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SOME INEQUALITIES RELATED TO M –MATRICES

MIROSLAV FIEDLER AND VLASTIMIL PTÁK

(communicated by B. Opic)

Abstract. Several different forms of a Euler type inequality are investigated and their relation to
M -matrices and doubly stochastic matrices is exhibited. The results are applied to the study of
positive biquadratic forms.

Introduction

In connection with positive biquadratic forms, the authors came across an interest-
ing inequality (Theorem 2.). It turned out, however, that this inequality was essentially
equivalent to a particular case of a result in [1], as well as to an inequality proved in [4].
The authors present a new simple proof thereof as well as its several consequences. In-
teresting connections with M -matrices and doubly stochastic matrices are also pointed
out.

Let us recall the result posed as a problemby A. Berkes, proved byC. Bindscheidler
[1]. In the book of D.S. Mitrinović [5] it appears under 2.41.

Given n + 1 positive numbers x1, . . . , xn+1 then the following implication holds:

If
n+1∑
1

1
1 + xk

� n, then
n+1∏
1

1
xk

� nn+1.

For our purposes it will be convenient to restate this implication in the following
form:

(*) Let a1, . . . , an , n � 3 , be positive numbers such that
∏

ai � 1 . Then

∑ 1
n − 1 + ai

� 1,

with equality if and only if ai = 1 for i = 1, . . . , n.
Let us recall that a real square matrix is called an M -matrix (in [3], a matrix of

class K ) if all its off-diagonal entries are nonpositive and all principal minors positive.
It is called a possibly singular M -matrix (a matrix of class K0 ) if all its off-diagonal
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entries are nonpositive and all principal minors nonnegative. A symmetric M -matrix is
also called Stieltjes matrix.

A real nonnegative matrix is called doubly stochastic if all its row-sums as well as
all its column-sums equal one.

In the sequel, we shall use the following notation.
If x1, . . . , xn are real numbers, we denote by A(x) , resp. A(x2) the arithmetic

mean of these numbers, resp. their squares. By G(y) we denote the geometric mean of
positive (or, nonnegative) numbers yi .

Results

We shall first give a simple proof of an inequality stated essentially in ([4], Lemma
5.1).

LEMMA 2.1. Suppose that u1, . . . , un are real numbers. Then,

A(u)2 � n − 1
n

A(u2) +
1
n
G(u2). (1)

For n � 3 , equality is attained if and only if u1 = . . . = un . (For n = 2 , equality is
attained if and only if u1u2 � 0 , for n = 1 always.)

Proof. It is immediate that it suffices to prove this for the case that n � 3 , all
numbers ui are positive and G(u) equals one. Let then S denote the set of all n -tuples
yi which satisfy G(y) = 1 and

min(uk) � yi � max(uk) for all i.

Since S is compact, the function Φ(y) := A(y)2 − n−1
n A(y2) attains in S its max-

imum. To prove that this maximum is 1
n , attained for yi = 1 for all i , it suffices to

show that for any other (y) ∈ S its value can be augmented for some ỹ ∈ S .
Let thus y1 � y2 � . . . � yn and suppose that y1 > yn . Denote by f (x) the

function

f (x) = (xy1 +
1
x
yn + b)2 − (n − 1)(x2y2

1 +
1
x2

y2
n + B)

defined for positive x , where b =
∑n−1

2 yj and B =
∑n−1

2 y2
j . Its derivative can be

written as

f ′(x) = 2[−(n − 2)(xy1 +
yn

x
) + b](y1 − 1

x2
yn).

Since yn > 0 and (n − 2)y1 � b , this derivative is negative for x = 1 .
This implies that for x < 1 sufficiently close to 1, the point ỹ = (ỹi) , ỹ1 = xy1 ,

ỹn = 1
x yn , ỹk = yk for 2 � k � n − 1 , belongs to S and Φ(ỹ) > Φ(y) . �



INEQUALITIES RELATED TO M -MATRICES 173

THEOREM 2.2. Suppose a1, . . . , an , n � 3 , are positive numbers satisfying∏
ai = 1 . Then, for an arbitrary n -tuple of real numbers u1, . . . , un ,

(∑
ui

)2 � (n − 1)
∑

u2
i +

∑
u2

i ai.

Equality is attained if and only if ai = 1 for all i and u1 = . . . = un.

Proof. By Lemma 2.1,

(∑
ui

)2 � (n − 1)
∑

u2
i + nG(u2)

. = (n − 1)
∑

u2
i + nG(a1u

2
1, . . . , anu

2
n)

� (n − 1)
∑

u2
i + nA(a1u

2
1, . . . , anu

2
n)

= (n − 1)
∑

u2
i +

∑
aiu

2
i .

The rest is obvious. �

THEOREM 2.3. Let a1, . . . , an , n � 3 , be positive numbers such that
∏n

1 ai � 1 .
Consider the matrix

M(a) =

⎛
⎜⎜⎝

n − 2 + a1 −1 . . . −1
−1 n − 2 + a2 . . . −1
. . . . . . . . . . . .
−1 −1 . . . n − 2 + an

⎞
⎟⎟⎠ .

Then M(a) is a possibly singular M -matrix.
If ai = 1 for all i , then M(a) is singular with all row-sums equal to zero. In all

other cases, M(a) is a (nonsingular) M -matrix.

Proof. By Theorem 2.2, we have for all real n -tuples u1, . . . , un

(n − 1)
∑

u2
i +

∑
u2

i ai −
(∑

ui
)2 � 0.

Since M(a) is the matrix of this quadratic form, it is positive semidefinite. Thus
all its principal minors are nonnegative and, at the same time, all its off-diagonal entries
are negative, so it is a possibly singular M -matrix as asserted. The last assertion follows
from the fact that unless all the ai ’s equal one, the last inequality is strict for all non-zero
n -tuples which means that M(a) is positive definite.

REMARK 2.4. It is easy to show that the determinant of M(a) is equal to

Π(n − 1 + ai)
(
1 −

∑ 1
n − 1 + ai

)
.

Therefore, the assertion (*) follows from Theorem 2.3.
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COROLLARY 2.5. Let y1, . . . , yn be real numbers, P = (p(1), p(2), . . . , p(n)) a
permutation of 1, 2, . . . , n , n � 2 . Denote by Q(y, P) the matrix

⎛
⎜⎜⎝

(n − 2)y2
1 + y2

p(1) −y1y2 −y1y3 . . . −y1yn

−y2y1 (n − 2)y2
2 + y2

p(2) −y2y3 . . . −y2yn

. . . . . . . . . . . . . . .
−yny1 −yny2 yny3 . . . (n − 2)y2

n + y2
p(n)

⎞
⎟⎟⎠ .

Then, Q(y, P) is positive semidefinite.

Proof. It suffices to consider the case that all numbers yi are different from zero.
It is then easy to see that

Q(y, P) = D(y)M(a)D(y),

where D(y) is the diagonal matrix diag{y1, . . . , yn} and ai = (yP(i)/yi)2 so that∏
ai = 1 . For n � 3 , Theorem 2.4 applies. If n = 2 , the result is also true. �

COROLLARY 2.6. Let P = (p(1), p(2), . . . , p(n)) , n � 2 , be a permutation of
1, 2, . . . , n . Given two n-tuples of real numbers x1, . . . , xn, y1, . . . , yn , the following
inequality holds:

(n − 1)
∑

x2
i y

2
i +

∑
x2
i y

2
p(i) −

(∑
xiyi

)2 � 0. (2)

Proof. The expression above equals, in the usual notation, (Q(y, P)x, x) . �

COROLLARY 2.7. Suppose D = (dik) is an n -by- n doubly stochastic matrix,
n � 2 . Then for any pair of n -tuples of real numbers x1, . . . , xn, y1, . . . , yn , the
following inequality holds:

(∑
xiyi

)2 � (n − 1)
∑

x2
i y

2
i +

∑
i,k

dikx
2
i y

2
k .

Proof. By Birkhoff’s theorem, the matrix D may bewritten in the formof a convex
combination of permutation matrices, D =

∑
λPP . The inequality then follows from

the fact that
∑

λPQ(y, P) is a convex combination of positive semidefinite matrices.

CORROLLARY 2.8. Let B , D be n -by- n matrices, n � 2 , D = (dik) doubly
stochastic and B = (bik) positive semidefinite. Then, for every n -tuple of real numbers
x1, . . . , xn , ∑

i,k

bikxixk � (n − 1)
∑

k

bkkx
2
k +

∑
i,k

dikbkkx
2
i .

Proof. The matrix B may be written in the form B =
∑

y(j)y(j)T where y(j) are
some real vectors. We have then, using Corollary 2.7,
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∑
i,k

bikxixk =
∑

j

(∑
i

xiy
(j)
i

)2

�
∑

j

(n − 1)
∑

i

x2
i (y

(j)
i )2 +

∑
j

∑
i,k

dikx
2
i (y

(j)
k )2

= (n − 1)
∑

i

biix
2
i +

∑
i,k

dikbkkx
2
i .

COROLLARY 2.9. Given n real numbers u1, . . . , un , the following estimate for the
modified dispersion holds:

1
n

∑
i<k

(ui − uk)2 � A(u2) − G(u2). (3)

Proof. The inequality (1) may be rewritten in the form

n(n − 1)A(u2) + nG(u2) − (∑
ui

)2 � 0.

The expression on the left-hand-side of this inequality equals

n2A(u2) − (∑
ui

)2 − n(A(u2) − G(u2)) =
∑
i<k

(ui − uk)2 − n(A(u2) − G(u2)).

This proves the equivalence of (1) and (3).

REMARK 2.10. The inequality (3) appears, in a slightly different form, also in [4].
Let us conclude by a slight strengthening of a result in [2]:

THEOREM 2.11. The biquadratic form

2
3∑
1

(xiyi)2 − ( 3∑
1

xiyi
)2 + x2

1y
2
2 + x2

2y
2
3 + x2

3y
2
1

is positive semidefinite, equal to zero in all points x1 = x2 = x3 , y1 = y2 = y3 and
cannot be expressed as a sum of squares of bilinear forms.

Proof. The first assertion follows from Corollary 2.6 for n = 3 . The second is
obvious. The last follows in the manner identical with that in [2], Theorem 1.

REMARK 2.12. An analogous result holds for the case of the biquadratic form in
(2) if P is the cyclic permutation (p(k) ≡ k + 1 mod n ).

ADDED IN PROOF. The strengthening 2.11 is essentially contained in M. D. Choi,
Positive linear maps, Proc. Symp. in Pure Math., Amer. Math. Soc. 38(2) (1982),
583–590.
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