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(communicated by J. Pečarić)

Abstract. Let B = (Bt)t�0 be standard Brownian motion started at zero. Then the following
inequality is shown to be satisfied:
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for all stopping times τ for B and all c > 1/2 . The stopping times at which the equality is
attained are of the form:

τc = inf
{

t > 0 | St − αXt � β
}

where α = 1 + 1/(2c − 1) , β = 1/(2c − 1) , Xt = |Bt| and St = max0�r�t |Br| . Taking
infimum over all c > 1/2 we obtain:
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for all stopping times τ for B . This inequality is sharp (the equality is attained at each τc
for all c > 1/2 ). In view of Itô-Tanaka’s formula these inequalities may be thought of as the
integral analogues (for reflected Brownian motion) of the classical L log L -inequality of Hardy
and Littlewood. The proof is based upon solving the optimal stopping problem:

V = sup
τ

E
(
Sτ − cIτ

)

where Iτ =
∫ τ
0 (1 + |Bt|)−1dt . The payoff V is shown to be finite if and only if c > 1/2 , and

in this case V = 1/(2c − 1) . The optimal stopping problem is solved by applying the principle
of smooth fit and the maximality principle. All results extend to the case when Brownian motion
B starts at any given point.

1. Description of the problem and results

1. Let B = (Bt)t�0 be standard Brownian motion started at zero. Then the
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following integral inequalities are known to be valid (see [8]):

ApE
(
τ1+p/2

)
� E

(∫ τ

0
|Bt|pdt

)
� BpE

(
τ1+p/2

)
(1.1)

for all stopping times τ for B , and all p > −1 , where Ap and Bp are some universal
constants. Recalling Burkholder-Gundy’s inequalities (see [1]):

CqE
(
τq/2

)
� E

(
max
0�t�τ

|Bt|q
)

� DqE
(
τq/2

)
(1.2)

for q > 0 where Cq and Dq are some universal constants, we find that:

FpE
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0
|Bt|pdt

)
� E
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max
0�t�τ

|Bt|2+p

)
� GpE

(∫ τ

0
|Bt|pdt

)
(1.3)

for all stopping times τ for B , and all p > −1 , where Fp and Gp are some universal
constants. The best values for Ap and Bp in (1.1) are known (see [8]). The best
values for Cq and Dq in (1.2) are only known in the case q = 2 . In this case (due
to E(τ) = E|Bτ |2 whenever E(τ) < ∞ ) the right-hand inequality in (1.2) reduces to
Doob’s maximal inequality (see [2] and [10]). The same fact extends to all inequalities
(1.3). By Itô’s formula and the optional sampling theorem we find that:

E

(∫ τ

0
|Bt|pdt

)
= HpE|Bτ |p+2 (1.4)

with Hp = 2/(p+2)(p+1) , for all p > −1 , and all stopping times τ for B for which
{|Bτ∧n|p+2 : n � 1} is uniformly integrable. This shows that the right-hand inequality
in (1.3) is in fact Doob’s maximal inequality [2], so that the best values for Fp and Gp

in (1.3) are known (see [10]). The advantage of the integral formulation (1.3) may lie
in the fact that these inequalities hold for all stopping times τ for B , and no (uniform)
integrability condition has to be imposed (as in the case of Doob’s maximal inequality).

2. In this paper we shall address the case p = −1 in (1.3) when these inequalities
fail to hold. The principal problem lies in the fact that:

E

(∫ τ

0

dt
|Bt|
)

= ∞ (1.5)

for any stopping time τ for B for which Bτ �≡ 0 P -a.s. (see (1.11) below). Thus we
want to address the problem on how to modify the functional t �→ |Bt|−1 in an optimal
way so that (1.3) remain valid. In this paper we only focus to the right-hand inequality
in (1.3), but the left-hand side could be treated similarly. Our main observation is that
the functional t �→ |Bt|−1 can be optimally replaced by the functional t �→ (1+ |Bt|)−1 .
In Theorem 2.1 below we prove that:
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(1.6)
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for all stopping times τ for B and all c > 1/2 . This inequality is sharp for any given
and fixed c > 1/2 , and the equality is attained at the stopping time:

τc = inf
{
t > 0 | St − αXt � β

}
(1.7)

where α = 1 + 1/(2c − 1) , β = 1/(2c − 1) , Xt = |Bt| and St = max0�r�t |Br| .
Taking infimum in (1.6) over all c > 1/2 , we obtain the following inequality:
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)
+
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)1/2

(1.8)

for all stopping times τ for B . This inequality is again sharp, and moreover the equality
in (1.8) is attained at each τc from (1.7) for all c > 1/2 . In addition, we see that this
inequality gives a more precise information on the limiting case c ↓ 1/2 in (1.6), as
well as a better bound on its left-hand side for small stopping times (when τ ≡ 0 the
equality in (1.8) is attained while this fails in (1.6)). A disadvantage of the inequality
(1.8) is that it involves two terms on the right-hand side, so that it doesn’t appear as
elegant as the inequalities (1.3). However, it seems to be a heart of the matter in the
case p = −1 .

3. In viewof Itô-Tanaka’s formula (applied to F(Xt) with F(x) = (1+x) log(1+x)
so that F′′(x) = 1/(1 + x) ) we see that the inequalities (1.6) and (1.8) may be thought
of as the integral analogous of the classical L logL -inequality of Hardy and Littlewood
(see [7], [2] and [4]). In fact, we shall see in the proof of Theorem 2.1 below that:

E

(∫ τ

0

dt
1 + |Bt|

)
= 2E

((
1 + |Bτ |

)
log
(
1 + |Bτ |

)− |Bτ |
)

(1.9)

for all stopping times τ for B satisfying E(τr) < ∞ for some r > 1/2 . For
comparison, recall that the classical L logL -inequality of Hardy and Littlewood states:

E

(
max
0�t�τ

|Bt|
)

� K

(
1 + E

(
|Bτ | log+ |Bτ |

))
(1.10)

for all stopping times τ for B . (This inequality remains valid if the plus sign is removed
from log+ . The best values for the constant K are known in both cases (see [4]). For a
new probabilistic proof in both cases which exhibit the optimal stopping times we refer
to [6].) From (1.9) and (1.10) we see that the bound obtained on the right-hand side in
(1.6) is in essence an L logL -bound of Hardy and Littlewood, and thus it is generally
known to be best possible (for |Bτ | large). It is interesting to observe that in the classical
L logL -inequality we should have F(x) = x log x in order that F′′(x) = 1/x , which
would (after applying Itô-Tanaka’s formula to F(Xt) ) correspond to the case p = −1
in (1.3). Note, however, that (1.9) extends as follows:

E

(∫ τ

0

dt
ε + |Bt|

)
= 2E

((
ε + |Bτ |

)
log
(
ε + |Bτ |

)− (1 + log ε)|Bτ |
)

(1.11)

for all ε > 0 and all stopping times τ for B satisfying E(τr) < ∞ for some r > 1/2 .
Letting ε ↓ 0 we see that this expression tends to infinity (whenever Bτ �≡ 0 P -a.s.)
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due to the log term on the right-hand side. The functional t �→ (1 + |Bt|)−1 seems
particularly interesting since F′(x) = 1 + log(1 + x) for F(x) = (1 + x) log(1 + x) , so
that F′(0) = 1 , and after applying Itô-Tanaka’s formula to F(Xt) , the first derivative
term equals a Brownian motion plus the local time of X at zero (see proof of Theorem
2.1 below) which leads to the identity (1.9). Finally, note that the inequality (1.8) is
a refinement of the inequalities (1.6) and (1.10). Its clear advantage upon (1.6) and
(1.10) is its sharpness for small stopping times τ .

4. The proof is based upon solving the optimal stopping problem with the payoff:

V = sup
τ

E
(
Sτ − cIτ

)
(1.12)

where Iτ =
∫ τ

0 (1 + |Bt|)−1dt and the supremum is taken over all stopping times τ for
B satisfying E(Iτ) < ∞ . We show that V is finite if and only if c > 1/2 , and in this
case V = 1/(2c − 1) . The optimal stopping problem is two-dimensional (due to the
fact that (X, S) is a Markov process) so that the main difficulty is to choose the optimal
stopping boundary out of all possible candidates obtained by the principle of smooth
fit of Kolmogorov (see [3]). Motivated by the maximality principle (see [5]) we find a
natural solution to this problem (see proof of Theorem 2.1 below). Consequently, this
leads to the quantitative expression for V stated above, and that the supremum in (1.12)
is attained at the stopping times of the form (1.7). The inequalities (1.6) and (1.8) are
then obtained as straightforward consequences. The sharpness of (1.8) is proved by
applying a new simple argument (see proof of Corollary 2.2). Finally, all these results
extend to the case when Brownian motion B starts at any given point (Corollary 2.3).

2. The results and proofs

In this section we present the main results and proofs. Our principal result is
contained in the next theorem. This is reformulated afterwards (Corollary 2.2) into a
more precise form. Both formulations extend to the case when the Brownian motion
starts at any given point (Corollary 2.3).

THEOREM 2.1. Let B = (Bt)t�0 be standard Brownian motion started at zero
under P . Then the following inequality is shown to be satisfied:

E

(
max

0�t�τ
|Bt|
)

� c E

(∫ τ

0

dt
1 + |Bt|

)
+

1
2c− 1

(2.1)

for all stopping times τ for B and all c > 1/2 . Moreover, for each c > 1/2 given
and fixed, the equality in (2.1) is attained at the stopping time:

τc = inf
{
t > 0 | St − αXt � β

}
(2.2)

where α = 1 + 1/(2c− 1) , β = 1/(2c− 1) , Xt = |Bt| and St = max0�r�t |Br| .
Proof. 1. Consider the following optimal stopping problem:

V(x, s) = sup
τ

Ex,s
(
Sτ − cIτ

)
(2.3)
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with τ ’s satisfying Ex,s(Iτ) < ∞ , where we denote Xt = |Bt + x| and set:

St =
(

max
0�r�t

Xr

)
∨ s (2.4)

It =
∫ t

0

dr
1 + Xr

(2.5)

for 0 � x � s and c > 1/2 given and fixed. Note that the Markov process (X, S)
under Px,s := P starts at (x, s) . Supposing that the supremum in (2.3) is attained at τ∗
:

V(x, s) = Ex,s
(
Sτ∗ − cIτ∗

)
(2.6)

we see that x �→ V(x, s) is to satisfy:

LXV(x, s) =
c

1 + x
(g∗(s) < x < s ) (2.7)

where LX = ∂2/2∂x2 is the infinitesimal operator of X in ]0,∞[ and s �→ g∗(s) is
the optimal stopping boundary to be found. From (2.7) we readily find that:

V(x, s) = A(s)x + B(s) + 2c(x + 1) log(x + 1) (2.8)

for g∗(s) < x < s . To determine the unknown functions s �→ A(s) , s �→ B(s) and
s �→ g∗(s) we shall make use of the following boundary conditions:

V(x, s)
∣∣∣
x=g∗(s)+

= s (instantaneous stopping) (2.9)

∂V
∂x

(x, s)
∣∣∣
x=g∗(s)+

= 0 (smooth fit) (2.10)

∂V
∂s

(x, s)
∣∣∣
x=s−

= 0 (normal reflection). (2.11)

Note that (2.7) with (2.9)–(2.11) is a Stephan’s problem with moving (free) boundary
s �→ g∗(s) . From (2.8) + (2.10) we find that:

A(s) = −2c
(
1 + log

(
1 + g∗(s)

))
. (2.12)

Inserting this into (2.8) and using (2.9) we find that:

B(s) = s − 2c log
(
1 + g∗(s)

)
+ 2cg∗(s). (2.13)

Inserting (2.12) and (2.13) into (2.8) we obtain:

V(x, s) = s − 2c

(
(1 + x) log

(
1 + g∗(s)

1 + x

)
+ x − g∗(s)

)
(2.14)
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for g∗(s) � x � s . Hence by (2.11) we see that s �→ g∗(s) is to satisfy:

g′∗(s)

(
s − g∗(s)
1 + g∗(s)

)
=

1
2c

(2.15)

for s > 0 . This is the total of information obtained by the principle of smooth fit (2.10).
The basic problem now is how to determine the optimal stopping boundary s �→ g∗(s)
out of all possible solutions to (2.15)

2. Consider the first order (nonlinear) differential equation:

λ (1 + y) + (y − x)y′ = 0 (2.16)

for x > 0 where λ = 1/2c . This equation is not exact. However, multiplying through
(2.16) by μ(x, y) = (1 + y)−α with α = 1 + 1/λ , the resulting equation becomes
exact:

λ (1 + y)1−α + (y − x)(1 + y)−αy′ = 0. (2.17)

Thus the general solution of (2.16) is of the form:

λ (1 + y)1−αx + f (y) = K (2.18)

where K is a numerical constant, and y �→ f (y) satisfies:

f ′(y) = y(1 + y)−α . (2.19)

Hence we find that:

f (y) =

⎧⎪⎪⎨
⎪⎪⎩

1
1 + y

+ log(1 + y), if α = 2,

(1 + y)2−α

2 − α
− (1 + y)1−α

1 − α
, if α �= 2.

(2.20)

Since we expect that y(x) → ∞ for x → ∞ , only the case α > 2 (or equivalently
c > 1/2 ) seems to be of interest. Then by (2.18) the general solution of (2.16) is given
by:

(1 + x)
(α − 1)(1 + y)α−1

− 1
(α − 2)(1 + y)α−2

= K (2.21)

where K is a numerical constant. If we let K = 0 , we see that (2.16) admits a linear
solution:

y∗(x) =
α − 2
α − 1

x − 1
α − 1

. (2.22)

Moreover, by using this fact and letting x → ∞ in (2.21)we see that K = 0 corresponds
to the maximal solution of (2.16) which does not hit the diagonal y = x . This is in
accordance with the maximality principle which holds in a similar context (see [5]).

3. The previous considerations show that a unique candidate for the optimal
stopping boundary is given by the expression:

g∗(s) =
2c − 1

2c
s − 1

2c
(2.23)



HARDY-LITTLEWOOD L log L -INEQUALITY FOR BROWNIAN MOTION 143

for s � s∗ , where g∗(s∗) = 0 so that:

s∗ =
1

2c − 1
. (2.24)

To determine the corresponding payoff, note by the strong Markov property that:

V(x, s) = V(s∗, s∗) − cEx,s

(∫ τs∗

0

dr
1 + Xr

)
(2.25)

for all 0 � x � s � s∗ , where we set:

τs∗ = inf{t > 0 | Xt = s∗}. (2.26)

To compute the expectation in (2.25) we shall apply Itô-Tanaka’s formula to F(Xt)
with F(x) = (1 + x) log(1 + x) . This yields:

(1 + Xt) log(1 + Xt) = (1 + x) log(1 + x) +
∫ t

0

(
1 + log(1 + Xr)

)
dXr

+
1
2

∫ t

0

1
1 + Xr

d
〈
X, X

〉
r

= (1 + x) log(1 + x) +
∫ t

0

(
1 + log(1 + Xr)

)
d(βr + Lr)

+
1
2

∫ t

0

1
1 + Xr

dr

= (1 + x) log(1 + x) + Mt + Lt +
1
2

∫ t

0

1
1 + Xr

dr
(2.27)

where we used Tanaka’s formula Xt = x + βt + Lt with β = (βt)t�0 being a Brownian
motion and L = (Lt)t�0 being the local time of X at zero, so that Mt =

∫ t
0(1+ log(1+

Xr))dβr is a local martingale. Clearly Ex,s(Lτ) = Ex,s(Xτ)− x for all stopping times τ
for B satisfying E(

√
τ) < ∞ . Hence we get (as in (2.43)–(2.45) for (2.41) below):

Ex,s

(∫ τ

0

dr
1 + Xr

)
= 2Ex,s

((
1 + Xτ

)
log
(
1 + Xτ

)− Xτ + x
)

− 2(1 + x) log(1 + x) (2.28)

for all stopping times τ for B satisfying E(τr) < ∞ for some r > 1/2 . In particular:

Ex,s

(∫ τs∗

0

dr
1 + Xr

)
= 2
((

1 + s∗
)
log
(
1 + s∗

)− s∗ + x
)

− 2(1 + x) log(1 + x). (2.29)

Inserting this into (2.25) and using (2.14) we find:

V(x, s) = s∗ + 2c
((

1 + x
)
log
(
1 + x

)− x
)

(2.30)
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for all 0 � x � s � s∗ .
4. In view of the statement of the theorem, note that (2.30) gives:

V(0, 0) = s∗ =
1

2c − 1
. (2.31)

Moreover, according to our considerations above, the optimal stopping time (at which
the equality in (2.31) is attained) is to be of the form:

τ∗ = inf
{
t > 0 | Xt � g∗(St)

}
(2.32)

with s �→ g∗(s) given in (2.23). Noting that (2.31) + (2.32) is exactly (2.1) + (2.2) ,
we see that the proof will be completed if we show that the candidate for the payoff
given by (2.14) + (2.23) + (2.30) is indeed the payoff (2.3). This verification is the
content of the next final step. For convenience, this candidate is denoted by V∗(x, s) .
It should be noted that V∗(x, s) = s for 0 � x � g∗(s) .

5. By Itô-Tanaka’s formula (being applied two-dimensionally) we get:

V∗(Xt, St) = V∗(X0, S0) +
∫ t

0

∂V∗
∂x

(Xr, Sr)dXr +
∫ t

0

∂V∗
∂s

(Xr, Sr)dSr

+
1
2

∫ t

0

∂2V∗
∂x2

(Xr, Sr)d
〈
X, X

〉
r

= V∗(x, s) +
∫ t

0

∂V∗
∂x

(Xr, Sr)d(βr + Lr)

+
∫ t

0

∂V∗
∂s

(Xr, Sr)dSr +
1
2

∫ t

0

∂2V∗
∂x2

(Xr, Sr)dr.
(2.33)

Since the increment dSr equals zero outside the diagonal x = s , and V∗(x, s) at the
diagonal satisfies (2.11), the integral over dSr in (2.33) is identically zero. Moreover,
note that:

∂V∗
∂x

(x, s) =

⎧⎪⎨
⎪⎩

2c log

(
1 + x

1 + (g∗(s) ∨ 0)

)
, if x > g∗(s),

0, if x � g∗(s)

(2.34)

for all 0 � x � s . Since the increment dLr equals zero outside {r | Xr = 0} , we see
from (2.34) that the integral over dLr in (2.33) is identically zero. Finally, note that:

∂2V∗
∂x2

(x, s) =

⎧⎨
⎩

2c
1 + x

, if x > g∗(s),

0, if x < g∗(s)
(2.35)

(the value of ∂2V∗/∂x2 at (g∗(s), s) is irrelevant, since the set of all r for which
Xr = g∗(Sr) is of Lebesgue measure zero). Hence by (2.33) we obtain:

V∗(Xt, St) = V∗(x, s) +
∫ t

0

∂V∗
∂x

(Xr, Sr)dβr +
1
2

∫ t

0

∂2V∗
∂x2

(Xr, Sr)dr

� V∗(x, s) + Mt + cIt (2.36)
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where M = (Mt)t�0 is a continuous local martingale given by:

Mt =
∫ t

0

∂V∗
∂x

(Xr, Sr)dβr (2.37)

and I = (It)t�0 is defined in (2.5).
Given any stopping time τ for B satisfying Ex,s(Iτ) < ∞ , from (2.36) we get:

V∗(Xτ , Sτ) � V∗(x, s) + Mτ + cIτ . (2.38)

Moreover, it is easily seen by (2.35) that:

V∗(Xτ , Sτ) = V∗(x, s) + Mτ + cIτ (2.39)

for all stopping times τ for B satisfying τ � τ∗ . Since V∗(x, s) � s for all 0 � x � s ,
from (2.38) and (2.39) we get:

Sτ − cIτ � V∗(x, s) + Mτ (2.40)

for all τ satisfying Ex,s(Iτ) < ∞ , with the equality if τ = τ∗ . So if we show that:

Ex,s(Mτ) = 0 (2.41)

then by (2.40) (with the equality for τ = τ∗ ) we get:

V(x, s) = sup
τ

Ex,s
(
Sτ − cIτ

)
= V∗(x, s) (2.42)

for all 0 � x � s . Thus the proof will be completed as soon as we show that (2.41)
holds for all bounded stopping times τ for B , and for τ = τ∗ . For this we shall need
to know when E(τ∗)r < ∞ for r > 0 . The answer to this question is known and can
be found in [10]. It follows from there that E(τ∗)r < ∞ if and only if r < c . Since
c > 1/2 this indicates that it is enough to prove (2.41) for all stopping times τ for B
satisfying E(τr) < ∞ for some r > 1/2 .

Let τ be a stopping time for B satisfying E(τr) < ∞ for some r > 1/2 given
and fixed. To prove (2.41), by Burkholder-Gundy’s inequality for continuous local
martingales and Doob’s optional sampling theorem (see [9]), it is enough to show that:

Ex,s

(∫ τ

0

(
∂V∗
∂x

(Xr, Sr)
)2

dr

)1/2

< ∞. (2.43)

For this, note that from (2.34) by Hölder’s inequality we have:

Ex,s

(∫ τ

0

(
∂V∗
∂x

(Xr, Sr)
)2

dr

)1/2

� 2cEx,s

(∫ τ

0
log2 (1 + Xr

)
dr

)1/2

� 2cEx,s

(√
τ log

(
1 + Sτ

))
� 2c

(
Ex,s

(
τp/2

))1/p(
Ex,s

(
logq

(
1 + Sτ

)))1/q

(2.44)
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where p, q > 1 and 1/p + 1/q = 1 . Since log(1 + x) � λδxδ for all x � 0 and all
δ > 0 (with λδ = (1/δ) ∨ 1 ), setting δ = p/q by Burkholder-Gundy’s inequality
(1.2) we get:

Ex,s
(
logq

(
1 + Sτ

))
� λ q

δEx,s
(
Sp
τ
)

� λ q
δ 2p−1

(
sp + Ex,s

(
max
0�t�τ

|Bt|p
))

� λ q
δ 2p−1

(
sp + DpEx,s

(
τp/2

))
. (2.45)

From (2.44) and (2.45) we see that (2.43) follows if we take p = 2r . The proof is
complete. �

In the next step we refine the inequality (2.1) by taking the infimum over all
c > 1/2 on the right-hand side. To prove the sharpness of the resulting inequality we
present a new simple argument which can be used in similar contexts (compare with
[3]).

COROLLARY 2.2. Let B = (Bt)t�0 be standard Brownian motion started at zero
under P . Then the following inequality is shown to be satisfied:

E

(
max
0�t�τ

|Bt|
)

� 1
2
E

(∫ τ

0

dt
1 + |Bt|

)
+
√

2

(
E
∫ τ

0

dt
1 + |Bt|

)1/2

(2.46)

for all stopping times τ for B . Moreover, this inequality is sharp, and the equality
in (2.46) is attained at each stopping time τc from (2.2) whenever c > 1/2 . In
particular, we have:

E

(∫ τc

0

dt
1 + |Bt|

)
=

2
(2c − 1)2

(2.47)

for all stopping times τc from (2.2) with c > 1/2 .

Proof. In view of (2.1) consider the following function:

F(c; E(Iτ)) = cE(Iτ) +
1

2c − 1
(2.48)

for c > 1/2 with Iτ =
∫ τ

0 (1 + |Bt|)−1dt , where τ is a stopping time for B satisfying
E(Iτ) < ∞ . Then c �→ F(c; E(Iτ)) attains its minimum at c∗ = c∗(E(Iτ)) =
(1/2) + 1/

√
2E(Iτ) with:

inf
c>1/2

F(c; E(Iτ)) = F(c∗(E(Iτ)); E(Iτ)) =
1
2
E(Iτ) +

√
2
√

E(Iτ). (2.49)

This expression combined with (2.1) gives (2.46). To prove the sharpness of (2.46),
note that by (2.1) with Sτ = max0�t�τ |Bt| we have:

E
(
Sτ
)

� F(c∗(E(Iτ)); E(Iτ)) � F(c; E(Iτ)) (2.50)

for all c > 1/2 and all stopping times τ satisfying E(Iτ) < ∞ . It was proved in
Theorem 2.1 that for each c > 1/2 we have E

(
Sτc
)

= F(c; E(Iτc)) , so that both
inequalities in (2.50) are equalities when τ = τc . This shows the sharpness of (2.46)
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for each given and fixed τc with c > 1/2 . Moreover, the second equality in (2.50) for
τ = τc is equivalently written as follows:

1
2
E(Iτc) +

√
2
√

E(Iτc) = c E(Iτc) +
1

2c − 1
(2.51)

which can be solved in E(Iτc) , and this gives (2.47). The proof is complete. �
The results of Theorem2.1 and Corollary 2.2 extend to the case when the Brownian

motion starts at any given point. This extension is indicated in the next corollary. For
simplicity, some of the explicit expressions are omitted.

COROLLARY 2.3. Let B = (Bt)t�0 be standard Brownian motion started at zero
under P . Then the following inequality is shown to be satisfied:

E

(
max
0�t�τ

|Bt + x|
)

� c E

(∫ τ

0

dt
1 + |Bt + x|

)
+ Vc(x) (2.52)

for all stopping times τ for B all c > 1/2 and all x � 0 , where Vc(x) is given by:

Vc(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2c − 1

+ 2c
(
(1 + x) log(1 + x) − x

)
, if x � 1/(2c− 1),

2c(1 + x) log

(
1 +

1
2c − 1

)
− 1, if x > 1/(2c− 1).

(2.53)

Moreover, for each c > 1/2 and x � 0 given and fixed, the equality in (2.52) is
attained at the stopping time τc from (2.2) . Finally, taking the infimum over all
c > 1/2 on the right-hand side in (2.52) gives a sharp inequality (the equality is
attained at each stopping time τc from (2.2) whenever c > 1/2 and x � 0 ).

Proof. These facts follow from the proofs of Theorem 2.1 and Corollary 2.2 with
Vc(x) being equal to V(x, x) from (2.3) and explicitly given by (2.14)+(2.23)+(2.30).
�
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