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A NOTE ON SIMULTANEOUSLY DIAGONALIZABLE MATRICES

ABRAHAM BERMAN 1 AND ROBERT J. PLEMMONS 2

(communicated by A. Ben-Israel)

Abstract. Consider the functional f (U) =
∑n

i=1 maxj{(UTMjU)ii} over orthogonal matrices
U , where the collection of n -by- n symmetric matrices Mj are pairwise commutative, and
thus simultaneously diagonalizable. Selecting an orthogonal matrix U which maximizes f (U)
has applications in adaptive optics. A proof is given here that any orthogonal matrix Q which
simultaneously diagonalizes the Mj maximizes the function f .

1. Introduction

Recently, there has been a growing interest in adaptive optics, i.e., methods to
overcome the effects of distortion in imaging through a medium, such as the atmosphere
[6, 4, 7]. In adaptive optics, the following optimization problem arises [4]. The problem
involves maximizing the functional

f (U) =
n∑

i=1

max
j
{(UTMjU)ii} (1)

over all n -by-n orthogonal matrices U . In this note we show that if the matrices Mj

are simultaneously diagonalizable, then any orthogonalmatrix Q which simultaneously
diagonalizes the Mj maximizes f .

2. An Optimization Result

Recall that a set of real symmetric matrices can be simultaneously diagonalized by
an orthogonal matrix if and only if they are pairwise commutative, e.g., [5], Theorems
1.3.19 and 2.3.3. For such matrices we state and prove our main result.
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THEOREM. Suppose {Mj} , 1 � j � k , is a collection of pairwise commuting
matrices. Let Q be any orthogonal matrix which simultaneously diagonalizes the Mj .
Then Q maximizes the functional given in (1).

Proof. Let Bj = UTMjU , where U is an arbitrary orthogonal matrix. We can
rewrite Bj using the orthogonal matrix V = QTU :

Bj = UTMjU = (QV)TMj(QV) = VTQTMjQV = VTDjV ,

where Dj = QTMjQ is the diagonalization of Mj using Q . Observe that

f (U) =
n∑

i=1

max
j
{(Bj)ii}

and that

f (Q) =
n∑

i=1

max
j
{(Dj)ii}.

We have to show that f (Q) � f (U) . To do this we define matrices D = diag(dss) and
B = (bst) as follows: dss = maxj(Dj)ss and bst = maxj(Bj)st . For example, d11 is the
largest element of {(D1)11, (D2)11, . . . , (Dk)11} . In other words,

D = max
1�j�k

{Dj} , and B = max
1�j�k

{Bj} ,

where the maxima are evaluated elementwise. We will use d̃ , d̃j , b̃ , and b̃j to represent
the column vectors of the diagonals of D, Dj, B , and Bj , respectively. For example, b̃1

is the column vector whose entries are the diagonal elements of B1 . Finally, we let e
be a column vector of ones. With this notation, the traces of D and B can be written
in the form eT d̃ and eT b̃ . So, proving the theorem is equivalent to establishing the
inequality

eT d̃ � eT b̃ . (2)

Let S = V ◦ V , the Hadamard product of V with itself; namely,

sij = v2
ij.

A matrix which can be expressed as S = V ◦ V , where V is orthogonal is called
orthostochastic. Every orthostochastic matrix is doubly stochastic, i. e., sij � 0 and
eTS = eTST = eT , e. g., [1].

The doubly stochastic matrix ST can be used to relate b̃j and d̃j :

b̃j = (V ◦ V)T d̃j = STd̃j, 1 � j � k . (3)

By definition, d̃ � d̃j for all j . Since ST is nonnegative, we can write

ST d̃ � STd̃j = b̃j, 1 � j � k . (4)
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This inequality holds elementwise; thus, we have
[
STd̃

]
i
�

[
b̃j

]
i

for all values of i . Therefore,

STd̃ � max
j

b̃j = b̃ . (5)

Here again, the maximum is taken elementwise. After multiplying both sides of in-
equality (5) by eT and noting that eTST = eT , we obtain inequality (2), thereby proving
the theorem.

3. Remarks

The note is concluded with some remarks on the theorem and on the computational
aspects of the problem.

• The converse of the theorem is not true; i.e., an orthogonal matrix Q can
maximize f (U) without simultaneously diagonalizing the pairwise commuting Mj . In
fact, let M1, · · · , Mk be n -by-n diagonal matrices such that M1 � Mj for all j . Then
for all n -by-n orthogonal matrices U , f (U) = trace(M1 ). But, in the case where
one of the matrices has distinct diagonal entries, the only matrices that simultaneously
diagonalize the (diagonal matrices) Mj are products of permutation and signature
matrices.

• Although the theorem establishes the existence of an orthogonal matrix Q
that maximizes the functional f (U) where the Mj are pairwise commutative, the
process of computing the simultaneous diagonalizer Q can be quite nontrivial. A
comprehensive study of numerical methods for simultaneous diagonalization of a single
pair of commuting matrices is given in [2].

• Thework on adaptive optics thatmotivated our discussion concerns realmatrices.
A similar theorem can be stated for Hermitian matrices Mj and a unitary matrix Q .
Other recent applications of simultaneous diagonalization and related algorithms can
be found in multivariate statistics [3].
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