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ESTIMATING THE EXTREME SINGULAR VALUES OF MATRICES

CHI-KWONG LI † AND CARRIE A. POHANKA

(communicated by R. Horn)

Abstract. Algorithms are derived to obtain upper and lower bounds for the largest and smallest
singular values of a square complex matrix in terms of its eigenvalues and Frobenius norm. These
bounds are best possible in the sense that they are attainable by some matrices with the prescribed
eigenvalues and Frobenius norm. Numerical examples are given to compare them with those in
the literature.

1. Introduction

Let A ∈ Mn , the algebra of n× n complex matrices. We shall always assume that
n � 2 to avoid trivial considerations. Denote by λi(A) , 1 � i � n , the eigenvalues
of A arranged so that |λ1(A)| � · · · � |λn(A)| . The singular values of A , denoted by
s1(A) � · · · � sn(A) , are the nonnegative square roots of the eigenvalues of the positive
semi-definite matrix A∗A . The singular values are very useful in the study of problems
in different areas (see [HJ, Chapter 3], [S], and their references). Equip Cn with the
standard norm ‖x‖ = (x∗x)1/2 . Then the spectral norm of A defined by

‖A‖ = max{‖Ax‖ : x ∈ C
n, ‖x‖ = 1}

is just s1(A) . Moreover, if A is invertible then

‖A−1‖ = max{‖A−1x‖ : x ∈ C
n, ‖x‖ = 1}

is just sn(A)−1 .
In the study of matrix theory, operator theory, and numerical analysis (see [G,

Chapter 1], [HJ, Chapter 3], [Met], [MO, Chapters 9 & 10] and their references), one
often needs to estimate ‖A‖ , ‖A−1‖ , and other functions of singular values of A in
terms of some partial information about A . Recall that the Frobenius norm of A is
defined by ‖A‖F = (tr A∗A)1/2 . The purpose of this paper is to study the following
problem.

Problem: Obtain upper and lower bounds for the largest and smallest singular
values of a complex square matrix based on its eigenvalues and Frobenius norm.
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It turns out that one needs to focus only on the moduli of the eigenvalues and the
Frobenius norm. Henceforth, let λ = (λ1, . . . , λn)t ∈ Cn be a given complex vector
and let b be a given nonnegative real number such that

|λ1| � · · · � |λn| and b2 �
n∑

j=1

|λj|2.

Define

S (λ , b) = {A ∈ Mn : λj(A) = λj, j = 1, . . . , n, ‖A‖F = b}.
Since

A =
(
λ1 c
0 λn

)
⊕ diag(λ2, . . . , λn−1) ∈ S (λ , b)

if c = {b2 −∑n
j=1 |λj|2}1/2 , we see that S (λ , b) is nonempty. For notational conve-

nience, define

a = |λ1 · · ·λn|
and note that a = | detA| for any A ∈ S (λ , b) .

We shall study the optimization problems:

max s1(X), min s1(X), max sn(X), min sn(X)

over the compact set S (λ , b) . Since the functions s1(X) and sn(X) are continu-
ous, there are matrices in S (λ , b) that solve these optimization problems. We shall
determine the entire vector of singular values of the optimal matrices.

To achieve our goal, we need a simple description of the singular values of a matrix
in the set S (λ , b) . Let Rn be the Euclidean space of n × 1 or 1 × n real vectors.
Suppose u = (u1, . . . , un) , v = (v1, . . . , vn) ∈ Rn have non-negative entries. We say
that u is log-majorized by v , denoted by u ≺log v , if the product of the k largest entries
of u is not larger than that of v for k = 1, . . . , n − 1, and

∏n
j=1 uj =

∏n
j=1 vj . Note

that if u and v have positive entries, an alternative definition for u ≺log v is that the
product of the k smallest entries of v is not smaller than that of v for k = 1, . . . , n−1,
and

∏n
j=1 uj =

∏n
j=1 vj .

The following description of the singular values of a matrix in S (λ , b) is due to
A. Horn ([HJ, 3.3.10] or [MO, 9.E.1]).

LEMMA 1.1. There exists an A ∈ S (λ , b) with singular values s1 � · · · � sn � 0
if and only if b2 = s2

1 + · · · + s2
n and

(|λ1|, . . . , |λn|) ≺log (s1, . . . , sn).

The following result ([HJ, Corollary 3.3.10] or [MO, 3.D]) is also important in our
discussion.
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LEMMA 1.2. Let u, v ∈ Rn have non-negative entries arranged in descending
order and assume that u ≺log v . Then ‖u‖ � ‖v‖ , and equality holds if and only if
u = v .

In Sections 2 and 3, we shall determine bounds for the largest and smallest singular
values of matrices in S (λ , b) . Moreover, we give algorithms to determine the entire
vector of singular values of all matrices that attain those bounds. In Section 4, we show
that the algorithms can be used efficiently to compute the bounds, and we compare our
results with estimates of other authors. Remarks and open problems are mentioned in
Section 5.

2. Estimating the Largest Singular Value

We first consider an Ã ∈ S (λ , b) that satisfies s1(A) � s1(Ã) for all A ∈
S (λ , b) . It is somewhat surprising that the vector s(Ã) = (s1(Ã), . . . , sn(Ã)) of
singular values of such a matrix is uniquely determined by λ and b .

THEOREM 2.1. Let Ã ∈ S (λ , b) satisfy s1(A) � s1(Ã) for all A ∈ S (λ , b) .
Then s(Ã) can be determined by the following algorithm.
Step 1. Let m be the largest integer such that |λm| > 0 .
Step 2. If m � 2 , set k = m and go to Step 3. Otherwise, set

s(Ã) = (b, 0, . . . , 0),

and stop.
Step 3. Construct

Φk(x) = (k − 1)x2 +
[ |λ1 · · · λk|

xk−1

]2

+
∑

k<j�n

|λj|2 − b2, x > 0.

Step 4. If Φk(|λk|) > 0 , then set k = k − 1 and go to Step 3. Otherwise, determine
the smallest positive zero r̃ of Φk(x) , set

s(Ã) =

⎛
⎝ |λ1 · · · λk|

r̃k−1
, r̃, . . . , r̃︸ ︷︷ ︸

k−1

, |λk+1|, · · · , |λn|
⎞
⎠ , (1)

and stop.

REMARK 1. Note that Φk is a continuous function on (0,∞) satisfying Φk(x) →
∞ as x → 0 from the right. If Φk(|λk|) � 0 , then Φk has at least one zero in (0, |λk|] .
We shall show that the entries in the proposed s(Ã) in (1) are indeed in descending
order and satisfy (|λ1|, . . . , |λn|) ≺log s(Ã) and ‖s(Ã)‖ = b .

Also, observe that the algorithm must terminate in Step 2 if λ2 = 0 , or in Step 4
if λ2 �= 0 , because

Φ2(|λ2|) =
n∑

j=1

|λj|2 − b2 � 0.
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Proof of Theorem 2.1. Let Ã ∈ S (λ , b) satisfy s1(A) � s1(Ã) for all A ∈
S (λ , b) , and write s(Ã) = (s1, . . . , sn) .

If λ2 = 0 , then

Â =
[
λ1

√
b2 − |λ1|2

0 0

]
⊕ 0n−2 ∈ S (λ , b)

has singular values b, 0, . . . , 0 . Since

b = s1(Â) � s1(Ã) = s1 �

⎧⎨
⎩

n∑
j=1

s2
j

⎫⎬
⎭

1/2

= b,

it follows that s(Ã) = (b, 0, . . . , 0) .
Now suppose λm �= 0 = λm+1 for some positive integer m with 2 � m � n . If

m < n , we claim that sm+1 = 0 . If not, then construct (ŝ1, . . . , ŝn) as follows:

ŝj =

⎧⎪⎨
⎪⎩

{s2
1 +

∑
i>m s2

i }1/2 if j = 1 ,

sj if j = 2, . . . , m ,

0 otherwise.

Since Ã ∈ S (λ , b) , its singular values satisfy the condition in Lemma 1.1. It follows
that (|λ1|, . . . , |λn|) ≺log (ŝ1, . . . , ŝn) and ‖(ŝ1, . . . , ŝn)‖ = b . By Lemma 1.1, there
exists an Â ∈ S (λ , b) with s(Â) = (ŝ1, . . . , ŝn) . By construction, s1(Â) = ŝ1 >
s1 = s1(Ã) , which is a contradiction. Thus we have s(Ã) = (s1, . . . , sm, 0, . . . , 0)
with sm > 0 . Moreover, by Lemma 1.1, the conditions on s1, . . . , sm , λ1, . . . , λm ,
and b ensure that there is a matrix B̃ ∈ Mm with these quantities as singular values,
eigenvalues, and Frobenius norm, respectively. If B ∈ Mm has the same eigenvalues and
Frobenius norm as B̃ , then s1(B) � s1 = s1(B̃) . Otherwise, B̂ = B⊕0n−m ∈ S (λ , b)
satisfies s1(B̂) = s1(B) > s1 = s1(Ã) , which is a contradiction. So, we can focus on
studying s(B̃) with B̃ ∈ Mm so that s1(B̃) is largest possible over all matrices in Mm

with Frobenius norm b and eigenvalues λ1, . . . , λm .
For notational convenience, we assume that m = n , and B̃ is just Ã . Consider

Φn(|λn|) . We shall prove:

ASSERTION 1. If Φn(|λn|) � 0 , then the smallest positive zero r̃ of Φn(x) lies in
(0, |λn|] , and

s(Ã) = (a/r̃n−1, r̃, . . . , r̃),

as suggested in Step 4 of the algorithm when k = n . If Φn(|λn|) > 0 , then there is no
A ∈ S (λ , b) with

s(A) = (a/tn−1, t, . . . , t) with t ∈ (0, |λn|].
By Remark 1, we see that the smallest positive zero r̃ of Φn(x) lies in (0, |λn|] .

Now consider
v(x) = (a/xn−1, x, . . . , x︸ ︷︷ ︸

n−1

), x ∈ (0, |λn|].
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Then
(|λ1|, . . . , |λn|) ≺log v(x) and ‖v(x)‖2 − b2 = Φn(x)

for all x ∈ (0, |λn|] . It follows that (|λ1|, . . . , |λn|) ≺log v(r̃) and ‖v(r̃)‖ = b . More-
over, since r̃ � |λn| , we have a = |λ1 · · ·λn| � r̃n and hence 1/r̃n−1 � r̃ . Thus the
entries of v(r̃) are in descending order. By Lemma 1.1, there exists an Â ∈ S (λ , b)
such that s(Â) = v(r̃) = (a/r̃n−1, r̃, . . . , r̃) .

Next, we show that s(Ã) = s(Â) . Since

a/r̃n−1 = s1(Â) � s1(Ã) = s1 = a/(s2 · · · sn),

we have
r := (s2 · · · sn)

1
n−1 � r̃.

Hence
(a/r̃n−1, r̃, . . . , r̃︸ ︷︷ ︸

n−1

) ≺log (a/rn−1, r, . . . , r︸ ︷︷ ︸
n−1

). (2)

Also, since rn−1 = s2 · · · sn , we have

( r, . . . , r︸ ︷︷ ︸
n−1

) ≺log (s2, . . . , sn)

and hence
(s1, r, . . . , r︸ ︷︷ ︸

n−1

) ≺log (s1, . . . , sn). (3)

By (2), (3), and the fact that a/rn−1 = s1 , we have

s(Â) = (a/r̃n−1, r̃, . . . , r̃︸ ︷︷ ︸
n−1

) ≺log (s1, . . . , sn) = s(Ã),

and thus ‖s(Â)‖ � ‖s(Ã)‖ by Lemma 1.2. Since b = ‖Â‖F = ‖Ã‖F , we conclude that
s(Â) = s(Ã) by Lemma 1.2.

Now, suppose Φn(|λn|) > 0 . If there exists an A ∈ S (λ , b) such that

s(A) = (a/tn−1, t, . . . , t) with t ∈ (0, |λn|],
then

(a/|λn|n−1, |λn|, . . . , |λn|) ≺log (a/tn−1, t, . . . , t).
By Lemma 1.2, we have

‖(a/|λn|n−1, |λn|, . . . , |λn|)‖ � ‖(a/tn−1, t, . . . , t)‖ = b.

Thus
Φn(|λn|) = ‖(a/|λn|n−1, |λn|, . . . , |λn|)‖2 − b2 � 0,

which is a contradiction. The proof of Assertion 1 is now complete.

By the second statement of Assertion 1, if Φn(|λn|) > 0 , then s(Ã) cannot be of
the form

(a/tn−1, t, . . . , t) with t > 0,

and we can move on to consider other possibilities.

From now on assume that Φn(|λn|) > 0 . Consider Φn−1(|λn−1|) . We shall prove:
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ASSERTION 2. If Φn−1(|λn−1|) � 0 , then the smallest positive zero r̃ of Φn−1(x)
lies in (|λn|, |λn−1|] , and

s(Ã) = (|λ1 · · · λn−1|/r̃n−2, r̃, . . . , r̃, |λn|) = (a/|r̃n−2λn|, r̃, . . . , r̃, |λn|),
as suggested in Step 4 of the algorithm when k = n − 1 . If Φn−1(|λn−1|) > 0 , then
there is no A ∈ S (λ , b) such that

s(A) = (a/|tn−2λn|, t, . . . , t, |λn|) with t ∈ (|λn|, |λn−1|].
By Remark 1 again, we see that the smallest positive zero r̃ of Φn−1(x) lies in

(0, |λn−1|] . Now consider

v(x) = (|λ1 · · · λn−1|/xn−2, x, . . . , x︸ ︷︷ ︸
n−2

, |λn|), x ∈ (0, |λn−1|].

Then
(|λ1|, . . . , |λn|) ≺log v(x) and ‖v(x)‖2 − b2 = Φn−1(x)

for all x ∈ (0, |λn−1|] . Thus (|λ1|, . . . , |λn|) ≺log v(r̃) and ‖v(r̃)‖ = b .
If r̃ � |λn| , then v(|λn|) ≺log v(r̃) and hence ‖v(|λn|)‖ � ‖v(r̃)‖ = b . It follows

that Φn(|λn|) = ‖v(|λn|)‖2−b2 � 0 , which is a contradiction. Thus r̃ ∈ (|λn|, |λn−1|] .
Moreover, we have |λ1 · · · λn−1| � r̃n−1 and hence |λ1 · · · λn−1|/r̃n−2 � r̃ . So, the
entries of v(r̃) are in descending order. By Lemma 1.1, there exists an Â ∈ S (λ , b)
such that

s(Â) = v(r̃) = (a/|r̃n−2λn|, r̃, . . . , r̃︸ ︷︷ ︸
n−2

, |λn|).

Next, we show that s(Ã) = s(Â) . Since

a/|r̃n−2λn| = s1(Â) � s1(Ã) = s1,

we have
r := (a/|s1λn|) 1

n−2 � r̃.

Hence
(a/|r̃n−2λn|, r̃, . . . , r̃︸ ︷︷ ︸

n−2

, |λn|) ≺log (s1, r, . . . , r︸ ︷︷ ︸
n−2

, |λn|). (4)

Also, since rn−2 = a/|s1λn| � a/(s1sn) = s2 · · · sn−1 , we have rl � s2 · · · sl+1 for
l = 1, . . . , n − 2 , and hence

(s1, r, . . . , r︸ ︷︷ ︸
n−2

, |λn|) ≺log (s1, . . . , sn). (5)

By (4) and (5), we have

s(Â) = (a/|r̃n−2λn|, r̃, . . . , r̃, |λn|) ≺log (s1, . . . , sn) = s(Ã),

and thus ‖s(Â)‖ � ‖s(Ã)‖ by Lemma 1.2. Since b = ‖Â‖F = ‖Ã‖F , we conclude that
s(Â) = s(Ã) by Lemma 1.2.
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Now suppose Φn−1(|λn−1|) > 0 . If there is an A ∈ S (λ , b) such that

s(A) = (a/|tn−2λn|, t, . . . , t, |λn|) with t ∈ (|λn|, |λn−1|],

then

(|λ1|, . . . , |λn|) ≺log (a/|tn−2λn|, t, . . . , t, |λn|)
by Lemma 1.1. It follows that t � |λn−1| and

(a/|λ n−2
n−1λn|, |λn−1|, . . . , |λn−1|, |λn|) ≺log (a/|tn−2λn|, t, . . . , t, |λn|).

By Lemma 1.2, we have

‖(a/|λ n−2
n−1λn|, |λn−1|, . . . , |λn−1|, |λn|)‖ � ‖(a/|tn−2λn|, t, . . . , t, |λn|)‖ = b.

Thus

Φn−1(|λn−1|) = ‖(a/|λ n−2
n−1λn|, |λn−1|, . . . , |λn−1|, |λn|)‖2 − b2 � 0,

which is a contradiction. The proof of Assertion 2 is now complete.

By the last statement of Assertion 2, if Φn−1(|λn−1|) > 0 , then s(Ã) cannot be of
the form

(a/|tn−2λn|, t, . . . , t, |λn|) with t ∈ (|λn|, |λn−1|]
and we can move on to consider other possibilities.

From now on assume that Φn−1(|λn−1|) > 0 . One can use arguments similar to
those in the previous cases to prove:

ASSERTION 3. If Φn−2(|λn−2|) � 0 , then the smallest positive zero r̃ of Φn−2(x)
lies in (|λn−1|, |λn−2|] , and

s(Ã) = (|λ1 · · · λn−2|/r̃n−3, r̃, . . . , r̃︸ ︷︷ ︸
n−3

, |λn−1|, |λn|)

= (a/|r̃n−3λn−1λn|, r̃, . . . , r̃︸ ︷︷ ︸
n−3

, |λn−1|, |λn|),

as suggested in Step 4 of the algorithm when k = n − 2 . If Φn−2(|λn−2|) > 0 , then
there is no A ∈ S (λ , b) such that

s(A) = (|λ1 · · ·λn−2|/tn−3, t, . . . , t︸ ︷︷ ︸
n−3

, |λn−1|, |λn|) with t ∈ (|λn−1|, |λn−2|].

Repeating these arguments, one gets the desired conclusion. �

Next, we turn to the lower bound for s1(A) with A ∈ S (λ , b) .
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THEOREM 2.2. Define

Φ(x) = (n − 1)x2 +
[ a
xn−1

]2
− b2, x > 0.

Let Ã ∈ S (λ , b) satisfy s1(Ã) � s1(A) for all A ∈ S (λ , b) . Then exactly one of the
following holds:
(a) If |λ1| > 0 and Φ(|λ1|) � 0 , then s1(Ã) = |λ1| .
(b) If λ1 = 0 , or if λ1 �= 0 and Φ(|λ1|) < 0 , then s(Ã) = (r̃, . . . , r̃, a/r̃n−1) , where

r̃ is the largest positive zero of Φ(x) .

Note that Φ is a continuous function on (0,∞) satisfying Φ(x) → ∞ if x → ∞ .
If λ1 �= 0 and Φ(|λ1|) < 0 , then Φ has a zero in (|λ1|,∞) . If λ1 = 0 , then a = 0
and Φ(x) has a positive zero, namely,

√
b2/(n − 1) .

Proof of Theorem 2.2. Let Ã ∈ S (λ , b) satisfy s1(Ã) � s1(A) for all A ∈
S (λ , b) , and write s(Ã) = (s1, . . . , sn) .

Suppose |λ1| > 0 , and Φ(|λ1|) = (n−1)|λ1|2 +
[

a
|λn−1

1 |

]2

−b2 � 0. We construct

Â ∈ S (λ , b) with s1(Â) = |λ1| as follows:
Let A1 have singular values |λ1|, . . . , |λn|. If |λ1|2 + · · · + |λn|2 = b2, then let

Â = A1. If |λ1|2 + · · · + |λn|2 < b2, then consider A2(t) ∈ Mn with singular values

|λ1|, t, |λ3|, . . . , |λn−1|, |λ2λn|/t

with |λ2| < t � |λ1|. If A2(t) has Frobenius norm b for some t , then let Â = A2(t).

Otherwise, we have |λ1|2 + |λ1|2 + |λ3|2 + · · · + |λn−1|2 +
∣∣∣ λ2λn

t

∣∣∣2 < b2 . Consider

A3(t) ∈ Mn with singular values

|λ1|, |λ1|, t, |λ4|, . . . , |λn−1|, |(λ2λ3λn)/(tλ1)|

with |λ3| < t � |λ1|. If A3(t) has Frobenius norm b for some t , then let Â = A3(t).

Since (n − 1)|λ1|2 +
[

a
|λn−1

1 |

]2

� b2 , we can continue this process until we get

Â = Ak(t) for some integer k between 1 and n such that Ak(t) has Frobenius norm b
and singular values

|λ1|, . . . , |λ1|︸ ︷︷ ︸
k−1

, t, |λk+1|, . . . , |λn−1|, |λ2 · · · λkλn/(tλ k−2
1 )|,

with |λk+1| < t � |λ1| . Thus, Â ∈ Mn satisfies s1(Â) = |λ1| . Since |λ1| � s1(A) for
all A ∈ S (λ , b) , we have |λ1| � s1(Ã) � s1(Â) = |λ1| .

Suppose λ1 = 0 . Then every A ∈ S (λ , b) is singular, i.e., sn(A) = 0 , and we
have

s1(A)2 + · · · + sn−1(A)2 = b2.
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It follows that s1(A)2 � b2/(n−1) , and equality holds if and only if s1(A) = sn−1(A) .
By Lemma 1.1, there indeed exists an Â ∈ S (λ , b) with singular values r, . . . , r, 0
with r = b/

√
n − 1 . Hence Ã must satisfy s(Ã) = (r, . . . , r, 0) .

Now suppose |λ1| > 0 and Φ(|λ1|) = (n − 1)|λ1|2 +
[

a
|λn−1

1 |

]2

− b2 < 0 . By

Lemma 1.1, we have ‖(s1, . . . , sn)‖ = b and

(|λ1|, . . . , |λn|) ≺log (s1, . . . , sn) ≺log (s1, . . . , s1, a/sn−1
1 ).

Since (s1, . . . , sn) ≺log (s1, . . . , s1, a/sn−1
1 ) , b=‖(s1, . . . , sn)‖�‖(s1, . . . , s1, a/sn−1

1 )‖
by Lemma 1.2. If strict inequality holds, there exists a t > 1 such that

‖(s1/t, . . . , s1/t, a/(s1/t)n−1)‖ = b.

Since (n − 1)|λ1|2 + (a/|λ n−1
1 |)2 < b2 , we see that s1/t > |λ1| , and hence

(|λ1|, . . . , |λn|) ≺log (s1/t, . . . , s1/t, tn−1a/sn−1
1 ).

ByLemma1.1, there exists an A∈S (λ , b) with singular values s1/t, . . . , s1/t, tn−1a/sn−1
1 .

It follows that s1(A) = s1/t < s1 = s1(Ã) , which is a contradiction. Thus, we have
‖(s1, . . . , sn)‖ = ‖(s1, . . . , s1, a/sn−1

1 )‖, and (s1, . . . , sn) = (s1, . . . , s1, a/sn−1
1 ) by

Lemma 1.2. �

3. Estimating the Smallest Singular Value

If λn = 0 , then sn(A) = 0 for all A ∈ S (λ , b) . Thus we assume |λn| > 0 ,
or equivalently, a > 0 , when we study upper and lower bounds for sn(A) with A ∈
S (λ , b) .

THEOREM 3.1. Suppose a > 0. Define

Ψ(x) = (n − 1)x2 +
[ a
xn−1

]2
− b2, x > 0.

Let Ã ∈ S (λ , b) satisfy sn(A) � sn(Ã) for all A ∈ S (λ , b) . Then exactly one of the
following holds:
(a) Ψ(|λn|) � 0 and sn(Ã) = |λn| .
(b) Ψ(|λn|) < 0 and s(A) = (a/r̃n−1, r̃, . . . , r̃) , where r̃ is the smallest positive zero

of Ψ(x) .

Note that Ψ is a continuous function on (0,∞) satisfying Ψ(x) → ∞ if x → 0
from the right. If λn �= 0 satisfies Φ(|λn|) < 0 , then Ψ has a zero in (0, |λn|] .

Proof of Theorem 3.1. Let Ã ∈ S (λ , b) satisfy sn(A) � sn(Ã) for all A ∈
S (λ , b) , and write s(Ã) = (s1, . . . , sn) .

If Ψ(|λn|) = (n − 1)|λn|2 +
[

a
|λn−1

n |

]2
− b2 � 0 , construct Â with sn(Â) = |λn|

as follows:
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Let A1 have singular values |λ1|, . . . , |λn|. If |λ1|2 + · · · + |λn|2 = b2, then set
Â = A1. Otherwise, we have |λ1|2 + · · · + |λn|2 < b2. Consider A2(t) ∈ Mn with
singular values ∣∣∣∣λ1λn−1

t

∣∣∣∣ , |λ2|, . . . , |λn−2|, t, |λn|
where |λn−1| � t � |λn|. If A2(t) has Frobenius norm b for some t ∈ [|λn|, |λn−1|] ,
then set Â = A2(t). Otherwise, we have

∣∣∣ λ1λn−1

λn

∣∣∣2 + |λ2|2 + · · ·+ |λn−2|2 +2|λn|2 < b2.

Consider A3(t) ∈ Mn with singular values∣∣∣∣λ1λn−2λn−1

tλn

∣∣∣∣ , |λ2|, . . . , |λn−3|, t, |λn|, |λn|

where |λn−2| � t � |λn|. If A3(t) has Frobenius norm b for some t ∈ [|λn−1|, |λn−2|] ,
then set Â = A3(t).

Since [
a

|λ n−1
n |

]2

+ (n − 1)|λn|2 � b2,

we can continue this process until we get Ak(t) , 1 � k < n, with singular values∣∣∣∣λ1λn−k+1 · · · λn−1

t|λn|k−1

∣∣∣∣ , |λ2|, . . . , |λn−k|, t, |λn|, . . . , |λn|︸ ︷︷ ︸
k−1

with |λn−k+1| � t � |λn| so that Â = Ak(t) has Frobenius norm b . Thus, we have
sn(Â) = |λn| . Since sn(A) � |λn| for all A ∈ S (λ , b) , we have |λn| = sn(Â) �
sn(Ã) � |λn| .

Next, assume that Ψ(|λn|) = (n − 1)|λn|2 +
[

a
|λn−1

n |

]2
− b2 < 0. By Lemma 1.1,

the singular values of Ã satisfy
∑n

j=1 s2
j = b2 and (|λ1|, . . . , |λn|) ≺log (s1, . . . , sn) .

Thus, we have

(|λ1|, . . . , |λn|) ≺log (s1, . . . , sn) ≺log
(
a/sn−1

n , sn, . . . , sn
)
,

and hence b = ‖(s1, . . . , sn)‖ � ‖ (a/sn−1
n , sn, . . . , sn

) ‖ . If strict inequality holds, there

exists a t ∈ (0, 1) such that ‖ (tn−1a/sn−1
n , sn/t, . . . , sn/t

) ‖ = b . Since
[
a/|λ n−1

n |]2 +
(n − 1)|λn|2 > b2, we see that sn/t < |λn| , and hence

(|λ1|, . . . , |λn|) ≺log (s1, . . . , sn) ≺log
(
tn−1a/sn−1

n , sn/t, . . . , sn/t
)
.

By Lemma 1.1, there exists an A∈S (λ , b) with singular values tn−1a/sn−1
n , sn/t, . . . ,

sn/t . It follows that sn(A) = sn/t > sn = sn(Ã) , which is a contradiction. Thus, we
have ‖(s1, . . . , sn)‖=‖ (a/sn−1

n , sn, . . . , sn
) ‖ , and hence (s1, . . . , sn)=

(
a/sn−1

n , sn, . . . ,
sn) by Lemma 1.2. �

Next, we turn to those Ã ∈ S (λ , b) that satisfy sn(Ã) � sn(A) for all A ∈
S (λ , b) . It is again interesting to note that the vector of singular values of Ã is
uniquely determined by λ and b .
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THEOREM 3.2. Suppose a > 0. Let Ã ∈ S (λ , b) satisfy sn(Ã) � sn(A) for all
A ∈ S (λ , b) . Then s(Ã) can be determined by the following algorithm.
Step 1. Set k = 1 .
Step 2. Construct

Ψk(x) = (n − k)x2 +
[ |λk · · · λn|

xn−k

]2

+
∑

1�j<k

|λj|2 − b2, x > 0.

Step 3. If Ψk(|λk|) > 0 , then set k = k + 1 and go to Step 2. Otherwise, determine
the largest positive zero r̃ of Ψk(x) , set

s(Ã) =

⎛
⎝|λ1|, . . . , |λk−1|, r̃, . . . , r̃︸ ︷︷ ︸

n−k

,
|λk · · · λn|

r̃n−k

⎞
⎠ , (6)

and stop.

REMARK 2. Note that Ψk is a continuous function on (0,∞) satisfying Ψk(x) →
∞ as x → ∞ . If Ψk(|λk|) � 0 , then Ψk has at least one zero in [|λk|,∞) . We shall
show that the entries in the proposed s(Ã) in (6) are indeed in descending order order
satisfying (|λ1|, . . . , |λn|) ≺log s(Ã) and ‖s(Ã)‖ = b .

Also, observe that the algorithm must terminate in finitely many iterations because

Ψn−1(|λn−1|) =
n∑

j=1

|λj|2 − b2 � 0.

Proof of Theorem 3.2. Let Ã ∈ S (λ , b) satisfy sn(Ã) � sn(A) for all A ∈
S (λ , b) , and write s(Ã) = (s1, . . . , sn) . Consider, Ψ1(|λ1|) . We shall prove:

ASSERTION 1. If Ψ1(|λ1|) > 0 , then the largest positive zero r̃ of Ψ1(x) lies in
[|λ1|,∞) , and

s(Ã) = (r̃, . . . , r̃, a/r̃n−1),

as suggested in Step 3 of the algorithm when k = 1 . If Ψ1(|λ1|) > 0 , then there is no
A ∈ S (λ , b) such that

s(A) = (t, . . . , t, a/tn−1) with t ∈ [|λ1|,∞).

By Remark 2, we see that the largest positive zero r̃ of Ψ1(x) lies in [|λ1|,∞) .
Now consider

v(x) = ( x, . . . , x︸ ︷︷ ︸
n−1

, a/xn−1), x � |λ1|.

Then
(|λ1|, . . . , |λn|) ≺log v(x) and ‖v(x)‖2 − b2 = Ψ1(x)

for all x � |λ1| . Thus (|λ1|, . . . , |λn|) ≺log v(r̃) and ‖v(r̃)‖ = b . Since r̃ � |λ1| ,
we have r̃n � |λ1 · · · λn| = a and hence r̃ � a/r̃n−1 . Thus the entries of v(r̃)
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are in descending order. By Lemma 1.1, there exists an Â ∈ S (λ , b) such that
s(Â) = v(r̃) = (r̃, . . . , r̃, a/r̃n−1) .

Next, we show that s(Ã) = s(Â) . Since

a/r̃n−1 = sn(Â) � sn(Ã) = sn = a/(s1 · · · sn−1),

we have
r := (s1 · · · sn−1)

1
n−1 � r̃.

Hence
( r̃, . . . , r̃︸ ︷︷ ︸

n−1

, a/r̃n−1) ≺log ( r . . . , r︸ ︷︷ ︸
n−1

, sn). (7)

Also, since rn−1 = s1 · · · sn−1 , we have

( r, . . . , r︸ ︷︷ ︸
n−1

) ≺log (s1, . . . , sn−1)

and hence
( r, . . . , r︸ ︷︷ ︸

n−1

, sn) ≺log (s1, . . . , sn). (8)

By (7) and (8), we have

s(Â) = ( r̃, . . . , r̃︸ ︷︷ ︸
n−1

, a/r̃n−1) ≺log (s1, . . . , sn) = s(Ã),

and thus ‖s(Â)‖ � ‖s(Ã)‖ by Lemma 1.2. Since b = ‖Â‖F = ‖Ã‖F , we conclude that
s(Â) = s(Ã) by Lemma 1.2.

Suppose Ψ1(|λ1|) > 0 . If there is an A ∈ S (λ , b) such that

s(A) = (t, . . . , t, a/tn−1) with t � |λ1|,
then

(|λ1|, . . . , |λ1|, a/|λ1|n−1) ≺log (t, . . . , t, a/tn−1).

By Lemma 1.2, we have

‖(|λ1|, . . . , |λ1|, a/|λ1|n−1)‖ � ‖(t, . . . , t, a/tn−1)‖ = b.

Thus
Ψ1(|λ1|) = ‖(|λ1|, . . . , |λ1|, a/|λ1|n−1)‖2 − b2 � 0,

which is a contradiction. The proof of Assertion 1 is now complete.

By the last statement of Assertion 1, if Ψ1(|λ1|) > 0 , then s(Ã) cannot be of the
form

(t, . . . , t, a/tn−1) with t > |λ1|,
and we can move on to consider other possibilities.

From now on assume that Ψ1(|λ1|) > 0 . Consider Ψ2(|λ2|) . We shall prove:
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ASSERTION 2. If Ψ2(|λ2|) � 0 , then the largest positive zero r̃ of Ψ2(x) lies in
[|λ2|, |λ1|) , and

s(Ã) = (|λ1|, r̃, . . . , r̃, |λ2 · · · λn|/r̃n−2),

as suggested in Step 3 of the algorithm when k = 2 . If Ψ2(|λ2|) > 0 , then there is no
A ∈ S (λ , b) such that

s(A) = (|λ1|, t, . . . , t, a/|tn−2λ1|) with t ∈ [|λ2|, |λ1|).
By Remark 2 again, we see that the largest positive zero r̃ of Ψ2(x) lies in

[|λ2|,∞) . Now consider

v(x) = (|λ1|, x, . . . , x︸ ︷︷ ︸
n−2

, |λ2 · · ·λn|/xn−2), x � |λ2|.

Then
(|λ1|, . . . , |λn|) ≺log v(x) and ‖v(x)‖2 − b2 = Ψ2(x)

for all x � |λ2| . Thus (|λ1|, . . . , |λn|) ≺log v(r̃) and ‖v(r̃)‖ = b .
If r̃ � |λ1| , then v(|λ1|) ≺log v(r̃) , and hence ‖v(|λ1|)‖ � ‖v(r̃)‖ = b . It follows

that Ψ(|λ1|) = ‖v(|λ1|)‖2 − b2 � 0 , which is a contradiction. Thus r̃ ∈ [|λ2|, |λ1|) .
Moreover, we have r̃n−1 � |λ2 · · ·λn| and hence r̃ � |λ2 · · · λn|/r̃n−2 . So, the entries
in v(r̃) are in descending order. By Lemma 1.1, there exists an Â ∈ S (λ , b) such that

s(Â) = v(r̃) = (|λ1|, r̃, . . . , r̃︸ ︷︷ ︸
n−2

, a/|r̃n−2λ1|).

Next, we show that s(Ã) = s(Â) . Since

a/|r̃n−2λ1| = sn(Â) � sn(Ã) = sn,

we have
r := (a/|snλ1|)

1
n−2 � r̃.

Hence
(|λ1|, r̃, . . . , r̃︸ ︷︷ ︸

n−2

, a/|r̃n−2λ1|) ≺log (|λ1|, r, . . . , r︸ ︷︷ ︸
n−2

, a/|rn−2λ1|). (9)

Also, since rn−2 = a/|snλ1| � a/(s1sn) = s2 · · · sn−1 , we have rl � sl · · · sn−1 for
l = 2, . . . , n − 1 , and hence

(|λ1|, r, . . . , r︸ ︷︷ ︸
n−2

, sn) ≺log (s1, . . . , sn). (10)

By (9), (10), and the fact that a/|rn−2λ1| = sn , we have

s(Â) = (|λ1|, r̃, . . . , r̃︸ ︷︷ ︸
n−2

, a/|r̃n−2λ1|) ≺log (s1, . . . , sn) = s(Ã),

and thus ‖s(Â)‖ � ‖s(Ã)‖ by Lemma 1.2. Since b = ‖Â‖F = ‖Ã‖F , we conclude that
s(Â) = s(Ã) by Lemma 1.2.
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Now, suppose Ψ2(|λ2|) > 0 . If there is an A ∈ S (λ , b) such that

s(A) = (|λ1|, t, . . . , t, a/|tn−2λ1|) with t � |λ2|,
then

(|λ1|, |λ2|, . . . , |λ2|, a/|λ n−2
2 λ1|) ≺log (|λ1|, t, . . . , t, a/|tn−2λ1|).

By Lemma 1.2, we have

‖(|λ1|, |λ2|, . . . , |λ2|, a/|λ n−2
2 λ1|)‖ � ‖(|λ1|, t, . . . , t, a/|tn−2λ1|)‖ = b.

Thus
Ψ2(|λ2|) = ‖(|λ1|, |λ2|, . . . , |λ2|, a/|λ n−2

2 λ1|)‖2 − b2 � 0,

which is a contradiction. The proof of Assertion 2 is now complete.

By the last statement of Assertion 2, if Ψ2(|λ2|) > 0 , s(Ã) cannot be of the form

(|λ1|, t, . . . , t, a/|tn−2λ1|) with t � |λ2|,
and we can move on to consider other possibilities.

From now on assume that Ψ2(|λ2|) > 0 . One can use arguments similar to those
in the previous cases to prove:

ASSERTION 3. If Ψ3(|λ3|) � 0 , then the largest positive zero r̃ of Ψ3(x) lies in
[|λ3|, |λ2|) , and

s(Ã) = (|λ1|, |λ2|, r̃, . . . , r̃︸ ︷︷ ︸
n−3

, |λ3 · · · λn|/r̃n−3),

as suggested in Step 3 of the algorithm when k = 3 . If Ψ3(|λ3|) > 0 , then there is no
A ∈ S (λ , b) such that

s(A) = (|λ1|, |λ2|, t, . . . , t︸ ︷︷ ︸
n−3

, |λ3 · · · λn|/tn−3) with t ∈ [|λ3|, |λ2|).

Repeating these arguments, one gets the desired conclusion. �

4. Numerical Examples

To use the theorems in the previous sections, we often have to find the positive
zeros of a function of the form

f (x) = mx2 +
[ c1

xm

]2
− c2

for a positive integer m and positive constants c1 and c2 . Note that r is a positive zero
of f (x) if and only if r > 0 and r2 is a zero of the polynomial

p(y) = mym+1 − c2y
m + c2

1.
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Since p(y) has only one positive turning point, at y0 = c2/(m + 1) , we see that p(y)
has at most two positive zeros, and so does f (x) .

Clearly, f (x) is continuous on (0,∞) , limx→0+ f (x) = ∞ , and limx→∞ f (x) =
∞ . If there exists an x0 > 0 such that f (x0) � 0 , then f (x) has at least one zero in
(0, x0] and one zero in [x0,∞) . If f (

√
y0) � 0 , where y0 = c2/(m+ 1) is the positive

turning point of p(y) defined in the preceding paragraph, then each of the intervals
(0,

√
y0] and [

√
y0,∞) contains exactly one zero of f (x) . With this background in

mind, one easily derives iterative methods, or one can use standard software such as
Maple or Matlab, to solve for the desired zero of f (x) in the specific interval when our
theorems are used.

In the following, we consider several numerical examples and compare our results
with some estimates of other authors.

EXAMPLE 4.1. Take |λ1| = |λ2| = |λ3| = 1 and b =
√

7.
Theorems 2.1, 2.2, 2.3, and 2.4 all require studying the zeros of

f (x) = 2x2 +
(

1
x2

)2

− 7.

Let r1 and r2 be the smallest and largest positive zeros of f (x) , respectively.
To determine the optimal upper bound for s1(A) with A ∈ S (λ , b) , we use

Theorem 2.1 and find the smaller positive zero of Φ3(x) = f (x) . We conclude that an
optimal matrix A1 has s2(A1) = s3(A1) = r1 ≈ 0.6338 and s1(A1) = 1/r2

1 ≈ 2.489.
A known upper bound [G, Example 1.2.5] for s1(A) with A ∈ S (λ , b) is given

by
s1(A) � |λ1| + g(A),

where g(A) =
(
b2 −∑3

i=1 |λi(A)|2
)1/2

. For this example, |λ1| + g(A) = 1 + (7 −
3)1/2 = 3 , and our estimate gives an improvement of 3−2.489

3 ≈ 17%.
To determine the optimal lower bound for s1(A) with A ∈ S (λ , b) , we use

Theorem 2.2 and find the largest positive zero of the function Φ(x) = f (x) . We
conclude that an optimal matrix A2 has s1(A2) = s2(A2) = r2 ≈ 1.8595 , and s3(A2) =
1/r2

2 ≈ 0.2892.
Next, we determine the optimal upper bound for s3(A) with A ∈ S (λ , b) . Using

Theorem 3.1, we compute the smallest positive zero of the function Ψ(x) = f (x) .
We conclude that an optimal matrix A3 has s3(A3) = s2(A3) = r1 ≈ 0.6338 and
s1 = 1/r2

1 ≈ 2.4893.
Finally, we determine the optimal upper bound for s3(A) with A ∈ S (λ , b) .

Using Theorem 3.2, we compute the largest positive zero of Ψ1(x) = f (x) . We
conclude that an optimal matrix A4 has s1(A4) = s2(A4) = r2 ≈ 1.8595 , and s3(A4) =
1/r2

2 ≈ 0.2892.
Using the formula in [G, Example 1.2.7], we get the lower bound 0.2000 for

sn(A) . Thus, we get an improvement of 0.2892−0.2000
0.2892 ≈ 30%.

We give two more examples showing that |λ1| and |λn| can be used as the bounds
for some S (λ , b) .
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EXAMPLE 4.2. Suppose |λ1| = 2, |λ2| = |λ3| = 1, and b =
√

7.
To get the optimal lower bound for s1(A) with A ∈ S (λ , b)} , we apply Theorem

2.2. Suppose Ã is an optimal matrix such that s(Ã) = (s1, s2, s3) . Since

(n − 1)|λ1|2 +
[

a

|λ n−1
1 |

]2

= (2)(2)2 + (2/22)2 = 8.25 > 7 = b2,

we have s1 = |λ1| = 2. To find s2 and s3 , we solve the equations

s2
1 + s2

2 + s2
3 = 7 = b2 and s1s2s3 = 2

to get s2 ≈ 1.618 and s3 ≈ 0.618.

EXAMPLE 4.3. Suppose |λ1| = |λ2| = 4, |λ3| = 2, and b =
√

50.
To get the optimal upper bound for sn(A) with A ∈ S (λ , b) , we apply Theorem

3.1. Suppose Ã is an optimal matrix such that s(Ã) = (s1, s2, s3) . Since[
a

|λ n−1
n |

]2

+ (n − 1)|λn|2 =
(
32/22

)2
+ (2)(22) = 72 > 50 = b2,

we have s3 = |λ3| = 2. To find s1 and s2 , we solve the equations

s2
1 + s2

2 + s2
3 = s2

1 + s2
2 + |λ3|2 = 50 and s1s2s3 = s1s2|λ3| = 32

to get s1 ≈ 6.2867 and s2 ≈ 2.455.

5. Remarks and Open Problems

In the previous sections, we have obtained upper and lower bounds for the extreme
singular values of a square matrix in terms of its Frobenius norm and eigenvalues
(actually, only the absolute values of the eigenvalues). In addition to these results, the
important contribution of this paper is the idea of reducing problems of finding bounds
on functions of singular values of matrices to certain optimization problems on Rn

by means of Lemma 1.1. In fact, our technique can be used to study other functions
of singular values of matrices with prescribed eigenvalues and Frobenius norm. For
example, one may consider

(a) the function g(s1(A), . . . , sn(A)) = s1(A) + · · · + sk(A) corresponding to the Ky
Fan k -norm of A where 1 � k � n ,

(b) the function g(s1(A), . . . , sn(A)) = 1/sn(A) + · · ·+ 1/sn−k+1(A) corresponding to
the Ky Fan k -norm of A−1 ,

(c) the function g(s1(A), . . . , sn(A)) = {s1(A)p + · · · + sn(A)p}1/p corresponding to
the Schatten p -norm of A where p � 1 ,

(d) the function g(s1(A), . . . , sn(A)) = {1/sn(A)p + · · ·+ 1/sn(A)p}1/p corresponding
to the Schatten p -norm of A−1 .

One may see, for example, [HJ, Chapter 3] for general background of these functions.
Another interesting function would be
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(e) the condition number of A with respect to a given unitarily invariant norm ||| · ||| , say,
the Ky Fan k -norm or the Schatten p -norm, defined by k(||| · |||, A) = |||A||| · |||A−1|||.

An upper bound for the condition number of a square matrix with respect to the spectral
norm based on its determinant and Frobenius norm was obtained in [Me].

Of course, the analysis for these functions will be much more involved. However,
in applications, one may use some software packages to solve the optimization problems
numerically instead of obtaining the theoretical results.
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