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A GENERALIZATION OF YOUNG’S �p INEQUALITY
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(communicated by J. Pečarić)

Abstract. We show that, for positive real numbers with a � 1 +
∑N

i αi , the function

ra
a∏N

i=1 xαi
i

has a convex conjugate of the same form and so, in particular, obtain a clean proof that f is
convex.

1. Introduction

The simplest version of Young’s inequality ([6], [3], [5]) asserts that for comple-
mentary real numbers 1 < p, q < ∞ with (p − 1)(q − 1) = 1

1
p
|x|p +

1
q
|y|q � x y

for all real numbers x and y with equality exactly if

y = xp−1sign(x) ⇐⇒ x = yq−1sign(y).

This result plays a fundamental role in the theory of L p spaces ([6]) leading,
for example, to a transparent proof of Hölder’s inequality and to a simple proof of
Minkowski’s inequality. One attractive way of proving this is by introducing the convex
conjugate (also called the Fenchel conjugate)

f ∗(s) := sup
r

r s − f (r)

of an extended real–valued function f : R → [−∞,∞] and its multidimensional ana-
logue

f ∗(y) := sup
x
〈 x, y〉 − f (x)

of an extended real-valued function f : RN → [−∞,∞] . The conjugate is necessarily
convex as the supremum of affine functions ([5]). Moreover, a proper (i.e., somewhere
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finite) function f is lower semicontinuous and convex if and only if f = f ∗∗ . Our
usage throughout is consistent with that of Rockafellar ([5]).

This also suggests that a powerful way of establishing convexity of a function is
by realizing it as the conjugate of some other function. Indeed, with the advent of
symbolic computation this also leads to a class of functions that can be proved convex
in Maple. In this language, Young’s inequalilty is recaptured from the observation that
for conjugate real numbers 1 < p, q < ∞ with (p − 1)(q − 1) = 1

f : x → 1
p
|x|p

has conjugate

g: y → 1
q
|y|q

with the equality being a statement about the subgradients (see below) of a function
and its conjugate ([5]). Correspondingly, in N dimensions we are asserting that the
conjugate of 1

p‖ · ‖p
p is the dual 1

q‖ · ‖q
q .

Observe that for any function f we have from the definition of the conjugate that

f (x) + f ∗(y) � 〈 x, y〉 (YI)

for all vectors x and y . This is the general form of Young’s inequality. It produces the
best inequality of the given form, in the sense that if f (x) + g(y) � 〈 x, y〉 holds uni-
versally, then necessarily g(y) � f ∗(y) . Moreover, for a proper lower semicontinuous
convex function, the subgradient, ∂f , defined by

∂f (x) := {y : 〈 y, h〉 � f (x + h) − f (x), ∀ h ∈ RN}
is easily seen to coincide with

{y : 〈 y, x〉 = f (x) + f ∗(y)}
and so, in addition,

y ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(y)

if and only if equality is obtained in (YI). Finally we note that when f is differentiable
at x then { ∇f (x)} = ∂f (x) so that the conjugate allows one to invert derivatives.

The main business of this note is to compute the conjugate of the function

ra

a∏N
i=1 xαi

i

whose conjugate is of the same form and so, in particular, is convex as soon as a �
1 +

∑N
i αi . This both illustrates conjugate analysis in action and provides a somewhat

surprising explicit formula. It also supplies a large class of test examples for symbolic
convex computation.

When αi ≡ 0 we see that we reduce to ra

a .
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2. Some Conjugate Formulae.

Let positive numbers a,α1, · · · ,αN be given satisfying a > 1+α,α :=
∑N

i=1 αi .
Let x := (x1, · · · , xN) , y := (y1, · · · , yN) when appropriate and define

f (x, r) := f (x1, · · · , xN , r) :=
ra

a∏N
i=1 xαi

i

for r � 0, x1, · · · , xN > 0 .

It is convenient to start by computing the conjugate for the function obtained when
r ≡ 1 .

LEMMA 1. Let x1 > 0, · · · , xN > 0 and γ1 > 0, · · · , γN > 0 be given. Let

g(x) :=
1∏N

i=1 xγii
.

(a) Then

g∗(y) := −(γ + 1)
N∏

i=1

{−yi

γi

} γi
γ+1

,

where γ :=
∑N

i=1 γi.
(b) Moreover,

g(x) = g∗∗(x)
for all x and so g is convex.

Proof. Part (a) . Let Δ(x) := ln(g(x)) . Then g(x) := eΔ(x) where

Δ(x) := −
N∑

i=1

γi ln(xi).

Now we may apply the formula for the conjugate of a composition with an increasing
convex function. In general terms, this is

(mF)∗(y) := inf
t�0

{m∗(t) + t F∗(
y
t
)},

which is certainly valid when m is everywhere finite ([1], p. 69). Here we use
the convention that 0 F∗( y

0 ) denotes the recession function of F∗ at y which gives
supF(x)<∞〈 y, x〉 . Applied to e and Δ this yields

g∗(y) := inf
t�0

{t ln(t)− t + t Δ∗
(

y
t

)
} = inf

t
{t ln(t)− t + t

N∑
i=1

γi {−1− ln

(−yi

tγi

)
}}.

This may be directly minimized and obtains its minimum at t0 := e
(−L
γ+1

)
, where

L := −
N∑

i=1

γi ln

(−yi

γi

)
.
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Now substitution and simplification completes the proof of (a).

Part (b) follows from a similar computation applied to ln(g∗(y)) . �

Now we can prove our main formula.

THEOREM 1. (a) Under the hypotheses above, for s � 0, y1, · · · , yN < 0

f ∗(y1, ...., yN , s) := Γ
sb

b∏N
i=1(−yi)βi

where

b :=
a

a − (α + 1)
, βi :=

αi

a − (α + 1)

and

Γ :=
N∏

i=1

{
βi

b

}βi

=
N∏

i=1

{αi

a

}βi

.

(b) In particular b � 1 + β , β :=
∑N

i βi , and so in essence f and f ∗ are
symmetric whence f ∗∗ = f and f is convex.

Proof. To establish (a) we argue as follows.

f ∗(y1, · · · , yN , s) := sup
r

{
rs + sup

x
〈 x, y〉 −

ra

a∏N
i=1 xαi

i

}
.

The inner conjugate is ra

a g∗
( ay

ra
)

where

g(x) := f (x1, · · · , xn, 1) =
1∏N

i=1 xαi
i

.

In combination with Lemma 1, this yields

f ∗(y1, · · · , yN , s) = sup
r

{
rs − (−g∗(y))

(
ra

a

) 1
1+α

}

and now some care with computing the remaining one–dimensional conjugate produces
the desired result.

Part (b) now follows easily since the function defined by h(y) := g(−y) has
conjugate satisfying h∗(x) = g∗(−x) . �

Iterated conjugation, as used above is a very useful tool in symbolic or numeric
computation of conjugates. Convexity is established in ([4]) by other methods but the
conjugate is not considered. In ([4]) and in ([2]) a central motivation is the use of the
function as a barrier or interior penalty function.
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3. Additional Comments

(a) For N := 0 , this recovers Young’s result that ra

a has conjugate sb

b , whenever a
and b are complementary. It is a simple matter to replace r and s by |r| and |s|
respectively.

(b) Obviously it is now possible to explicitly characterize equality in the Young’s
inequality f (x, r) + f ∗(y, s) � rs + 〈 x, y〉 . Moreover, the smoothness of the
conjugate establishes the strict convexity of the function.

(c) The result remains true when a = α + 1 . One can argue directly (via homog-
enization), and one can also derive the result by taking limits in Theorem 1. In
this case f ∗(y, s) is “roughly" the indicator function of {(y, s) : g∗(y) + s � 0} .
Here as elsewhere we keep the implicit sign constraints on x and y .

(d) One may make the result totally symmetric (i.e., “distribute" Γ better). Let

Λ :=
N∏

i=1

{αi

a

} αi
2

whence Λ∗ :=
N∏

i=1

{
βi

b

} βi
2

Let ε := a − (α + 1) and η := b − (β + 1). Then ηε = 1 and

Λ
ra

a
∏N

i=1 xαi
i

and Λ∗ sb

b
∏N

i=1(−yi)βi
,

are conjugate. Theorem 1 can clearly be recast in this way. It is also then possible
to write the conditions on αi and βi entirely symmetrically. Hence, we have

Λ
ra

a
∏N

i=1 xαi
i

+ Λ∗ sb

b
∏N

i=1(−yi)βi
� r s + 〈 x, y〉 .

(e) The formula is most symmetric when ε = a − (α + 1) = 1 . For example, if
N := 1 and a := 3 then α := 1 , and we see that r3

3
√

3x
has conjugate s3

3
√

3(−y)
.

More generally we see that for a := 2 +
∑N

I=1 αi , the function

f (x, r) :=
N∏

i=1

{αi

a

} αi
2 ra

a
∏N

i=1 xαi
i

satisfies f ∗(y, s) = f (−y, s) and so f (x, r) + f (y, s) � r s − 〈 x, y〉 , and f is
self–conjugate up to a minus sign. For αi ≡ α

N we have

f (x, r) =
{ α

Na

} α
2 ra

a{∏N
i=1 xi}α/N

.

(f ) Finally, we observe that the argument in Imai ([2]) shows that for a � N the
function

ra

a∏N
i=1 xi

is convex for x in the simplex {x :
∑

xi = 1, xi > 0} . Our result only shows
this for a � N + 1 , but in Imai’s setting the denominator parameters can not be
generalized asymmetrically as above.
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