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NEW Lq INEQUALITIES FOR POLYNOMIALS

ABDUL AZIZ AND NISAR AHMED RATHER

(communicated by J. Pečarić)

Abstract. In this paper we establish some new Lq inequalities for polynomials which generalize
and refine some results of Szegö, Zygmund, De Bruijn and others.

1. Introduction

For fixed μ , 1 � μ � n , let Pn,μ denote the class of polynomials P(z) =

a0 +
n∑

j=μ
ajzj of degree at most n . For P ∈ Pn,μ , we define

‖P‖q =
{

1
2π

2π∫
0

|P(eiθ)|q dθ
}1/q

, 0 < q < ∞,

‖P‖∞ = max
|z|=1

|P(z)| and m(P, k) = min
|z|=k

|P(z)|.

If P ∈ Pn,1 , then
‖P′‖∞ � n‖P‖∞ (1)

and
‖P′‖∞ � n‖Re(P)‖∞. (2)

Inequality (1) is well known result of S. Bernstein (for reference see [14] or [18]).
Inequality (2), which is an interesting refinement of Bernstein’s inequality (1), is due
to Szegö [19] (for other proofs see [9, 13, 17]).

Inequalities (1) and (2) can be obtained by letting q → ∞ in the inequalities

‖P′‖q � n‖P‖q, q � 1 (3)

and
‖P′‖q � n∥∥∥1 + zn

2

∥∥∥
q

‖Re(P)‖q, q � 1 (4)

Mathematics subject classification (1991): Primary 26D05, 30D15, Secondary 41A17.
Key words and phrases: Polynomials, Zygmund’s inequality, Lq inequalities.

c© � � , Zagreb
Paper MIA-01-16

177



178 A. AZIZ AND N. A. RATHER

respectively. Inequality (3), which is an extension of the inequality (1) to Lq spaces,
was found out by Zygmund [21] (see also [2]). Inequality (4), which is the corresponding
extension of the inequality (2) to Lq spaces is also due to Zygmund [22].

It was shown by Frappier, Rahman and Ruscheweyh [9, inequality 7.18] that if
P ∈ Pn,1 , then

‖P(Rz) − P(z)‖∞ � (Rn − 1) ‖Re(P)‖∞, R > 1. (5)

Recently the authors [5] have investigated the dependence of ‖P(Rz)− P(z)‖q on
‖P‖q and proved that if P ∈ Pn,1 , then for every q � 1 and R � 1 ,

‖P(Rz) − P(z)‖q � (Rn − 1) ‖P‖q, (6)

which contains the inequality (1) as a special case. In this paper we first prove the
following result analogous to (6), which among other things includes inequality (5) as
a special case.

THEOREM 1. If P ∈ Pn,1 , then for every q � 1 and R � 1 ,

‖P(Rz) − P(z)‖q � (Rn − 1)∥∥∥1 + zn

2

∥∥∥
q

‖Re(P)‖q. (7)

The result is best possible and equality holds for P(z) = zn .

REMARK 1. If we let q → ∞ in (7), we get (5). This inequality is an interesting
generalization of the inequality (2).

If P ∈ Pn,1 and P(z) does not vanish in |z| < k , where k � 1 , then

‖P′(z)‖∞ � n
1 + k

‖P(z)‖∞. (8)

Inequality (8) is due to Malik [13]. For k = 1 , it was conjectured by P. Erdös and
later verified by P. D. Lax [12]. Inequality (8) was further improved by Govil [10], who
under the same hypothesis proved that

‖P′(z)‖∞ � n
1 + k

{‖P(z)‖∞ − m(P, k)
}
. (9)

For k = 1 inequality (9) is due to A. Aziz and Q. M. Dawood [4]. As a generalization
of (8), it was shown by Chan and Malik [6] (see also [8,16]) that if P ∈ Pn,μ and P(z)
does not vanish in |z| < k where k � 1 , then

‖P′(z)‖∞ � n
1 + kμ

‖P(z)‖∞. (10)

Next we present the following result which is a generalization of De Bruijn’s
Theorem [7, Theorem 13] and which includes the inequality (8) as a special case.



NEW Lq INEQUALITIES FOR POLYNOMIALS 179

THEOREM 2. If p ∈ Pn,1 and P(z) does not vanish in |z| < k where k � 1 , then
for every real or complex number β with |β | � 1 , q > 0 and R � 1 ,

‖P(Rz) − P(z) + β
(Rn − 1)

1 + k
m(P, k)‖q � (Rn − 1)

‖k + zn‖q
‖P‖q. (11)

The result is best possible for k = 1 and equality holds for P(z) = azn + b ,
|a| = |b| .

Instead of proving Theorem 2, we prove the following more general result which
includes the inequality (10) as a special case and also have various other interesting
consequences.

THEOREM 3. If P ∈ Pn,μ and P(z) does not vanish in |z| < k where k � 1 , then
for every real or complex number β with |β | � 1 , q > 0 and R � 1

‖P(Rz) − P(z) + β
(Rn − 1

1 + kμ

)
m(P, k)‖q � (Rn − 1)

‖kμ + zn‖q
‖P‖q. (12)

REMARK 2. Making q tend to infinity in (12) and choosing argument of β , with
|β | = 1 , suitably we obtain that if P ∈ Pn,μ and P(z) does not vanish in |z| < k where
k � 1 , then

‖P(Rz) − P(z)‖∞ +
(Rn − 1

1 + kμ

)
m(P, k) �

(Rn − 1
1 + kμ

)
‖P‖∞

or equivalently,

‖P(Rz) − P(z)‖∞ �
(Rn − 1

1 + kμ

) {‖P(z)‖∞ − m(P, k)
}
. (13)

Dividing two sides of this inequality by R − 1 and letting R → 1 , it follows that

‖P′(z)‖∞ � n
1 + kμ

{‖P(z)‖∞ − m(P, k)
}
, (14)

which is an interesting refinement of the inequality (10). Inequality (9) is a special case
of the inequality (14) for μ = 1 .

From inequality (13), it follows that

‖P(Rz)‖∞ �
(Rn + kμ

1 + kμ

)
‖P(z)‖∞ −

(Rn − 1
1 + kμ

)
m(P, k), R � 1

which is a generalization of a result due to first author [3, Theorem 4].
If we divide two sides of the inequality (11) by R − 1 and let R → 1 , we get the

following interesting result.

COROLLARY. If P ∈ Pn,μ and P(z) does not vanish in |z| < k where k � 1 , then
for every real or complex number β with |β | � 1 , q > 0 and R � 1 ,∥∥∥zP′(z) +

βmn
1 + kμ

∥∥∥
q

� n
‖kμ + zn‖ ‖P‖q.

For β = 0 and μ = 1 , above corollary reduces to a result due to Govil and
Rahman [11, Theorem 9].
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2. Lemmas

For the proofs of these theorems we need the following Lemmas.

LEMMA 1. If P ∈ Pn,1 , then for every real α and R � 1 ,

eiαP(Reiθ) = eiαP(eiθ) + 1
2π

2n∑
k=1

(−1)kAk(R,α) P
(
ei(θ+ kπ+α

n )
)

where

Ak(R,α) = (Rn − 1) + 2
n∑

j=1

(Rn−j − 1) cos j
(kπ + α

n

)
.

The coefficients Ak(R,α) are all non-negative and

1
2n

2n∑
k=1

Ak(R,α) = Rn − 1. (15)

This result is due to Frappier, Rahman and Ruscheweyh [9].

LEMMA 2. If P ∈ Pn,1 and P(z) has all its zeros in |z| � k where k � 1 , then

|P(Rz)| > |P(z)| for |z| � 1 and R > 1. (16)

Proof of Lemma 2. Since all the zeros of P(z) lie in |z| � k � 1 , we write

P(z) = C
n∏

j=1

(z − zje
iθ j) where rj � k, j = 1, 2, . . . , n,

so that for each θ , 0 � θ < 2π and R > 1 , it can be easily seen that

∣∣∣P(Reiθ)
P(eiθ)

∣∣∣ =
n∏

j=1

∣∣∣Reiθ − rjeiθj

eiθ − rjeiθj

∣∣∣ �
n∏

j=1

(R + rj

1 + rj

)

�
n∏

j=1

(R + k
1 + k

)
=

(R + k
1 + k

)n
.

This implies

|P(Reiθ)| �
(R + k

1 + k

)n
|P(eiθ )| for R > 1, 0 � θ < 2π. (17)

Clearly, P(Reiθ) �= 0 for every R > 1 and 0 � θ < 2π , which implies

|P(Rz)| > 0 for |z| = 1 and R > 1. (18)

Now, for points eiθ , 0 � θ < 2π , which are not the zeros of P(z) , we get from (17)

|P(Reiθ)| > |P(eiθ )| for every R > 1. (19)
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Since by (18), the inequality (19) is trivially true for those points eiθ , 0 � θ < 2π ,
which are the zeros of P(z) , it follows that

|P(z)| < |P(Rz)| for |z| = 1 and R > 1.

Since all the zeros of P(Rz) lie in |z| � (k/R) < 1 , it follows by the Maximum
Modulus principle that

|P(z)| < |P(Rz)| for |z| � 1 and R > 1.

This completes the proof of Lemma 2.

LEMMA 3. If P ∈ Pn,μ and P(z) does not vanish in |z| < k where k � 1 and
Q(z) = znP(1/z) , then

kμ |P(Rz) − P(z)| � |Q(Rz) − Q(z)| for |z| = 1 and R � 1. (20)

Proof of Lemma 3. For R = 1 there is nothing to prove. Henceforth we assume
that R > 1 . Since the polynomial P(z) has all its zeros in |z| � k where k � 1 ,
therefore, the polynomial F(z) = P(kz) has all its zeros in |z| � 1 . Hence for every
real or complex number β with |β | > 1 , the polynomial f (z) = F(z)− βG(z) , where
G(z) = znF(1/z) , has all its zeros in |z| � 1 . Applying Lemma 1 to the polynomial
f (z) with k = 1 , we get

|f (z)| < |f (Rz)| for |z| = 1 and R > 1.

Using Rouche’s theorem and noting that all the zeros of f (Rz) lie in |z| � (1/R) < 1 ,
we conclude that the polynomial

g(z) = f (Rz) − f (z) = (F(Rz) − F(z)) − β(G(Rz) − G(z)), (21)

where G(z) = znF(1/z) , has all its zeros in |z| < 1 for every complex number β with
|β | > 1 and R > 1 . This implies

|F(Rz) − F(z)| � |G(Rz) − G(z)| for |z| � 1 and R > 1. (22)

If inequality (22) is not true, then there is a point z = z0 with |z0| � 1 such that

|F(Rz0) − F(z0)| > |G(Rz0) − G(z0)|.
Since all the zeros of G(z) lie in |z| � 1 , it follows (as in the case of f (z) ) that all the
zeros of G(Rz) − G(z) lie in |z| < 1 for every R > 1 . Hence G(Rz0) − G(z0) �= 0
with |z0| � 1 , we take

β =
F(Rz0) − F(z0)
G(Rz0) − G(z0)

so that β is a well defined real or complex number with |β | > 1 and with this choice
of β , from (21), we get

g(z0) = 0 where |z0| � 1.
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This is clearly contradiction to the fact that all the zeros of g(z) lie in |z| < 1 . Thus

|F(Rz) − F(z)| � |G(Rz) − G(z)| for |z| � 1 and R > 1.

Replacing F(z) by P(kz) and G(z) by znP(k/z) , we get

|P(Rkz) − P(kz)| �
∣∣RnznP(k/Rz) − znP(k/z)

∣∣
= |RnP(kz/R) − P(kz)| for |z| = 1 and R > 1. (23)

Now P ∈ Pn,μ implies that

P(Rkz) − P(kz) = an(Rn − 1)knzn + an−1(Rn−1 − 1)kn−1zn−1+

. . . + aμ+1(Rμ+1 − 1)kμ+1zμ+1 + aμ(Rμ − 1)kμzμ

= kμzμ
{
an(Rn−1)kn−μzn−μ+ . . .+aμ+1(Rμ+1−1)kz+aμ(Rμ−1)

}
.

Using this in (23), we obtain

kμ |an(Rn − 1)kn−μzn−μ + . . . + aμ+1(Rμ+1 − 1)kz + aμ(Rμ − 1)|
� |RnP(kz/R) − P(kz)| for |z| = 1 and R > 1. (24)

Since the polynomial RnP(kz/R)−P(kz) does not vanish in |z| � 1 , by the Maximum
Modulus Principle, the inequality (24) holds for |z| � 1 also. That is

kμ |an(Rn − 1)kn−μzn−μ + . . . + aμ+1(Rμ+1 − 1)kz + aμ(Rμ − 1)|
� |RnP(kz/R) − P(kz)| for |z| � 1 and R > 1. (25)

Replacing z by eiθ/k , k � 1 , 0 � θ < 2π , in (25), it follows that

kμ |P(Reiθ) − P(eiθ)| � |RnP(eiθ/R) − P(eiθ)|, R > 1. (26)

By hypothesis, Q(z) = znP(1/z) , therefore for every R > 1 and 0 � θ < 2π , we
have

|Q(Reiθ) − Q(eiθ)| = |RneinθP(eiθ/R) − einθP(eiθ)| = |RnP(eiθ/R) − P(eiθ)|.
This in conjuction with (26) yields

kμ |P(Rz) − P(z)| � |Q(Rz) − Q(z)| for |z| = 1 and R > 1,

which is inequality (20) and this completes the proof of Lemma 3.

LEMMA 4. If P ∈ Pn,1 and P(z) has all its zeros in |z| � t where t � 1 , then

|P(Rz) − P(z)| � (Rn − 1)
tn

m(P, t) for |z| = 1 and R � 1.

Proof of Lemma 4. By hypothesis, all the zeros of P(z) lie in |z| � t where
|t| � 1 , therefore, the polynomial G(z) = P(tz) has all its zeros in |z| � 1 . Now

m(P, t) = min
|z|=t

|P(z)| = min
|z|=1

|G(z)| = m(G, 1)
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so that
m(G, 1) |zn| � |G(z)| for |z| = 1.

We first show that the polynomial H(z) = G(z)−αm(G, 1)zn has all its zeros in |z| � 1
for every real and complex number α with |α| < 1 . This is clear if m(G, 1) = 0 .
Henceforth we assume G(z) has all its zeros in |z| < 1 , then m(G, 1) > 0 and it
follows by Rouche’s theorem that the polynomial H(z) = G(z)−αm(G, 1)zn of degree
n has all its zeros in |z| < 1 for every real and complex number α with |α| < 1 .
Applying Lemma 2 to the polynomial H(z) , we get

|H(Rz)| > |H(z)| for |z| � 1 and R > 1.

This implies
H(Rz) − H(z) �= 0 for |z| � 1 and R > 1,

or equivalently, for every real and complex number α with |α| < 1 ,
(
G(Rz) − αm(G, 1)Rnzn

) − (
G(z) − αm(G, 1)zn

) �= 0 for |z| � 1 and R > 1.

This gives for every α with |α| < 1 , the polynomial

T(z) =
(
G(Rz) − G(z)

)
+ α(Rn − 1)m(G, 1)zn �= 0 for |z| � 1 and R > 1, (28)

from which we conclude that

|G(Rz) − G(z)| � (Rn − 1)m(G, 1) |zn| for |z| � 1 and R > 1.

Because if this inequality is not true, then there is a point z = z0 with |z0| � 1 such
that

|G(Rz0) − G(z0)| < (Rn − 1) m(G, 1) |z0|n, R > 1.

We choose

α =
G(Rz0) − G(z0)

(Rn − 1) m(G, 1)zn
0
,

so that |α| < 1 and with this choice of α , T(z0) = 0 , |z0| � 1 , which is contradiction
to (28). Hence

|G(Rz) − G(z)| � (Rn − 1)m(G, 1) |zn| for |z| � 1 and R > 1.

Replacing G(z) by P(tz) , we get

|P(Rtz) − P(tz)| � (Rn − 1)m(P, t) |zn| for |z| � 1 and R > 1.

Taking z = eiθ/t , t � 1 , 0 � θ < 2π , we obtain for every R > 1 ,

|P(Reiθ) − P(eiθ)| � (Rn − 1)
tn

m(P, t),

which is equivalent to desired result and this completes the proof of Lemma 4.
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LEMMA 5. If P ∈ Pn,μ and P(z) does not vanish in |z| < k where k � 1 and
Q(z) = znP(1/z) , then for |z| = 1 and R � 1 ,

kμ |P(Rz) − P(z)| � |Q(Rz) − Q(z)| − (Rn − 1)m(P, k). (29)

Proof of Lemma 5. The result is trivial for R = 1 , so we assume R > 1 . By
hypothesis, P(z) has all its zeros in |z| � k � 1 and m(P, k) = min

|z|=k
|P(z)| , therefore

m(P, k) � |P(z)| for |z| = k. (30)

We first show that for every real or complex number δ with |δ | � 1 , the polynomial
h(z) = P(z) − δm(P, k) has all its zeros in |z| � k � 1 . This is clear if P(z) has a
zero on |z| = k , for then m(P, k) = 0 and h(z) = P(z) . In case P(z) has no zero on
|z| = k , then clearly m(P, k) > 0 . Since m/P(z) is not a constant, by the Maximum
Modulus Principle, it follows from (30) that

m(P, k) < |P(z)| for |z| < k. (31)

Now if h(z) has a zero in |z| < k , say at z = z0 with |z0| < k , then P(z0)−δm(P, k) =
h(z0) = 0 . This implies

|P(z0)| = |δm(P, k)| � m(P, k) where |z0| < k,

which contradicts (31) and hence in any case h(z) = P(z) − δm(P, k) has all its zeros
in |z| � k � 1 for every real or complex number δ with |δ | � 1 . Applying Lemma 3
to the polynomial h(z) = P(z) − δm(P, k) we get for every real or complex number δ
with |δ | � 1 ,

kμ |P(Rz) − P(z)| � |Q(Rz) − Q(z) − δ(Rn − 1)m(P, k)|
for |z| = 1 and R > 1. (32)

Since all the zeros of Q(z) lie in |z| � (1/k) � 1 it follows by Lemma 4 (with P(z)
replaced by Q(z) and t replaced by 1/k ) that

|Q(Rz) − Q(z)| � (Rn − 1)kn min
|z|=1/k

|Q(z)|.

But

m(Q, 1/k) = min
|z|=1/k

|Q(z)| = min
|z|=1/k

|znP(1/z)|

= min
|z|=1

∣∣∣ zn

kn
P(k/z)

∣∣∣ =
1
kn

min
|z|=1

|P(kz)|

=
1
kn

min
|z|=k

|P(z)| =
1
kn

m(P, k),

therefore, we have

|Q(Rz) − Q(z)| � (Rn − 1)m(P, k) for |z| = 1 and R > 1. (33)
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Choosing now argument of δ with |δ | = 1 on the right hand side of (32) such that for
|z| = 1 and R > 1 ,

|Q(Rz) − Q(z) − δ(Rn − 1)m(P, k)| = |Q(Rz) − Q(z)| − (Rn − 1)m(P, k)

(which is possible by (33)), we conclude that

kμ |P(Rz) − P(z)| � |Q(Rz) − Q(z)| − (Rn − 1)m(P, k)| for |z| = 1 and R > 1,

which is equivalent to (29) and this proves Lemma 5.

Next we describe a result of Arestov.

For γ = (γ0, γ1, . . . , γn) ∈ Cn+1 and P(z) =
n∑

j=0
ajzj , we define

ΛγP(z) =
n∑

j=0

γjajz
j.

The operator Λγ is said to be admissible if it preserves one of the following properties:
(i) P(z) has all its zeros in {z ∈ C : |z| � 1} ,
(ii) P(z) has all its zeros in {z ∈ C : |z| � 1} .
The result of Arestov may now be stated as follows.

LEMMA 6. [1, Theorem 4] Let φ(x) = ψ(log x) where ψ is a convex nonde-
creasing function on R . Then for all polynomials P(z) of degree at most n and each
admissible operator Λγ ,

2π∫
0

φ
(|ΛγP(eiθ)|) dθ �

2π∫
0

φ
(
C(γ , n) |P(eiθ)|) dθ

where C(γ , n) = max(|γ0|, |γn|).
In particular, Lemma 6 applies with φ : x → xq for every q ∈ (0,∞) . Therefore,

we have
‖ΛγP‖q � C(γ , n)‖P‖q, 0 < q < ∞. (34)

From Lemma 6, we deduce the following result which is also of independent
interest.

LEMMA 7. If P ∈ Pn,1 and P(z) does not vanish in |z| < 1 , then for each q > 0 ,
R � 1 and α real,

‖(P(Rz) − P(z)) + eiα(RnP(z/R) − P(z))‖q � (Rn − 1)‖P‖q. (35)

The result is best possible and equality holds for P(z) = λ zn + μ , |λ | = |μ| .
Proof of Lemma 7. The result is trivial for R = 1 . Henceforth we assume R > 1 .

First we show that for every R > 1 and α real, all the zeros of polynomial

R(z) =
n∑

j=0

( n
j

)
{(Rj − 1) + eiα(Rn−j − 1)}zj
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lie on the unit circle. Let

H(z) =
n∑

j=0

( n
j

)
(Rj − 1)zj = (Rz + 1)n − (z + 1)n.

The zeros zν , ν = 1, 2, . . . , n of H(z) are given by

zν =
1 − e(2νπi/n)

e(2νπi/n) − R
.

Since R > 1 , it can be easily seen that |zν| < 1 , ν = 1, 2, . . . , n . Hence all the zeros
of H(z) lie in |z| < 1 for every R > 1 . If now

G(z) = znH(1/z) = znH(1/z) =
n∑

j=0

( n
j

)
(Rj − 1)zn−j =

n∑
j=0

( n
j

)
(Rn−j − 1)zj,

then all the zeros of G(z) lie in |z| > 1 and it follows that (see [15, Prob. 26, P.108])
the polynomial

R(z) = H(z) + eiαznH(1/z) =
n∑

j=0

( n
j

)
{(Rj − 1) + eiα(Rn−j − 1)}zj

has all its zeros on the circle |z| = 1 for every R > 1 and α real. Now by hypothesis
P(z) has all its zeros in |z| � 1 therefore, by Szegö’s convolution theorem [20],

ΛP(z) = (P(Rz) − P(z)) + eiα(RnP(z/R) − P(z))

= (Rn − 1)anz
n + {(Rn−1 − 1) + eiα(R − 1)}an−1z

n−1 + . . .

+ {(R − 1) + eiα(Rn−1 − 1)}a1z + (Rn − 1)a0,

does not vanish in |z| < 1 for every R > 1 and α real. Therefore, Λ is an admissible
operator. Hence by (34), we obtain for each q > 0 , R > 1 and α real,

2π∫
0

∣∣(P(Reiθ) − P(eiθ)
)

+ eiα(
RnP(eiθ/R) − P(eiθ)

)∣∣q dθ � (Rn − 1)q

2π∫
0

|P(eiθ)|q dθ,

which is equivalent to the desired result and this completes the proof of Lemma 7.

LEMMA 8. If A , B , C are non-negative real numbers such that B + C � A then
for every real number α ,

|(A − C)eiα + (B + C)| � |Aeiα + B|.

Proof of Lemma 8. If C = 0 , then Lemma 8 is obvious, so we suppose that C > 0 .
Since cosα � 1 for every real α and by hypothesis (A − B − C) � 0 , it follows that

(A − B − C) cosα � (A − B − C). (36)
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Multiplying both sides of (36) by 2C and noting that C > 0 , we get

{2C(A − B) − 2C2} cosα � 2C(A − B − C),

or equivalently,

2{C(A − B) − C2} cosα + 2C2 − 2C(A − B) � 0. (37)

Adding A2 + B2 + 2AB cosα to the both sides of (37) and rearranging the terms, we
obtain

(A2 − 2AC + C2) + (B2 + 2BC + C2) + 2(A − C)(B + C) cosα
� A2 + B2 + 2AB cosα,

which implies
|(A − C)eiα + (B + C)|2 � |Aeiα + B|2

and hence
|(A − C)eiα + (B + C)| � |Aeiα + B|

for every real α . This computes the proof of Lemma 8.

Proof of Theorem 1. Using Lemma 1, we have for every q � 1 , R � 1 and α
real

∣∣Re
{
eiα(

P(Reiθ) − P(eiθ)
)}∣∣q =

∣∣∣ 1
2n

2n∑
k=1

(−1)kAk(R,α)Re
{

P
(
ei(θ+ kπ+α

n )
)}∣∣∣q. (38)

Integrating both sides of (38) with respect to θ from 0 to 2π , we get

2π∫
0

∣∣∣Re
{
eiα(

P(Reiθ) − P(eiθ)
)}∣∣∣q dθ

=

2π∫
0

∣∣∣∣ 1
2n

2n∑
k=1

(−1)kAk(R,α)Re
{
P
(
ei(θ+ kπ+α

n ))}∣∣∣∣
q

dθ. (39)

Let γ (θ) be the argument of P(Reiθ)−P(eiθ) , then from (39), we have by Minkowski’s
inequality for every q � 1 , R � 1 and α real

{ 2π∫
0

∣∣(P(Reiθ)−P(eiθ)
)∣∣q ∣∣Re

(
ei(α+γ (θ)))∣∣q dθ

}1/q

� 1
2n

2n∑
k=1

Ak(R,α)
{ 2π∫

0

∣∣∣Re
{

P
(
ei(θ+ kπ+α

n )
)}∣∣∣q dθ

}1/q

=
{

1
2n

2n∑
k=1

Ak(R,α)
}{ 2π∫

0

∣∣Re
(
P(eiθ)

)∣∣q dθ
}1/q

.
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This, with the help of (15), gives

2π∫
0

∣∣(P(Reiθ) − P(eiθ)
)∣∣q | cos(α + γ (θ))|q dθ � (Rn − 1)q

2π∫
0

∣∣Re
(
P(eiθ )

)∣∣q dθ.

Integrating this inequality both sides with respect to α from 0 to 2π , we obtain

2π∫
0

2π∫
0

∣∣(P(Reiθ) − P(eiθ)
)∣∣q | cos(α + γ (θ))|q dα dθ

� 2π(Rn − 1)q

2π∫
0

∣∣Re
(
P(eiθ)

)∣∣q dθ

which gives for every q � 1 , R � 1 and α real,

2π∫
0

{∣∣(P(Reiθ) − P(eiθ)
)∣∣q

2π∫
0

∣∣∣∣e
2i(α+γ (θ)) + 1

2

∣∣∣∣
q

dα
}

dθ

� 2π(Rn − 1)q

2π∫
0

∣∣Re
(
P(eiθ)

)∣∣q dθ. (40)

Using a well-known property of definite integrals, it follows from (40) that

2π∫
0

∣∣(P(Reiθ) − P(eiθ)
)∣∣q dθ

2π∫
0

∣∣∣∣e
inθ + 1

2

∣∣∣∣
q

dθ � 2π(Rn − 1)q

2π∫
0

∣∣Re
(
P(eiθ)

)∣∣q dθ,

from which the desired result follows immediately.

Proof of Theorem 2. This follows by taking μ = 1 in Theorem 3.

Proof of Theorem 3. By hypothesis P ∈ Pn,μ and P(z) �= 0 for |z| < k where
k � 1 , therefore, by Lemma 5, for each θ , 0 � θ < 2π , q > 0 and R � 1 , we have

kμ |P(Reiθ) − P(eiθ)| � |RnP(eiθ/R) − P(eiθ)| − (Rn − 1)m(P, k).

This implies

kμ
{
|P(Reiθ) − P(eiθ)| +

(Rn − 1
1 + kμ

)
m(P, k)

}

� |RnP(eiθ/R) − P(eiθ)| −
(Rn − 1

1 + kμ

)
m(P, k). (41)

Taking

A = |RnP(eiθ/R) − P(eiθ)|, B = |P(Reiθ) − P(eiθ)| and C =
(Rn − 1

1 + kμ

)
m(P, k)
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in Lemma 8 and noting by (41) that for k � 1 ,

B + C � kμ(B + C) � (A − C) � A,

we get for every real α ,
∣∣∣{|RnP(eiθ/R) − P(eiθ)| −

(Rn − 1
1 + kμ

)
m(P, k)

}
eiα

+
{
|P(Reiθ) − P(eiθ)| +

(Rn − 1
1 + kμ

)
m(P, k)

}∣∣∣
�

∣∣|RnP(eiθ/R) − P(eiθ)|eiα + |P(Reiθ) − P(eiθ)|∣∣.
This implies for each q > 0 ,

2π∫
0

|F(θ)+eiαG(θ)|q dθ �
2π∫

0

∣∣|RnP(eiθ/R)−P(eiθ)|eiα+|P(Reiθ)−P(eiθ)|∣∣q dθ, (42)

where

F(θ) = |P(Reiθ) − P(eiθ)| +
(Rn − 1

1 + kμ

)
m(P, k)

and

G(θ) = |RnP(eiθ/R) − P(eiθ)| −
(Rn − 1

1 + kμ

)
m(P, k).

Integrating both sides of (42) with respect to α from 0 to 2π , we get with the help of
Lemma 7, for each q > 0 , R � 1 and α real,

2π∫
0

2π∫
0

|F(θ) + eiαG(θ)|q dθ dα

�
2π∫

0

2π∫
0

∣∣|RnP(eiθ/R) − P(eiθ )|eiα + |P(Reiθ) − P(eiθ)|∣∣q dα dθ

=

2π∫
0

{ 2π∫
0

∣∣|RnP(eiθ/R) − P(eiθ)|eiα + |P(Reiθ) − P(eiθ)|∣∣q dα
}

dθ

=

2π∫
0

{ 2π∫
0

∣∣(RnP(eiθ/R) − P(eiθ))eiα + (P(Reiθ) − P(eiθ))
∣∣q dα

}
dθ

=

2π∫
0

{ 2π∫
0

∣∣(RnP(eiθ/R) − P(eiθ))eiα + (P(Reiθ) − P(eiθ))
∣∣q dθ

}
dα

� (Rn − 1)q

2π∫
0

2π∫
0

|P(eiθ)|q dθ dα = 2π(Rn − 1)q

2π∫
0

|P(eiθ)|q dθ.
(43)
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Now for every real α and t � t0 � 1 , we have |t + eiα | � |t0 + eiα | , which implies

2π∫
0

|t + eiα |q dα �
2π∫

0

|t0 + eiα |q dα, q > 0.

If F(θ) �= 0 , we take t = |G(θ)|/|F(θ)| and t0 = kμ , 1 � μ � n , then by (41),
t � t0 � 1 and we get

2π∫
0

|F(θ) + eiαG(θ)|q dθ = |F(θ)|q
2π∫

0

∣∣∣∣1 +
G(θ)
F(θ)

eiα
∣∣∣∣
q

dα

= |F(θ)|q
2π∫

0

∣∣∣∣G(θ)
F(θ)

+ eiα
∣∣∣∣
q

dα

= |F(θ)|q
2π∫

0

∣∣∣∣
∣∣∣G(θ)
F(θ)

∣∣∣ + eiα
∣∣∣∣
q

dα

� |F(θ)|q
2π∫

0

|kμ + eiα |q dα

=
{
|P(Reiθ) − P(eiθ)| +

(Rn − 1
1 + kμ

)
m(P, k)

}q 2π∫
0

|kμ + eiα |q dα.

For F(θ) = 0 , this inequality is trivially true. Using this in (43), we conclude that for
each q > 0 , R � 1 and α real,

2π∫
0

|kμ + eiα |q dα
2π∫

0

{
|P(Reiθ) − P(eiθ )| +

(Rn − 1
1 + kμ

)
m(P, k)

}q

dθ

� 2π(Rn − 1)q

2π∫
0

|P(eiθ)|q dθ.

This gives for every real or complex number β with |β | � 1 , q > 0 , R � 1 and α
real,

2π∫
0

|kμ + eiα |q dα
2π∫

0

∣∣∣∣P(Reiθ) − P(eiθ) + β
(Rn − 1

1 + kμ

)
m(P, k)

∣∣∣∣
q

dθ

� 2π(Rn − 1)q

2π∫
0

|P(eiθ)|q dθ,

which immediately leads to (12) and this completes the Proof of Theorem 3.
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