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THE INTEGRAL ANALOGUE OF THE HARDY-LITTLEWOOD
Llog L-INEQUALITY FOR BROWNIAN MOTION

GORAN PESKIR

Abstract. Let B = (Bt);>o be standard Brownian motion started at zero. Then the following
inequality is shown to be satisfied:

E( max |Bi|| <cE /Ti +;
<<t s o 1+ |B 2¢—1

for all stopping times 7 for B and all ¢ > 1/2 . The stopping times at which the equality is
attained are of the form:

Tc:inf{t>O\St—aX,>ﬁ}

where & = 1+1/(2c—1), B=1/(2c—1), X; = |B/| and S; = maxyg, <, |Br|. Taking
infimum over all ¢ > 1/2 we obtain:

1 Toodt Toodt /2
E( max B/ | < <E +\/§E/—
<o<t<r| t|) =2 </0 1+Bt|) ( o 1+|B

for all stopping times 7 for B. This inequality is sharp (the equality is attained at each 7.
for all ¢ > 1/2). In view of Itd-Tanaka’s formula these inequalities may be thought of as the
integral analogues (for reflected Brownian motion) of the classical Llog L -inequality of Hardy
and Littlewood. The proof is based upon solving the optimal stopping problem:

V= supE(ST — cIT)
T

where I; = fOT(l + |By|)~'dr. The payoff V is shown to be finite if and only if ¢ > 1/2, and
in this case V = 1/(2¢ — 1) . The optimal stopping problem is solved by applying the principle
of smooth fit and the maximality principle. All results extend to the case when Brownian motion
B starts at any given point.
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