
Mathematical
Inequalities

& Applications
Volume 1, Number 2 (1998), 201–209

A LIAPUNOV INEQUALITY FOR LINEAR HAMILTONIAN SYSTEMS

STEVE CLARK ∗ AND DON HINTON

(communicated by M. K. Kwong)

Abstract. A Liapunov type inequality is proved for a linear Hamiltonian system. This inequality
allows estimates of intervals of disconjugacy. The inequality is particularly applicable to equa-
tions with oscillatory coefficients. A new criterion of stability is given for a differential equation
with periodic coefficients.

0. Introduction

The classical Liapunov inequality states that if a and b are consecutive zeros of
a nontrivial solution y of

(0.1) y′′(t) + p(t)y(t) = 0,

where p is a real Lebesgue integrable function, then

(0.2) (b − a)
∫ b

a
p+(t)dt > 4.

The notation p+ is defined by p+(t) = max{p(t), 0} . There are many proofs of this
inequality, e.g., see the survey paper [5]. Liapunov inequalities are quite useful in the
study of differential equations. They are used to derive bounds for the distance between
zeros of solutions, and to estimate the number of zeros of a solution in an interval [8, p.
346]. In eigenvalue problems, they yield lower bounds on the eigenvalues.

The inequality (0.2) may be stated another way. If (b − a)
∫ b

a p+(t)dt � 4 , then
the equation (0.1) is disconjugate on [a, b] , i.e., no nontrivial solution has more than one
zero on [a, b] . For the extension to n th order scalar equations, Liapunov’s inequality
often takes this form, i.e, conditions are given so that no nontrivial solution of the
differential equation has n zeros, counting multiplicities, on an interval.

Another extension of Liapunov’s inequality for 2n th order scalar equations is
concerned only with the nonexistence of a pair of conjugate points, i.e., the nonexistence
of a nontrivial solution with a pair of n -fold zeros. This is also an appropriate extension
when considering Hamiltonian systems. Much of the Sturmian theory for the second
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order equation carries over to Hamiltonian systems for conjugate points [6,13]. Further,
the disconjugacy of a Hamiltonian system is equivalent to the existence of a solution of
the associated Riccati equation [10]. The existence of a solution to the Riccati equation
is important in many applications. For example, in optimal control of a linear regulators,
the existence of a solution of an associated Riccati equation gives the existence of an
optimal control, and an explicit formula for the optimal control can be given in terms
of the solution of the Riccati equation [2].

In a series of papers, W. T. Reid [9,11,12]made an extension of (0.2) to Hamiltonian
systems. We mention one application here which we will return to in section 3. Suppose
y is a nontrivial solution of the vector differential equation

(0.3) y′′(t) − C(t)y(t) = H(t)y(t), a � t � b, y(a) = y(b) = 0,

where C and H satisfy conditions (1.2) and (1.3) below and HT(x) = H(x) . Then

(0.4)
∫ b

a
trace[G(s, s)H+(s)]ds > 1,

where H+(s) = [H(s)+
√

H2(s)]/2 , and G(t, s) is theGreen’s function for the problem

(0.5) y′′(t) − C(t)y(t) = f (t), y(a) = y(b) = 0,

so that the unique solution of (0.5) has the representation

y(t) =
∫ b

a
G(t, s)f (s)ds.

For C(t) ≡ 0 and [a, b] = [0, 1] , it is readily computed that

G(t, s) =
{

s(1 − t)I, s � t

t(1 − s)I, s > t

where I is the identity matrix. Then (0.4) takes the form

(0.6)
∫ 1

0
s(1 − s) trace[H+(s)]ds > 1.

Note that s(1 − s) � 1
4 so that (0.2) is recovered for (0.1).

A stronger version of (0.2) has recently been given by Brown and Hinton [3]. It
states that if y is a nontrivial solution of (0.1) such that y(a) = y(b) = 0 , then there
exists t1, t2 in [a, b] such that

(0.7) (b − a)
∣∣∣∣
∫ t2

t1

p(t)dt

∣∣∣∣ > 4.

An advantage of (0.7) is that it shows that disconjugacy of (0.1) can be preserved over
a long time interval with a highly oscillatory p . It is the purpose of this paper to extend
(0.7) to the Hamiltonian system setting.

In section 1 we state the hypotheses needed for our Hamiltonian system, and state
some lemmas needed. The proof of the main result, Theorem 2.1, is given in section
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2. In section 3 we give some applications of Theorem 2.1 and compare, for vector
differential equations, the results with those of Reid. A new criterion of stability is
given for a periodic scalar differential equation.

We use the notation L[a, b],L2[a, b] , and L∞[a, b] for the Lebesgue spaces of
functions which are respectively Lebesgue integrable, Lebesgue square integrable, and
essentially bounded on [a, b] . The superscript T indicates a matrix transpose. The
matrix inequality B � 0 indicates that B is a positive semi-definite symmetric matrix.

1. Preliminaries

We consider the Hamiltonian differential system on [a, b] ,

−v′ = −C(t)u + AT(t)v − H(t)u(1.1)
u′ = A(t)u + B(t)v,

where the real n × n matrix functions A(t), B(t), C(t) , and H(t) satisfy the following
conditions:
(1.2) A(t) and B(t) are of class L∞[a, b] ; C(t) and H(t) are of class L[a, b] ; further

B(t) = BT(t) � 0 and C(t) = CT(t) on [a, b] .
(1.3) Define Q[a, b] to be the set of n -dimensional vector functions η such that: η is

absolutely continuous on [a, b] , η(a) = η(b) = 0 , and for some n -dimensional
vector function ξ of class L2[a, b] ,

η′ = A(t)η + B(t)ξ a.e. on [a, b].

Assume that the function

J(η) =
∫ b

a

[
ξT(t)B(t)ξ(t) + ηT(t)C(t)η(t)

]
dt

is positive definite on Q[a, b] , i.e., J(η) > 0 if η ≡/ 0.

The assumption (1.3) has an equivalent formulation in terms of conjugate points.
A point c > a is said to be conjugate to a if there exists a solution of (1.1) with
u(t) ≡/ 0 such that u(a) = u(c) = 0 . For the system (1.1) under the assumption
H(t) ≡ 0 , the condition (1.3) is equivalent to there existing no point c in (a, b] which
is conjugate to a [9]. The system (0.3) has the formulation (1.1) as can be seen by
defining u = y , v = y′ , A(t) ≡ 0 , and B(t) ≡ I . For the equation (0.3) with
H(t) ≡ 0, the condition (1.3) is equivalent to there existing no nontrivial solution y of
(0.3) such that y(a) = y(c) = 0 for some c ∈ [a, b]. Note also that (1.3) holds for the
special case of (0.3), y′′(t) = 0.

REMARK 1.1. Note that we do not require HT(t) = H(t) as in Reid’s work.
For our principal result we need three lemmas which we now state. The first is a

special case of Lemma 3.1 of [12].
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LEMMA 1.1. Whenever conditions (1.2) and (1.3) hold there exists a number
k > 0 such that for η ∈ Q[a, b] we have

(1.4) J(η) � k
∫ b

a
η′(t)Tη′(t)dt.

For the equation (0.3), we have A(t) ≡ 0 , B(t) ≡ I ; hence ξ = η′ and (1.4) will
hold with k = 1 if C(t) � 0. This explicit k will be used in subsequent calculations.

LEMMA 1.2. Suppose f 1, f 2 are absolutely continuous real functions on [a, b] with
f i(a) = f i(b) = 0 and f ′

i ∈ L2[a, b], i = 1, 2 . Then

(1.5)
∫ b

a

[∣∣f 1(t)f ′
2(t)
∣∣+ ∣∣f ′

1(t)f 2(t)
∣∣]dt �

(
b − a

2

)[∫ b

a
f ′
1(t)

2dt
∫ b

a
f ′
2(t)

2dt

]1/2

.

Further, equality holds only for f 1, f 2 linear on each of [a, (a + b)/2], [(a + b)/2, b] .

Proof. It has been proven byCalvert [4] or see [1, p. 28] that if g1, g2 are absolutely
continuous real functions on [c, d] with gi(c) = 0 and g′i ∈ L2[c, d], i = 1, 2 , then

(1.6)
∫ d

c

[∣∣g1(t)g′2(t)
∣∣+ ∣∣g′1(t)g2(t)

∣∣]dt � (d − c)
[ ∫ d

c
g′1(t)

2dt
∫ d

c
g′2(t)

2dt

]1/2

with equality only for g1, g2 linear on [c, d] . The same inequality holds if the condition
g1(c) = g2(c) = 0 is replaced by g1(d) = g2(d) = 0 . Applying (1.6) first on
[a, (a + b)/2] and then on [(a + b)/2, b] and adding yields that with e = (a + b)/2 ,

(1.7)
∫ b

a

[∣∣f 1(t)f ′
2(t)
∣∣+ ∣∣f ′

1(t)f 2(t)
∣∣]dt �

(
b − a

2

)
×

×
{[∫ e

a
f ′
1(t)

2dt

]1/2[ ∫ e

a
f ′
2(t)

2dt

]1/2

+
[ ∫ b

e
f ′
1(t)

2dt

]1/2[ ∫ b

e
f ′
2(t)

2dt

]1/2}
.

Application of the Cauchy Schwarz inequality to (1.7) completes the proof of Lemma
1.2.

LEMMA 1.3. If f is a real-valued function of class L[a, b] , then there exists
t1, t2 ∈ [a, b] such that

(1.8) inf
μ∈(−∞,∞)

(
max

a�x�b

∣∣∣∣
∫ x

a
f (t)dt + μ

∣∣∣∣
)

=
1
2

∣∣∣∣
∫ t2

t1

f (t)dt

∣∣∣∣.
Proof. Define M, m by

M := max
a�x�b

∫ x

a
f (t)dt, m := min

a�x�b

∫ x

a
f (t)dt.

If we choose μ0 = −(M + m)/2 , then the function
∫ x

a f (t)dt + μ0 has a maximum
of (M − m)/2 and a minimum of (m − M)/2 . Since a value of μ �= μ0 will either
increase the maximum or decrease the minimum of this function, the left hand side of
(1.8) is realized for μ = μ0 yielding a value of (M − m)/2 .
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2. The Liapunov Inequality

The matrix function Q will denote an antiderivative of the function H(t) of (1.1),
i.e., Q′(t) = H(t) a.e. on [a, b] . In terms of Q we define a scalar matrix Q# by

(2.1) Q#
ij = max

a�t�b

∣∣Qij(t) + Qji(t)
∣∣.

The matrix Q# will depend on the constant of integration μ in the representation
Q(t) =

∫ t
a H(u)du + μ . For each i, j , there is by Lemma 1.3, xij = xji and yij = yji

such that for a certain choice of μij = μji ,

(2.2) Q#
ij =

1
2

∣∣∣∣
∫ yij

xij

[
Hij(t) + Hji(t)

]
dt

∣∣∣∣.
We assume Q# is chosen so that (2.2) holds. Defining the matrix Q̃ by

Q̃ij =
1
2

∫ b

a

[∣∣Hij(t)
∣∣+ ∣∣Hji(t)

∣∣]dt,

we have then that Q# and Q̃ are symmetric matrices with nonnegative entries satisfying
for all i, j ,

(2.3) Q#
ij � Q̃ij.

THEOREM 2.1. Assume (1.2) and (1.3) hold and k is as in Lemma 1.1. Suppose
u, v is a nontrivial solution of (1.1) such that u(a) = 0 = u(b) . Then

(2.4) k �
(

b − a
4

)
λ # �

(
b − a

4

)
λ̃ ,

where λ # is the maximum of the set of eigenvalues of Q# and λ̃ is the maximum of the
set of eigenvalues of Q̃ .

Proof. Multiplying the first equation of (1.1) by uT , the second equation by −vT

and adding yields that

(2.5) −{uTv′ + vTu′} = −uTCu − vTBv − uTHu.

From Q′ = H , integration of (2.5) over [a, b] gives

(2.6) −uTv|ba = −
∫ b

a
[uTCu + vTBv]dt −

∫ b

a
uTQ′udt
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Since u(a) = 0 = u(b) and [uTQu]′ = (u′)TQu + uTQ′u + uTQu′ , simplifying (2.6)
we get ∫ b

a
[uTCu + vTBv]dt =

∫ b

a
[(u′)TQu + uTQu′]dt(2.7)

=
∫ b

a

n∑
i,j=1

uiu
′
j[Qij + Qji]dt

�
n∑

i,j=1

Q#
ij

∫ b

a
|ui| |u′j|dt

=
n∑

i=1

Q#
ii

∫ b

a
|ui| |u′i|dt

+
∑
i>j

n∑
j=1

Q#
ij

∫ b

a

[|ui| |u′j| + |u′i| |uj|
]
dt.

Applying Lemmas 1.1 and 1.2, it follows from (2.7) that

k
∫ b

a
|u′|2dt �

n∑
i=1

(
b − a

4

)
Q#

ii

∫ b

a
(u′i)

2dt

(2.8)

+
∑
i>j

n∑
j=1

(
b − a

2

)
Q#

ij

(∫ b

a
|u′i|2dt

)1/2(∫ b

a
|u′j|2dt

)1/2

=
(

b − a
4

)
wTQ#w,

where wi =
(∫ b

a |u′i|2dt
)1/2

, i = 1, ..., n . Since Q# is symmetric with nonnegative

entries, we have from

(2.9) λ # = max{zTQ#z
∣∣ |z| = 1}

that

(2.10) wTQ#w � λ #|w|2 = λ #
∫ b

a

n∑
i=1

|u′i|2dt.

Dividing (2.10) by |w|2 gives that k � (b − a)λ #/4 which is the first inequality in
(2.4). Since the entries of Q# are nonnegative, equality in (2.9) is achieved for a vector
with nonnegative entries. By (2.3) and the characterization of λ̃ as in (2.9), the second
inequality of (2.4) follows.

REMARK 2.1. We note that for the equation (0.3) with C(t) � 0, the left inequality
(2.4) is strict and k = 1 . Strict inequality follows since equality implies y is linear on
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[a, (a+ b)/2] and [(a + b)/2, b] with y(a) = y(b) = 0 . Since y is a solution of (0.3),
y′ is absolutely continuous on [a, b] , contrary to y being linear on the two solution
intervals.

By choosing different antiderivatives Qij of Hij , an inequality of the type (2.4)
may be obtained for the boundary-conditions u(a) = v(b) = 0 or v(a) = u(b) = 0 .
To this end define matrix functions

QR(t) =
∫ t

a
H(u)du, QL(t) =

∫ b

t
H(u)du,

and the matrix Q#
R by

(Q#
R)ij = max

a�t�b

∣∣ (QR(t))ij + (QR(t))ji

∣∣,
and Q#

L similarly by replacing the subscript R by L . The matrix Q̃ is as before so that

(Q#
R)ij � 2Q̃ij, (Q#

L)ij � 2Q̃ij.

COROLLARY 2.1. Assume (1.2) and (1.3) hold and k is as in Lemma 1.1. Suppose
u, v is a nontrivial solution of (1.1) such that u(a) = v(b) = 0 . Then

(2.11) k �
(

b − a
2

)
λ #

L � (b − a)λ̃

where λ #
L is the maximum eigenvalue of Q#

L . Similarly, if u, v is a nontrivial solution
of (1.1) such that v(a) = u(b) = 0 , then

(2.12) k �
(

b − a
2

)
λ #

R � (b − a)λ̃ ,

where λ #
R is the maximum eigenvalue of Q#

R .

The proof of Corollary 2.1 is the same as that of Theorem 2.1 noting only that

[uTQu]
∣∣b
a

= 0 for either u(a) = v(b) = 0 or v(a) = u(b) = 0 with the appropriate
choice of antiderivative Q(t) . The left inequalities (2.11) and (2.12) are strict for
equation (0.3) with C(t) � 0 since v = y′ in this case and equality implies y is linear
which implies y′ does not vanish at either a or b .

3. Applications

The results of Theorem2.1 and earlier work of Reid are independent. Comparisons
are difficult as the function H+ of Reid and the eigenvalues λ #, λ̃ of Theorem 2.1 are
not readily available. A few simple comparisons may be made for (0.3) on [0, 1] with
C(t) ≡ 0 and H(t) > 0 . We have then from (0.6) that

(3.1)
∫ 1

0
s(1 − s) trace H(s)ds � 1
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implies the equation y′′(t) = H(t)y(t) is disconjugate on [0, 1] .
For H(t) a diagonal matrix (3.1) becomes

(3.2)
∫ 1

0
s(1 − s)

n∑
i=1

Hii(s)ds � 1

while Theorem 2.1 gives disconjugacy if (recall Remark 2.1),

λ̃ = max
1�i�4

{∫ 1

0
Hii(s)ds

}
< 4.

In the 2× 2 case, with H11(t) = H22(t) > 0 and
∣∣H12(t)

∣∣ < H11(t) , then (3.1) is

2
∫ 1

0
s(1 − s)H11(s)ds � 1

while Theorem 2.1 gives disconjugacy if

λ̃ =
∫ 1

0
H11(s)ds +

∫ 1

0

∣∣H12(s)
∣∣ds � 4.

As a second application of Theorem 2.1 we consider the scalar equation (0.1)
where p(t) = −H(t) is periodic of period T . First we must recall some facts about
periodic equations [7]. If λ0 � λ1 � . . . are the eigenvalues for an equation of the form
−y′′(t)+ q(t)y(t) = λy(t), q(t + T) = q(t), with periodic boundary conditions y(0) =
y(T), y′(0) = y′(T) , and if μ0 � μ1 � . . . are the eigenvalues with semi-periodic
boundary conditions y(0) = −y(T), y′(0) = −y′(T) , then the stability intervals of this
equation are given by [λ0,μ0], [μ1, λ1], [λ2,μ2] , etc. This means that if λ is in the
interior of a stability interval, then the equation −y′′(t) + q(t)y(t) = λy(t) has only
bounded solutions on (−∞,∞) .

The condition
∫ T

0 p(t)dt � 0, p �= constant, implies λ0 < 0 since an easy

argument [7, p. 42] shows that λ0 < −T−1
∫ T

0 p(t)dt . If we also have a criterion that
makes μ0 > 0 , then λ = 0 ∈ (λ0,μ0) so that all solutions of y′′(t) + p(t)y(t) = 0
are bounded on (−∞,∞) . Now ξ0 , the eigenfunction corresponding to μ0 , has
exactly one zero in [0, T) , and hence has a pair of zeros spaced T units apart since
it is semi-periodic. Hence a criterion, that implies the zero spacing of solutions of
y′′(t) + p(t)y(t) = 0 is greater than T , yields μ0 > 0 when combined with the Sturm
comparison theorem.

The criterion of Krein/Borg [14, p. 729] that (0.1) is stable if p(t) ≡/ 0 is periodic
of period T and ∫ T

0
p(t)dt � 0, T

∫ T

0
p+(t)dt � 4,

is based on the above facts. Applying Theorem 2.1 (in the form of (0.7)), we have
that (0.1) is stable with p(t) ≡/ 0 periodic of period T if

∫ T
0 p(t)dt � 0 and for all

t1, t2 ∈ [0, T] ,

T

∣∣∣∣
∫ t2

t1

p(t)dt

∣∣∣∣ � 4.
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As a final example, suppose a nontrivial H(t) is periodic of period one and∫ 1
0 H(t)dt = 0 . Consider the family of equations,

(3.3) y′′(t) = H(kt)y(t),

for k = 1, 2, . . . . Then H(kt) is also of period one,
∫ 1

0 H(kt)dt = 0 , and for
t1, t2 ∈ [0, 1] , ∣∣∣∣

∫ t2

t1

H(kt)dt

∣∣∣∣ =
1
k

∣∣∣∣
∫ kt2

kt1

H(u)du

∣∣∣∣ � 1
k

∫ 1

0

∣∣H(u)
∣∣du.

Thus for k � ( 1
4 )
∫ 1

0

∣∣H(u)
∣∣du , the spacing of zeros of solutions of (3.3) is greater than

one. By the above remarks, this means (3.3) is stable for such k . Hence, while (3.3)
may not be stable for k = 1 , we can make it stable by increasing the frequency k .
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