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Abstract. As further extensions of the main result in [11], we show the following result.
Let A � B � 0 with A > 0 . For each t ∈ [0, 1] and p � t , the following (i) and (ii)

hold for a fixed real number q and they are mutually equivalent:
(i) if q � 0 , then

Gp,q,t(A,B, r, s) = A
−r
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2

is decreasing for r � t and s � 1 such that (p − t)s � q − t .
(ii) if p � q , then

Gp,q,t(A,B, r, s) = A
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is decreasing for s � 1 and r � max{t, t − q} .

1. Introduction

A capital letter means a bounded linear operator on a complex Hilbert space H . An
operator T is said to be positive (denoted by T � 0 ) if (Tx, x) � 0 for all x ∈ H and
also an operator T is said to be strictly positive (denoted by T > 0 ) if T is positive and
invertible. The following Theorem F is an extension of the celebrated Löwner-Heinz
theorem which asserts: A � B � 0 ensures Aα � Bα for any α ∈ [0, 1] .

THEOREM F. (Furuta inequality) [6] If A � B � 0 , then for each r � 0
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hold for p � 0 and q � 1 with (1 + r)q � p + r.
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Figure

We remark that Theorem F yields the Löwner-Heinz theorem when we put r = 0 .
Alternative proofs of Theorem F are given in [3] and [12] and also an elementary one
page proof in [7]. It is shown in [13] that the domain drawn for p , q and r in the
Figure is the best possible one for Theorem F. We established the following Theorem A
as extensions of Theorem F.

THEOREM A. [10] If A � B � 0 with A > 0 , then for each t ∈ [0, 1] and p � 1 ,

Fp,t(A, B, r, s) = A
−r

2 {Ar
2 (A
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2 )sA
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2 } 1−t+r

(p−t)s+r A
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2

is decreasing for r � t and s � 1 and Fp,t(A, A, r, s) � Fp,t(A, B, r, s) , that is, for
each t ∈ [0, 1] and p � 1 ,

A1−t+r � {Ar
2 (A

−t
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−t
2 )sA

r
2 } 1−t+r

(p−t)s+r (1.1)

holds for any s � 1 and r such that r � t .

Recently a nice mean theoretic proof of Theorem A is shown in [5]. Ando-Hiai [2]
established excellent log majorization results and proved the useful inequality equivalent
to the main log majorization theorem as follows; If A � B � 0 with A > 0 , then

Ar � {Ar
2 (A

−1
2 BpA

−1
2 )rA

r
2 } 1

p

holds for any p � 1 and r � 1 . Theorem A interpolates the inequality stated above by
Ando-Hiai and Theorem F itself and also extends results of [4][8] and [9].

We write A � B if log A � log B for invertible positive operator A and B which
is called the chaotic order [4] and related results on chaotic order are discussed in [1]
and [4].

Very recently the following results are obtained as an extension of Theorem A.
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THEOREM B. [11] Let A � B � 0 with A > 0 . For each t ∈ [0, 1] , q � 0 and
p � max{q, t} ,

Gp,q,t(A, B, r, s) = A
−r

2 {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } q−t+r

(p−t)s+r A
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2

is decreasing for r � t and s � 1 .

In this paper, we show Theorem 1 by using Theorem F and we show Theorem 2
which is an extension of Theorem B and Corollary 3 by using Theorem 1.

2. Results

THEOREM 1. Let A and B be positive invertible operators on a Hilbert space
satisfying

A � (A
1
2 BA

1
2 )

β0
α0+β0 for fixed α0 � 0 and β0 � 0 with α0 + β0 > 0 . (2.0)

Then the following (i) and (ii) hold and they are mutually equivalent:
(i) For any fixed δ � −β0 ,

f (λ ,μ) = A
−μ

2 (A
μ
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μ
2 )

δ+β0μ
α0λ+β0μ A

−μ
2 (2.1)

is decreasing for μ � 1 and λ � 1 such that α0λ � δ .
(ii) For any fixed δ � α0 ,

f (λ ,μ) = A
−μ

2 (A
μ
2 BλA

μ
2 )

δ+β0μ
α0λ+β0μ A

−μ
2 (2.2)

is decreasing for λ � 1 and μ � 1 such that β0μ � −δ .

Applying Theorem 1, we obtain the following extension of Theorem B.

THEOREM 2. Let A � B � 0 with A > 0 . For each t ∈ [0, 1] and p � t , the
following (i) and (ii) hold for a fixed real number q and they are mutually equivalent:

(i) if q � 0 , then

Gp,q,t(A, B, r, s) = A
−r

2 {Ar
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2

is decreasing for r � t and s � 1 such that (p − t)s � q − t .
(ii) if p � q , then

Gp,q,t(A, B, r, s) = A
−r

2 {Ar
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2 } q−t+r
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2

is decreasing for s � 1 and r � max{t, t − q} .

Also Theorem 1 implies the following characterization of chaotic order.
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COROLLARY 3. The following assertions are mutually equivalent:
(i) A � B (i.e., log A � log B ).
(ii) For any fixed q � 0 ,

Fq(p, r) = A
−r

2 (A
r
2 BpA

r
2 )

q+r
p+r A

−r
2

is decreasing for p � q and r � 0 .
(iii) For any fixed q � 0 ,

Fq(p, r) = A
−r

2 (A
r
2 BpA

r
2 )

q+r
p+r A

−r
2

is decreasing for p � 0 and r � −q .

The equivalence relation between (i) and (ii) is shown in [4, 9].

3. Proofs of results

We need the following lemmas to give proofs of the results in §2.

LEMMA 1. [10]Let A > 0 and B be an invertible operator. For any real number λ

(BAB∗)λ = BA
1
2 (A

1
2 B∗BA

1
2 )λ−1A

1
2 B∗.

LEMMA 2. Let A and B be positive invertible operators on a Hilbert space
satisfying

A � (A
1
2 BA

1
2 )

β0
α0+β0 for fixed α0 � 0 and β0 � 0 with α0 + β0 > 0 . (3.0)

Then the following inequality holds

Aμ � (A
μ
2 BλA

μ
2 )

β0μ
α0λ+β0μ for λ � 1 and μ � 1 . (3.1)

Proof. In case β0 = 0 , (3.0) means A � I , obviously Aμ � I holds for any
μ � 1 , so that (3.1) holds. In case α0 = 0 , (3.0) means I � B , obviously I � Bλ

holds for any λ � 1 , so that (3.1) holds too. Therefore we have only to consider the
case α0 > 0 and β0 > 0 . Applying Theorem F to (3.0), we have

A1+r � {Ar
2 (A

1
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1
2 )

β0p
α0+β0 A

r
2 } 1+r

p+r for any p � 1 and r � 0 . (3.2)

Putting p = α0+β0

β0
� 1 in (3.2), we have

A1+r � (A
1
2 (1+r)BA

1
2 (1+r))

(1+r)β0
α0+β0+β0r . (3.3)

Put μ = 1 + r � 1 in (3.3), then we have

Aμ � (A
μ
2 BA

μ
2 )

β0μ
α0+β0μ for μ � 1 . (3.4)
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(3.4) is equivalent to the following (3.5) by Lemma 1

(B
1
2 AμB

1
2 )

α0
α0+β0μ � B for μ � 1 . (3.5)

Again applying Theorem F to (3.5), we have
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p+r � B1+r for any p � 1 and r � 0 . (3.6)

Putting p = α0+β0μ
α0

� 1 in (3.6), we have

(B
1
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1
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(1+r)α0
α0+β0μ+α0r � B1+r for any r � 0 . (3.7)

Put λ = 1 + r � 1 in (3.7), then we have

(B
λ
2 AμB

λ
2 )

α0λ
α0λ+β0μ � Bλ for λ � 1 and μ � 1 , (3.8)

hence proof of Lemma 2 is complete since (3.8) is equivalent to (3.1) by lemma 1.

Proof of Theorem 1.
Proof of (i) . We recall the following condition on δ , α0 , β0 and λ in (i):

for any fixed δ � −β0 and λ � 1 such that α0λ � δ . (3.9)

(a) Proof of the result that f (λ ,μ) is decreasing for λ � 1 such that α0λ � δ
for any fixed δ � −β0 .

The hypothesis in Theorem 1 ensures (3.1) by Lemma 2

Aμ � (A
μ
2 BλA

μ
2 )
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α0λ+β0μ for λ � 1 and μ � 1 (3.1)

and (3.1) is equivalent to the following (3.10) by Lemma 1
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(3.10) yields the following (3.11) by Löwner-Heinz theorem
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Then we have

g(λ ) = (A
μ
2 BλA

μ
2 )

δ+β0μ
α0λ+β0μ

= {(A μ
2 BλA

μ
2 )

α0λ+β0μ+α0w
α0λ+β0μ }

δ+β0μ
α0λ+β0μ+α0w

= {A μ
2 B

λ
2 (B

λ
2 AμB

λ
2 )

α0w
α0λ+β0μ B

λ
2 A

μ
2 }

δ+β0μ
α0λ+β0μ+α0w by Lemma 1

� (A
μ
2 B

λ
2 BwB

λ
2 A

μ
2 )

δ+β0μ
α0 (λ+w)+β0μ

= (A
μ
2 Bλ+wA

μ
2 )

δ+β0μ
α0(λ+w)+β0μ = g(λ + w)



128 T. FURUTA, T. YAMAZAKI AND M. YANAGIDA

and the last inequality holds by (3.11) and Löwner-Heinz theorem since δ+β0μ
α0λ+β0μ+α0w

∈
[0, 1] holds by (3.9). Hence f (λ ,μ) = A

−μ
2 g(λ )A

−μ
2 is decreasing for λ � 1 such

that α0λ � δ for any fixed δ � −β0 .

(b) Proof of the result that f (λ ,μ) is decreasing for μ � 1 .
(3.1) yield the following (3.12) by Löwner-Heinz theorem

Av � (A
μ
2 BλA

μ
2 )

β0v
α0λ+β0μ for λ � 1, μ � 1 and any

v such that μ � v � 0. (3.12)

Then we have
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2
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λ
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� B
λ
2 (B

λ
2 A

μ
2 AvA

μ
2 B

λ
2 )

δ−α0λ
α0λ+β0 (μ+v) B

λ
2

= B
λ
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λ
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λ
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λ
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and the last inequality holds by (3.12) and Löwner-Heinz theorem since δ−α0λ
α0λ+β0μ+β0v

∈
[−1, 0] by the condition (3.9), and taking inverses. Hence f (λ ,μ) is decreasing for
μ � 1 .

Proof of (ii) . We recall the following condition on δ , α0 , β0 and μ in (ii) :

for any fixed δ � α0 and μ � 1 such that β0μ � −δ . (3.13)

(3.0) is equivalent to the following (3.14)

B−1 � (B
−1

2 A−1B
−1

2 )
α0

α0+β0 for fixed α0 � 0 and β0 � 0 with α0 + β0 > 0 (3.14)

by Lemma 1 and taking inverses of both sides. We recall that (3.14) just corresponds
to (3.0) when replace A by B−1 and B by A−1 in (3.0) and moreover replace α0 by
β0 and replace β0 by α0 and

f (λ ,μ) = A
−μ

2 (A
μ
2 BλA

μ
2 )

δ+β0μ
α0λ+β0μ A

−μ
2

= (B−1)
−λ

2 {(B−1)
λ
2 (A−1)μ(B−1)

λ
2 )

−δ+α0λ
β0μ+α0λ (B−1)

−λ
2 ,

(3.15)

by applying (i) , for any fixed −δ � −α0 , f (λ ,μ) is decreasing for λ � 1 and μ � 1
such that β0μ � −δ ,that is, f (λ ,μ) is decreasing for λ � 1 and μ � 1 under the
condition (3.13) by (3.15), so the proof of (ii) is complete. The equivalence relation
between (i) and (ii) is obvious by scrutinizing the proof of (i) and (ii) .
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Consequently we have finished a proof of Theorem 1 by (i) and (ii) .

Proof of Theorem 2. We may assume that A and B are both invertible in the proof.
In case t = 0 , the result follows by [8, Theorem 3], so we have only to consider the
case p � t > 0 .

Proof of (i) . Put X = A
−t

2 BpA
−t
2 . Then X is positive invertible and we have

A
t
2 XA

t
2 = Bp and A � (A

t
2 XA

t
2 )

1
p by the hypothesis A � B � 0 . Put β0 = t ∈ (0, 1]

and α0 = p − t � 0 . Then A � (A
t
2 XA

t
2 )

1
α0+β0 , so that

At � (A
t
2 XA

t
2 )

β0
α0+β0 (3.16)

holds by Löwner-Heinz theorem. Put r = μβ0 = μt � t for μ � 1 and δ = q − t .
As δ � −β0 holds by q � 0 , by using Theorem 1,

f (s,μ) = A
−μ t

2 (A
μ t
2 XsA

μ t
2 )

δ+μ t
α0s+μ t A

−μ t
2

= A
−r

2 {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } q−t+r

(p−t)s+r A
−r

2

= Gp,q,t(A, B, r, s) (3.17)

is decreasing for r � t and s � 1 such that (p − t)s � q − t because f (s,μ) is
decreasing for μ � 1 and s � 1 such that α0s � δ by (i) of Theorem 1. Whence the
proof of (i) is complete.

Proof of (ii) . The condition p � q and r � max{t, t − q} in (ii) satisfy δ � α0

and β0μ � −δ in the conditions of (ii) in Theorem 1, so that Gp,q,t(A, B, r, s) is
decreasing for s � 1 and r � max{t, t − q} by (ii) of Theorem 1 and (3.17). The
equivalence relation between (i) and (ii) follows by Theorem 1. Whence the proof of
Theorem 2 is complete.

Proof of Theorem B. We have only to put p � q in (i) of Theorem 2, or put q � 0
in (ii) of Theorem 2.

Proof of Corollary 3. We recall the following (3.18) in [4, 9], which is an extension
of [1]:

A � B holds if and only if Ar � (A
r
2 BpA

r
2 )

r
p+r for all p � 0 and r � 0 . (3.18)

(i) =⇒ (ii) . Assume (i) . As (3.18) holds, by (i) of Theorem 1, for any fixed
q � 0

f (λ ,μ) = A
−rμ

2 (A
rμ
2 BpλA

rμ
2 )

q+rμ
pλ+rμ A

−rμ
2

is decreasing for μ � 1 and λ � 1 such that pλ � q , that is, for any fixed q � 0 ,
Fq(p, r) is decreasing for p � q and r � 0 .

(ii) =⇒ (i) . Assume that Fq(p, r) is decreasing for r � 0 . Then F0(p, 0) �
F0(p, r) holds, that is, I � A− r

2 (A
r
2 BpA

r
2 )

r
p+r A− r

2 , so that Ar � (A
r
2 BpA

r
2 )

r
p+r for all

p � 0 and r � 0 , which is equivalent to A � B by (3.18).
(ii) ⇐⇒ (iii) follows by the equivalence between (i) and (ii) of Theorem 1.
Hence the proof of Corollary 3 is complete.
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