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THE INTEGRAL ANALOGUE OF THE HARDY–LITTLEWOOD

L logL –INEQUALITY FOR BROWNIAN MOTION

GORAN PESKIR

Abstract. Let B = (Bt)t�0 be standard Brownian motion started at zero. Then the following
inequality is shown to be satisfied:
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for all stopping times τ for B and all c > 1/2 . The stopping times at which the equality is
attained are of the form:

τc = inf
{

t > 0 | St − αXt � β
}

where α = 1 + 1/(2c − 1) , β = 1/(2c − 1) , Xt = |Bt| and St = max0�r�t |Br| . Taking
infimum over all c > 1/2 we obtain:
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for all stopping times τ for B . This inequality is sharp (the equality is attained at each τc
for all c > 1/2 ). In view of Itô-Tanaka’s formula these inequalities may be thought of as the
integral analogues (for reflected Brownian motion) of the classical L log L -inequality of Hardy
and Littlewood. The proof is based upon solving the optimal stopping problem:

V = sup
τ

E
(
Sτ − cIτ

)

where Iτ =
∫ τ
0 (1 + |Bt|)−1dt . The payoff V is shown to be finite if and only if c > 1/2 , and

in this case V = 1/(2c − 1) . The optimal stopping problem is solved by applying the principle
of smooth fit and the maximality principle. All results extend to the case when Brownian motion
B starts at any given point.
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