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Abstract. It is well known that if X is a normed linear space with dimension not less than three
such that the radial projection from X onto the closed unit ball is nonexpansive, then X must be
an inner product space. Using this fact, we are able to give a characterization of Hilbert spaces.
Two other Hilbert space characterizations and some Banach space inequalities are established
via duality maps.

Let X be a real normed linear space. We denote by B the closed unit ball of X
and by P the radial projection from X onto B , i.e.,

Px =

{
x if x ∈ B,
x
‖x‖ if x /∈ B.

(1)

The following characterization of inner product spaces will be used in order to prove
our first result.

LEMMA [4]. A normed linear space (X, ‖ · ‖) with dimension not less than three
is an inner product space if and only if the radial projection P : X → B given by (1)
is nonexpansive, i.e.,

‖Px − Py‖ � ‖x − y‖, for all x, y ∈ X .

In [7], Kim and Shin proved the following result.

THEOREM. Let X be a uniformly convex Banach space satisfying Condition A
(see definition below), C a nonempty closed convex subset of X and f : C → X a
nonexpansive mapping (i.e., ‖f (x) − f (x)‖ � ‖x − y‖, x, y ∈ C ) such that f (C) is
bounded and f (∂C) ⊆ C , where ∂C is the boundary of C . For each k ∈ [0, 1) , let
xk ∈ C be the unique fixed point of the contraction Tk : C → X defined by

Tkx = kTx + (1 − k)y, x ∈ C,

where y is a fixed point in C . Then the strong limk↑1 xk exists and is a fixed point of
T .
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DEFINITION [7]. A normed linear space (X, ‖ · ‖) is said to satisfy Condition A if
given r > 0 , y ∈ Sr := {x ∈ X : ‖x‖ = r} and w /∈ Br := {x ∈ X : ‖x‖ � r} we
have

‖y − w‖ < ‖y − λw‖ for all λ > 1. (2)

Clearly Condition (A ) is equivalent to the validity of the inequality (2) for all
y, w ∈ X such that ‖y‖ = 1 and ‖w‖ > 1 . In this note we shall prove that Condition
A in fact characterizes inner product spaces with dimension not less than three; hence
the above Theorem is reduced precisely to the Theorem of Singh and Watson [10] (see
[1], [6], [12] for more and latest results about the strong convergence of {xk} ). Two
more characterizations of Hibert spaces and certain inequalities in Banach spaces will
also be obtained via the duality map (see below for definition).

PROPOSITION 1. A normed linear space (X, ‖ ·‖) satisfies Condition A if and only
if (X, ‖ · ‖) is an inner product space.

Proof. It is easily seen that an inner product space satisfies Condition A . To show
the converse assertion, by the Lemma above, it suffices to show that the radial projection
P given by (1) is nonexpansive. Towards this end, we distinguish two cases.

Case 1: ‖x‖ < 1, ‖y‖ > 1 . It follows from Condition A (with r := ‖x‖ ) that

‖Px − Py‖ =
∥∥∥x − y

‖y‖
∥∥∥ <

∥∥∥x − λ
‖y‖y

∥∥∥ (∀λ > 1)

= ‖x − y‖ (let λ = ‖y‖).
Case 2: ‖x‖ � 1, ‖y‖ � 1 . Without loss of generality we assume ‖y‖ � ‖x‖ .

For any ε > 0 and λ > 1 , Condition A yields that

‖Px − (1 + ε)Py‖ =
∥∥∥ x
‖x‖ − (1 + ε)

y
‖y‖

∥∥∥
<

∥∥∥ x
‖x‖ − λ (1 + ε)

y
‖y‖

∥∥∥
=

1
‖x‖

∥∥∥x − λ (1 + ε)
‖x‖
‖y‖y

∥∥∥
�

∥∥∥x − λ (1 + ε)
‖x‖
‖y‖y

∥∥∥ as ‖x‖ � 1.

Taking λ = (1 + ε)‖y‖/‖x‖ and then letting ε → 0 we get ‖Px − Py‖ � ‖x − y‖ .
Therefore P is nonexpansive. �

REMARK. The above proof shows that the conclusion of Proposition 1 remains
valid if the strict “< " in (2) is replaced by the nonstrict “� ", i.e., ‖y− x‖ � ‖y−λw‖
for all y ∈ B, w /∈ B , and λ > 1 .

Recall that the (normalized) duality map J : X → X∗ is defined by

J(x) = {x∗ ∈ X∗ : 〈 x, x∗〉 = ‖x‖2 = ‖x∗‖2}, x ∈ X.

It is known (cf. [5]) that X is smooth if and only if J is single-valued on X .
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In [8] and [9], Park studied the convergence of the Mann iteration for accretive
operators by imposing the following assumption on the underlying smooth Banach
space X :

〈 x − y, J(x) − J(y)〉 � ‖x − y‖2 for all x, y ∈ X . (3)

Our next result shows that the assumption (3) also characterizes Hilbert spaces; thus
reducing the main results of [8] and [9] to a Hilbert space setting which have been proved
already (cf. Bruck [2]). We shall work in a more general setting; i.e., we do not assume
smoothness, instead we use the following assumption:

〈 x − y, jx − jy〉 � ‖x − y‖2 ∀jx ∈ J(x), ∀jy ∈ J(y), x, y ∈ X. (4)

It is obvious that if X is smooth, then (4) is reduced to (3).

PROPOSITION 2. Assume that a Banach space (X, ‖ · ‖) satisfies the condition (4).
Then X is a Hilbert space.

Proof. Let x, y ∈ X and t � 0 and let jx+ty ∈ J(x + ty) satisfy

sup{〈 y, j〉 : j ∈ J(x + ty)} = 〈 y, jx+ty〉 .

Then we have for any jx ∈ J(x) ,

d+

dt
1
2
‖x + ty‖2 := lim

s↓0

1
2‖x + ty + sy‖2 − 1

2‖x + ty‖2

s

= sup{〈 y, j〉 : j ∈ J(x + ty)}
= 〈 y, jx+ty〉
=

1
t
〈 (x + ty) − x, jx+ty − jx〉 + 〈 y, jx〉

� t‖y‖2 + 〈 y, jx〉 by (4).

It follows that

1
2
‖x + y‖2 � 1

2
‖x‖2 +

∫ 1

0
t‖y‖2dt + 〈 y, jx〉

=
1
2
‖x‖2 +

1
2
‖y‖2 + 〈 y, jx〉 ,

or
‖x + y‖2 � ‖x‖2 + ‖y‖2 + 2〈 y, jx〉 , x, y ∈ X. (5)

Substitute −y for y into (5) to get

‖x − y‖2 � ‖x‖2 + ‖y‖2 − 2〈 y, jx〉 , x, y ∈ X. (6)

Adding (5) and (6) gets

‖x + y‖2 + ‖x − y‖2 � 2(‖x‖2 + ‖y‖2), x, y ∈ X. (7)

Replacing x by x+y
2 and y by x−y

2 in (7) respectively, we obtain

‖x + y‖2 + ‖x − y‖2 � 2(‖x‖2 + ‖y‖2), x, y ∈ X. (8)
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By (7) and (8) we conclude that the Parallelogram identity

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2) (9)

holds for all x, y ∈ X ; hence X is an inner product space. �

COROLLARY 1. A Banach space X is a Hilbert space if and only if the duality map
J is Lipschitz with constant one in the sense that

‖jx − jy‖ � ‖x − y‖, ∀jx ∈ J(x), ∀jy ∈ J(y), x, y ∈ X.

Next we consider the dual version to Proposition 2; namely, we consider the case
where there exists a selection j of J (i.e., a single-valued map j : X → X∗ such that
j(x) ∈ J(x) for all x ∈ X ) satisfying

〈 x − y, j(x) − j(y)〉 � ‖x − y‖2, x, y ∈ X. (10)

We shall show the inequality (10) also characterizes inner product spaces.

PROPOSITION 3. If a Banach space X satisfies the inequality (10) , then X is a
Hilbert space.

Proof. Since for every x ∈ X , J(x) = ∂ 1
2‖x‖2 , the subdifferential of the function

1
2‖ · ‖2 at x , by the subdifferential inequality, we have for x, y ∈ X and t � 0 ,

d+

dt
1
2
‖x + ty‖2 : = lim

s→t+

1
2‖x + sy‖2 − 1

2‖x + ty‖2

s − t
� 〈 y, j(x + ty)〉 .

This combined with the inequality (10) yields

d+

dt
1
2
‖x + ty‖2 � 1

t
〈 (x + ty) − x, j(x + ty) − j(x)〉 + 〈 y, j(x)〉

� t‖y‖2 + 〈 y, j(x)〉 .

Hence

1
2
‖x + y‖2 � 1

2
‖x‖2 +

∫ 1

0
(t‖y‖2 + 〈 y, j(x)〉 )dt

=
1
2
‖x‖2 +

1
2
‖y‖2 + 〈 y, j(x)〉 .

Replacing y by −y leads to

1
2
‖x − y‖2 � 1

2
‖x‖2 +

1
2
‖y‖2 − 〈 y, j(x)〉 .

Adding these last two inequalities gets

‖x + y‖2 + ‖x − y‖2 � 2(‖x‖2 + ‖y‖2) ∀x, y ∈ X.
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This is inequality (8). Replacing in (8) x by x+y
2 and y by x−y

2 , respectively yields
inequality (7). Hence the Parallelogram indentity (9) holds for all x, y ∈ X and X is
an inner product space. �

REMARK. In Proposition 3, we need that inequality (10) is valid only for some
selection j for J ; while in Proposition 2 we need the validity of inequality (4) for
all jx ∈ J(x) and jy ∈ J(y) . We do not know whether Proposition 2 is still valid if
inequality (4) holds only for some selection j of J .

COROLLARY 2 [3]. A normed linear space (X, ‖ · ‖) is an inner product space if
and only if the duality map J : X → X∗ is linear, i.e.,

J(ax + by) = aJ(x) + bJ(y) x, y ∈ X a, b ∈ R.

This means that given any jx ∈ J(x) and jy ∈ J(y) , there exists some jax+by ∈ J(ax+by)
such that ajx + bjy = jax+by .

Proof. Given x, y ∈ X and any selection j of J , we can find some jx−y ∈ J(x− y)
satisfying j(x) − j(y) = jx−y so that

〈 x − y, j(x) − j(y)〉 = 〈 x − y, jx−y〉 = ‖x − y‖2.

So Corollary 2 follows from Proposition 3. �
In the remaining part of this paper,we shall improve someBanach space inequalities

established in [11]. Recall that the moduli of convexity and smoothness of a normed
linear space X are defined respectively by

δX(ε) = inf
{

1 − ‖1
2
(x + y)‖ : ‖x‖ = ‖y‖ = 1, , ‖x − y‖ = ε

}
, 0 � ε � 2,

and

ρX(τ) = sup
{1

2
(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ = 1, , ‖y‖ = τ

}
, τ > 0.

X is uniformly convex if δX(ε) > 0 for 0 < ε � 2 and uniformly smooth if lim
τ→0

ρX(τ)
τ =

0 . Let p, q > 1 be real numbers. Then X is said to be p -uniformly convex (resp.,
q -uniformly smooth) if there is a constant c > 0 such that δX(ε) � cεp, 0 � ε � 2
(resp., ρX(τ) � cτq, τ > 0 ). It is proved in [11] that X is p -uniformly convex if and
only if there is a constant c > 0 such that for all x, y ∈ X and λ ∈ [0, 1]

‖λx + (1 − λ )y‖p � λ‖x‖p + (1 − λ )‖y‖p − Wp(λ )c‖x − y‖p, (11)

where
Wp(λ ) = λ p(1 − λ ) + λ (1 − λ )p.

It is also proved in [11] that if X is a smooth Banach space, then the dual version to
(11), i.e., the inequality

‖λx + (1 − λ )y‖q � λ‖x‖q + (1 − λ )‖y‖q − Wq(λ )c‖x − y‖q,

x, y ∈ X and λ ∈ [0, 1] (12)

characterizes uniform smoothness. Here we are going to show that the smoothness
assumption on X can be removed.
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PROPOSITION 4. Let q > 1 be a real number. Then a Banach space X is q -
uniformly smooth if and only if there is a constant c > 0 such that inequality (12)
holds.

Proof. By [11, Theorem 1′ ], it suffices to show that (12) implies the smoothness
of X . By replacing in (12) x by x+y

2 and y by x−y
2 and setting λ = 1

2 we get

1
2
(‖x + y‖q + ‖x − y‖q) � ‖x‖q + c‖y‖q, x, y ∈ X. (13)

Assume X is not smooth. Then there exists an x0 ∈ X, ‖x0‖ = 1 , and f , g ∈ X∗, f 	=
g, ‖f ‖ = ‖g‖ = 1 such that f (x0) = g(x0) = ‖x0‖ = 1 . Take y0 ∈ X, ‖y0‖ = 1 such
that (f + g)(y0) = 0 and f (y0) > 0 . It follows that for any τ > 0 ,

‖x0 + τy0‖q + ‖x0 − τy0‖q � [f (x0 + τy0)]q + [g(x0 − τy0)]q

= [1 + τf (y0)]q + [1 − τg(y0)]q

= 2[1 + τf (y0)]q as − g(y0) = f (y0)
� 2[1 + τf (y0)] as f (y0) > 0.

But inequality (13) then implies for all τ > 0 ,

1 + cτq � 1 + τf (y0) or cτq−1 � f (y0),

which is impossible since τq−1 → 0 as τ → 0+ and f (y0) > 0 . �

We now use the (generalized) duality map Jq : X → X∗ defined by

Jq(x) = {x∗ ∈ X∗ : 〈 x, x∗〉 = ‖x‖q and ‖x∗‖ = ‖x‖q−1}, x ∈ X

to characterize uniform smoothness of Banach spaces. Againwe remove the smoothness
assumption in [11].

PROPOSITION 5. Let q > 1 be a real number. Then the following are equivalent
for a Banach space X .

(i) X is q -uniformly smooth.
(ii) There is a constant c > 0 such that

‖x + y‖q � ‖x‖q + q〈 y, jq(x)〉 + c‖y‖q, ∀x, y ∈ X, ∀jq(x) ∈ Jq(x). (14)

(iii) There is a constant c̃ > 0 such that

〈 x− y, jq(x)− jq(y)〉 � c̃‖x− y‖q, ∀x, y ∈ X, ∀jq(x) ∈ Jq(x), ∀jq(y) ∈ Jq(y). (15)

Proof. (i) ⇒ (ii) . Since X is smooth, we have that Jq is single-valued and

q〈 y, Jq(x)〉 = lim
λ↓0

‖x + λy‖q − ‖x‖q

λ
, x, y ∈ X.
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By inequality (12), we have

‖x + λy‖q − ‖x‖q

λ
=

‖(1 − λ )x + λ (x + y)‖q − ‖x‖q

λ

� (1 − λ )‖x‖q + λ‖x + y‖q − Wq(λ )c‖y‖q − ‖x‖2

λ
= ‖x + y‖q − ‖x‖q − [(1 − λ )q + λ q−1(1 − λ )]c‖y‖q.

Taking the limit as λ → 0+ we obtain

q〈 y, Jq(x)〉 � ‖x + y‖q − ‖x‖q − c‖y‖q,

which is (14).
(ii) ⇒ (iii) . By (14) we have for any jq(x) ∈ Jq(x) and jq(y) ∈ Jq(y) ,

‖y‖q � ‖x‖q + q〈 y− x, jq(x)〉 + c‖y − x‖q (16)

and
‖x‖q � ‖y‖q + q〈 x − y, jq(y)〉 + c‖x − y‖q. (17)

Upon adding (17) to (16) we get

〈 x − y, jq(x) − jq(y)〉 � 2c
q
‖x − y‖q.

Hence (15) is valid with c̃ = 2c/q.
(iii) ⇒ (i) . Let jq(x + ty) ∈ Jq(x + ty) satisfy

〈 y, jq(x + ty)〉 = sup{〈 y, jq〉 : jq ∈ Jq(x + ty)}.
It then follows that

d+

dt
1
q
‖x + ty‖q := lim

s↓0

‖x + ty + sy‖q − ‖x + ty‖q

qs

= sup{〈 y, jq〉 : jq ∈ Jq(x + ty)}
= 〈 y, jq(x + ty)〉
=

1
t
〈 (x + ty) − x, jq(x + ty) − jq(x)〉 + 〈 y, jq(x)〉

� c̃tq−1‖y‖q + 〈 y, jq(x)〉 by (15).

Therefore,

‖x + y‖q � ‖x‖q + q
∫ 1

0
(c̃tq−1‖y‖q + 〈 y, jq(x)〉 )dt,

or
‖x + y‖q � ‖x‖q + c̃‖y‖q + q〈 y, jq(x)〉 ∀x, y ∈ X, ∀jq(x) ∈ Jq(x). (18)

Now for any λ ∈ [0, 1] , write z = λx + (1 − λ )y . Then by (18) we have

‖x‖q � ‖z‖q + c̃‖x − z‖q + q〈 x− z, jq(z)〉 (19)
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and
‖y‖q � ‖z‖q + c̃‖y − z‖q + q〈 y − z, jq(z)〉 . (20)

Since x− z = (1− λ )(x− y) and y− z = λ (y− x) , it follows from (19) and (20) that

λ‖x‖q + (1 − λ )‖y‖q � ‖z‖q + c̃[λ (1 − λ )q + λ q(1 − λ )]‖x − y‖q.

Hence (12) holds with c = c̃ and X is q -uniformly smooth by Propositon 4. �
Finally we state the local versions of Propositoins 4 and 5 which again delete the

smoothness assumption imposed on the space X in [11]. The proofs are omitted here as
they are similar to those of Propositions 4 and 5. Recall that Br = {x ∈ X : ‖x‖ � r}
is the closed ball centered at the origin with radius r > 0 . Let Γ be the family of
continuous, strictly increasing and convex functions g : [0,∞) → [0,∞) such that
limτ→0+ g(τ)/τ = 0 .

PROPOSITION 6. Let q > 1 and r > 0 be given. Then the following are equivalent
for a Banach space X .

(i) X is uniformly smooth.
(ii) There exists a g ∈ Γ (depending on r ) such that

‖λx + (1 − λ )y‖q � λ‖x‖q + (1 − λ )‖y‖q − Wq(λ )g(‖x − y‖) ∀x, y ∈ Br.

(iii) There exists a g ∈ Γ (depending on r ) such that

‖x + y‖q � ‖x‖q + q〈 y, jq(x)〉 + g(‖y‖) ∀x, y ∈ Br, ∀jq(x) ∈ Jq(x).

(iv) There exists a g ∈ Γ (depending on r ) such that

〈 x − y, jq(x) − jq(y)〉 � g(‖x − y‖) ∀x, y ∈ Br, ∀jq(x) ∈ Jq(x), ∀jq(y) ∈ Jq(y).
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