)}

- <y7jx+ty>

1 : . .
;< (x+ ty) — Xy Jx+ty _]x> + <y7.]x>

<ty + (i) by (4).
It follows that

1 1 ! .
x4 y)* < Sl +/ tlyldr + (v, js)
2 2 0

L Lo .
or
I+ 312 < el + 12+ 2(y,j) - 2,y € X (5)
Substitute —y for y into (5) to get
x =yl < Il + Iyl = 2(y.j)» Xy €X (6)
Adding (5) and (6) gets
b+ 317 + [lx = yH2 <2(|d? + 1917, %y €X. (7)

Replacing x by 2 and y by *5* in (7) respectively, we obtain

b+ yII* =+ [l = sz 22 + 7, xyexX. (8)
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By (7) and (8) we conclude that the Parallelogram identity
b+ 11 + [l = ¥II? = 2(1xl1* + Iy ]1%) ©)
holds for all x,y € X; hence X is an inner product space. [J

COROLLARY 1. A Banach space X is a Hilbert space if and only if the duality map
J is Lipschitz with constant one in the sense that

e =il < lbe =yl Viv € J(x), Wiy €J(), %,y € X

Next we consider the dual version to Proposition 2; namely, we consider the case
where there exists a selection j of J (i.e., a single-valued map j : X — X* such that
j(x) € J(x) forall x € X) satisfying

(x=y,j(x) =) = e =yl?, xyeX. (10)
We shall show the inequality (10) also characterizes inner product spaces.

PROPOSITION 3. If a Banach space X satisfies the inequality (10), then X is a
Hilbert space.

Proof. Since for every x € X, J(x) = 91|x||?, the subdifferential of the function
%H -||I*> at x, by the subdifferential inequality, we have for x,y € X and t > 0,

dr1 2 sl +syll? = 5l + ool
—_—— t s = lim 2 2
dtZHer vl s s—1t
= (y,J(x+ 1))
This combined with the inequality (10) yields
1

1
dt 2

lx -+ ty]|* > - ((x+1y) = x,j(x +ty) —j(x)) + (,0(x))
> t|lylI* + (i (x)) -

Hence

1 1 ! :
ol = I+ [yl + (o) e

1

1
= SR+ SR + {3,500

Replacing y by —y leads to

1 1 1
Sl =12 = S P+ S 1P = (3 70)
Adding these last two inequalities gets

b+ I + [l = 12 = 2(1d* + Iy1?) - vx,y € X.
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This is inequality (8). Replacing in (8) x by ** and y by 32, respectively yields

inequality (7). Hence the Parallelogram indentity (9) holds for all x,y € X and X is
an inner product space. [

REMARK. In Proposition 3, we need that inequality (10) is valid only for some
selection j for J; while in Proposition 2 we need the validity of inequality (4) for
all j, € J(x) and j, € J(y). We do not know whether Proposition 2 is still valid if
inequality (4) holds only for some selection j of J.

COROLLARY 2 [3]. A normed linear space (X, || - ||) is an inner product space if
and only if the duality map J : X — X* is linear, i.e.,
J(ax + by) =aJ(x)+bJ(y) x,y€X a,beR.
This means that given any j, € J(x) and j, € J(y), there exists some joxipy € J(ax+by)
such that aj, + bjy = Jaxtby -
Proof. Given x,y € X and any selection j of J, we can find some j,—, € J(x—y)
satisfying j(x) — j(y) = jx—y so that
(x = 3.J(x) =) = (x = yijemy) = =yl
So Corollary 2 follows from Proposition 3. [

In the remaining part of this paper, we shall improve some Banach space inequalities
established in [11]. Recall that the moduli of convexity and smoothness of a normed
linear space X are defined respectively by

. 1
8y(e) = int {1~ 3 e+ )l Il = Iyl = 1, v =yl =€}, 0<e<2,

and
1
px(t) = sup{ S (I + vl + Jx = yl) = 1zl = 1, ,Ivl| = 7}, =>0.

X is uniformly convexif 8x(€) > 0 for 0 < & < 2 and uniformly smooth if lin(l) pXT(T) =
T—

0. Let p,g > 1 be real numbers. Then X is said to be p-uniformly convex (resp.,
q -uniformly smooth) if there is a constant ¢ > 0 such that x(g) > ce?, 0 < € < 2
(resp., px(7) < ¢4, T>0). Itis provedin [11] that X is p-uniformly convex if and
only if there is a constant ¢ > 0 such that for all x,y € X and A € [0, 1]

[Ax+ (1= Ayl < A[x|” + (1= )|yl = Wp(A)ellx = yII7, (11)
where

Wo(A) =AP(1 —A)+A(1 = A).
It is also proved in [11] that if X is a smooth Banach space, then the dual version to
(11), i.e., the inequality
[Ax+ (1= A)yl[* = Allx]|* + (1 = )|yl = Wo(A)ellx = yI|7,
x,y€XandA €0,1] (12)

characterizes uniform smoothness. Here we are going to show that the smoothness
assumption on X can be removed.
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PROPOSITION 4. Let q > 1 be a real number. Then a Banach space X is q-
uniformly smooth if and only if there is a constant ¢ > 0 such that inequality (12)
holds.

Proof. By [11, Theorem 1], it suffices to show that (12) implies the smoothness
x+y -y

of X. By replacing in (12) x by *}* and y by ** and setting A = 1 we get

1
5 Uy [l =y ) <l + eyl 2y € X (13)

Assume X is not smooth. Then there exists an xo € X, ||xo]| = 1,and f,g € X*, f #
& Il = llgll = 1 such that f (xo) = g(x0) = |lxol| = 1. Take yo € X; [|yo| =1 such
that (f + g)(yo) = 0 and f (yo) > 0. It follows that for any 7 > 0,

l[xo + zyol|? + [lx0 — Tyoll? = [f (x0 + v0)]? + [g(x0 — Ty0)]*
= [1+7f (yo)]” + [1 — 78 (y0)]?
= 2[1 + 7f (y0)]? as —g(v) =/ (o)
> 2[1 + f ()] as f(yo) > 0.

But inequality (13) then implies for all 7 > 0,
L+ct? > 1+1f(yo) or ¢t ' =f(y),
which is impossible since 797! — 0 as 7 — 0" and f(yo) > 0. O
We now use the (generalized) duality map J, : X — X* defined by
Jo) = {x" € X" 1 (x") = |27 and ||| = [l *71}, xeX

to characterize uniform smoothness of Banach spaces. Again we remove the smoothness
assumption in [11].

PROPOSITION 5. Let g > 1 be a real number. Then the following are equivalent
for a Banach space X .

(i) X is q-uniformly smooth.

(ii) There is a constant ¢ > 0 such that

[+ Yl < el + g (v, () +ellyll?, vxy € X, Vg(x) € Jg(x). (14)
(iii) There is a constant ¢ > 0 such that

(x=y,4g(x) =jg)) <ellx—=yll% Vx,y € X, Vjy(x) € Jy(x), Vig(y) € Jo(v). (15)

Proof. (i) = (ii). Since X is smooth, we have that J, is single-valued and

[+ Ay[ 7 =[x

9(y, Jglx)) = lim D , X%YEX
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By inequality (12), we have

[+ AV = [xll? 1= )+ ALe+ )17 — ]}
A A
o (L= )l + Al + 317 = Wy(A)ellyll? — J1x]®
- A
= [+ Il = x| = [(1 = 2)7 + 2971 (1 = A)]elly]| 7.

Taking the limit as A — 0% we obtain

(¥ Jq(0) =l +y[[7 = [lx[|* = ellyll?,

which is (14).
(if) = (iii) . By (14) we have for any j,(x) € J,(x) and j,(y) € J4(y),

Y19 < Il + g (y = x,jqg (%)) +clly — x| (16)
and
I < (Y1 + g (x = y,Jg(¥) + cllx = yl|”. (17)
Upon adding (17) to (16) we get
. . 2c
(x = y:Ja(x) =jg(y)) < ;Hx =yl

Hence (15) is valid with ¢ = 2¢/q.
(iii) = (i). Let j,(x + ty) € Jo(x + ty) satisfy

(3dg(x +1y)) = sup{(y.Jq) :Jq € Jg(x +1y)}.

It then follows that

Lty = tgn D7
’ 510 qs

dt q
= sup{(y,Jq) 1Jq € Jo(x +1y)}
= (gl -+ 1)
= (e 1) = 1)~ g0} (a0}
<a I+ (vjgx) by (15).
Therefore,
1
o9 < 4 g [ @I+ (o)
0

or
[l I < Nl + V7 + g(yg(x)) - Vay € X, Vg (x) € Jy(x). (18)
Now forany A € [0, 1], write z=Ax + (1 — A)y. Then by (18) we have

I < Mzl + el = 2| + g{x = 2,j4(2)) (19)
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and
Y1 < Mzl +Elly = 2l 4+ g{y — 2,44(2)) - (20)
Since x—z= (1 —A)(x—y) and y —z = A(y — x), it follows from (19) and (20) that

Al + (U= )yl < Izl + A (1 = A)T + A7(1 = A)]flc = y[|*.
Hence (12) holds with ¢ = & and X is g-uniformly smooth by Propositon4. [J

Finally we state the local versions of Propositoins 4 and 5 which again delete the
smoothness assumption imposed on the space X in [11]. The proofs are omitted here as
they are similar to those of Propositions 4 and 5. Recall that B, = {x € X : ||x|| < r}
is the closed ball centered at the origin with radius » > 0. Let I" be the family of
continuous, strictly increasing and convex functions g : [0,00) — [0,00) such that
limf_)0+ g(T)/T =0.

PROPOSITION 6. Let g > 1 and r > 0 be given. Then the following are equivalent
for a Banach space X .

(i) X is uniformly smooth.

(i) There exists a g € T (depending on r) such that

[Ax + (1= A)y[|! = Alx]|? + (L= A)[Iyl|? = We(A)g(llx = ¥l])  Vx,y € B,.
(iii) There exists a g € T (depending on r ) such that
[+ Y17 < Il + q(y.dg(x) +gllyl)  Vx,y € B, Wjg(x) € Jg(x).

(iv) There exists a g € T (depending on r) such that

(x =v,Jq(x) =jg) <glllx—=yll) Vx,y € By, Yjg(x) € Jy(x), Vg (y) € J4(»).
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