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A GENERALIZATION OF PÓLYA’S INEQUALITY

TO STOLARSKY AND GINI MEANS

C. E. M. PEARCE, J. PEČARIĆ AND J. ŠUNDE

(communicated by Zs. Páles)

Abstract. Pólya’s inequality has recently been extended in a general way involving two geometric
means. We show that further extensions to Stolarsky and Gini means are possible. The two
occurrences of the mean in each inequality can involve different parameters. Corresponding
discrete results are also derived.

1. Introduction

A celebrated inequality due to Pólya [8] states the following result.

THEOREM A. If f : [0, 1] → R is a nonnegative and nondecreasing function, then(∫ 1

0
xa+bf (x)dx

)2

�
(

1 −
(

a − b
a + b + 1

)2
)∫ 1

0
x2af (x)dx

∫ 1

0
x2bf (x)dx.

The geometric mean G(x, y) of nonnegative real numbers x, y is defined by
G(x, y) := (xy)1/2 . The Pólya result can be expressed in terms of this as∫ 1

0

[
d
dx

G
(
x2a+1, x2b+1

)]
f (x)dx

� G

(∫ 1

0

(
d
dx

x2a+1

)
f (x)dx,

∫ 1

0

(
d
dx

x2b+1

)
f (x)dx

)
.

This suggests the possibility of more general results. This idea has been taken up
by Alzer [1], who derived the following.

THEOREM B. Let f , g, h : [a, b] → R be nonnegative, increasing functions such
that g, h and

√
gh are continuously differentiable on [a, b] . If g(a) = h(a) and

g(b) = h(b) , then(∫ b

a
(G (g(x), h(x)))′ f (x)dx

)
� G

(∫ b

a
g′(x)f (x)dx,

∫ b

a
h′(x)f (x)dx

)
.
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In this article we show that this result holds not only for geometric means but for
two very general classes of means, the Stolarsky and Gini means. These include many
commonly used means as particular cases. For instance, consider the Stolarsky mean
Er,s(x, y) . As noted by Leach and Sholander [4], this includes the arithmetic mean
A(x, y) := (x + y)/2 for (r, s) = (1, 2) , the geometric mean for (r, s) = (0, 0) , the
harmonic mean for (r, s) = (−2,−1) , the logarithmic mean for (r, s) = (0, 1) , the
identric mean for (r, s) = (1, 1) , the power mean for s = 2r and Galvani’s mean for
s = 1 . We remark further that G(x, y) = Er,−r(x, y) for every real number r .

In Section 2 we generalize Theorem B to Stolarsky means and in Section 3 we
present a corresponding discrete result. Sections 4 introduces the necessary prelim-
inaries for comparable results for Gini means. These are then presented in Section
5.

2. A Stolarsky theorem, continuous version

For r, s real numbers and x, y positive numbers, the Stolarsky mean Er,s(x, y) is
defined by Er,s(x, y) = x for x = y , and for x �= y by

Er,s(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
s(xr − yr)
r(xs − ys)

) 1
r−s

if rs(r − s) �= 0,

(
xr − yr

r(ln x − ln y)

)1/r

if r �= 0, s = 0

(
s(ln x − ln y)

xs − ys

)−1/s

if s �= 0, r = 0

e−1/r

(
xxr

yyr

) 1
xr−yr

if r = s �= 0

√
xy if r = s = 0.

A fundamental question is when is it the case that

Er,s(x, y) � Eu,v(x, y) (2.1)

for all positive and distinct x, y ?
This question has been solved by Leach and Sholander [4]. (See also Páles [6],

which treats a more general question that subsumes this problem, and Páles [7], where a
unified treatment of the comparison of Stolarsky and Gini means is given.) For clarity,
we expand and reword their enunciation slightly.

LEMMA C. Let r, s, u, v be real numbers with r �= s and u �= v .
(a) If either 0 � min(r, s, u, v) or max(r, s, u, v) � 0 , then (2.1) holds for all

distinct positive x, y if and only if

r + s � u + v
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and
e(r, s) � e(u, v),

where

e(α, β) =
{

(α − β)/ ln(α/β), for αβ > 0, α �= β
0, if αβ = 0.

(2.2)

(b) If min(r, s, u, v) < 0 < max(r, s, u, v) , then (2.1) holds for all distinct positive
x, y if and only if

r + s � u + v

and
e(r, s) � e(u, v),

where
e(α, β) = (|α| − |β |)/(α − β) for α �= β . (2.3)

First we use this result to engender a basic lemma that will be used to derive the
main results of both this and the next section. We define sets A, A� by

A = {(r, s)|r + s � 3 and e(r, s) � e(1, 2)}
and

A� = {(r, s)|r + s � 3 and e(r, s) � e(1, 2)} (2.4)
(see Figure 1), where e is defined by (2.2) if r, s � 0 and by (2.3) if min(r, s) < 0 .
In particular,

e(1, 2) =
{

1/ ln 2, if min(r, s) � 0;

1, if min(r, s) < 0.

A*

r+s=3
A

3

3

Figure 1.

We now establish our basic lemma.

LEMMA 2.1. Let r, s be real numbers. If (r, s) ∈ A then

Er,s(x, y) � E1,2(x, y), (2.5)

while if (r, s) ∈ A�, then
Er,s(x, y) � E1,2(x, y). (2.6)
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Proof. The first fact is immediate from Lemma C. We note that max(r, s, 1, 2)
� 0 cannot occur and so e is given by (2.2) if r, s � 0 and by (2.3) if min(r, s) < 0 .
The second part follows similarly. �

REMARK 2.2. Lemma 2.1 is a generalization of the fact that Er,s(x, y) is a nonde-
creasing function of r and s . So (2.1) holds if r � u and s � v . In particular, (2.5)
holds if r � 1, s � 2 and (2.6) if r � 1, s � 2 .

We now proceed to our first theorem.

THEOREM 2.3. Suppose g, h : [a, b] → R are positive, nondecreasing functions
with continous first derivatives and g(a) = h(a), g(b) = h(b) .

a) Let f be a nonnegative, nondecreasing, differentiable function on [a, b] . If
(r, s) , (u, v) ∈ A , then

Er,s

(∫ b

a
g′(t)f (t)dt,

∫ b

a
h′(t)f (t)dt

)
�
∫ b

a
(Eu,v(g(t), h(t)))′ f (t)dt. (2.7)

If (r, s) ∈ A� and (u, v) ∈ A� , the inequality is reversed.
b) Let f be a nonnegative, nonincreasing, differentiable function. If (r, s) ∈ A

and (u, v) ∈ A� , then (2.7) holds, while if (r, s) ∈ A� and (u, v) ∈ A , the inequality
is reversed.

Proof. a) Suppose (r, s), (u, v) ∈ A . By Lemma 2.1

Er,s

(∫ b

a
g′(t)f (t)dt,

∫ b

a
h′(t)f (t)dt

)

� 1
2

(∫ b

a
g′(t)f (t)dt +

∫ b

a
h′(t)f (t)dt

)

=
1
2

(g(t) + h(t)) f (t)|ba −
∫ b

a

1
2

(g(t) + h(t)) df (t)

� 1
2

(g(t) + h(t)) f (t)|ba −
∫ b

a
Eu,v (g(t), h(t)) df (t)

=
1
2

(g(t) + h(t)) f (t)|ba − Eu,v (g(t), h(t)) f (t)|ba

+
∫ b

a
(Eu,v (g(t), h(t)))′ f (t)dt

=
∫ b

a
(Eu,v (g(t), h(t)))′ f (t)dt.

If (r, s), (u, v) ∈ A� , we have trivially that the inequality is reversed.
b) Suppose (r, s) ∈ A and (u, v) ∈ A� . Put F = −f . Then we have

Er,s

(∫ b

a
g′(t)f (t)dt,

∫ b

a
h′(t)f (t)dt

)

�
∫ b

a

1
2

(g(t) + h(t))′ f (t)dt
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=
1
2

(g(t) + h(t)) f (t)|ba +
∫ b

a
(g(t) + h(t)) dF(t)

� 1
2

(g(t) + h(t)) f (t)|ba +
∫ b

a
Eu,v (g(t), h(t)) dF(t)

=
1
2

(g(t) + h(t)) f (t)|ba − Eu,v (g(t), h(t)) f (t)|ba

+
∫ b

a
(Eu,v (g(t), h(t)))′ f (t)dt

=
∫ b

a
(Eu,v (g(t), h(t)))′ f (t)dt.

If (r, s) ∈ A� and (u, v) ∈ A , the inequality is clearly reversed. �
COROLLARY 2.4. Let g, h be defined as in Theorem 2.3.
a) Let f be a nonnegative, nondecreasing, differentiable function on [a, b] . If

r, u � 1 and s, v � 2 , then (2.7) holds. If r, u � 1 and s, v � 2 , then (2.7) is
reversed.

b) Let f be a nonnegative, nonincreasing, differentiable function on [a, b] . If
r � 1 � u and s � 2 � v then (2.7) holds. If u � 1 � r and v � 2 � s , then (2.7)
is reversed.

Proof. This follows from Theorem 2.3 and Remark 2.2. �

3. A Stolarsky theorem, discrete version

It is convenient to introduce the notation Δai = ai+1 − ai .

THEOREM 3.1. Suppose a and b are positive, nondecreasing n -tuples (n � 2)
such that an = bn and a1 = b1 .

a) Let w be a nonnegative, nondecreasing n -tuple. If (r, s), (u, v) ∈ A , then

Er,s

⎛
⎝n−1∑

j=1

wjΔaj,

n−1∑
j=1

wjΔbj

⎞
⎠ �

n−1∑
j=1

wjΔEu,v(aj, bj), (3.1)

while if (r, s), (u, v) ∈ A� , the inequality is reversed.
b) Let w be a nonnegative, nonincreasing n -tuple (n � 2) . If (r, s) ∈ A and

(u, v) ∈ A� , then (3.1) holds. If (r, s) ∈ A� and (u, v) ∈ A , the inequality is reversed.

Proof. a) Let (r, s), (u, v) ∈ A . We have

Er,s

⎛
⎝n−1∑

j=1

wjΔaj,
n−1∑
j=1

wjΔbj

⎞
⎠

� E1,2

⎛
⎝n−1∑

j=1

wjΔai,

n−1∑
i=1

wiΔbi

⎞
⎠ =

1
2

{
n−1∑
i=1

wiΔai +
n−1∑
i=1

wiΔbi

}



216 C. E. M. PEARCE, J. PEČARIĆ AND J. ŠUNDE

= wn
an + bn

2
− w1

a1 + b1

2
−

n∑
i=2

ai + bi

2
Δwi−1

� wn
an + bn

2
− w1

a1 + b1

2
−

n∑
i=2

Eu,v(ai, bi)Δwi−1

= wn
an + bn

2
− w1

a1 + b1

2

−
{

wnEu,v(an, bn) − w1Eu,v(a1, b1) −
n−1∑
i=1

ΔEu,v(ai, bi)wi

}

=
n−1∑
i=1

wiΔEu,v(ai, bi).

If (r, s), (u, v) ∈ A� , the inequality is clearly reversed.

b) Let (r, s) ∈ A and (u, v) ∈ A� . Set Wi = −wi (i − 1, . . . , n − 1) . We have

Er,s

(
n−1∑
i=1

wiΔai,

n−1∑
i=1

wiΔbi

)

�
n−1∑
i=1

wiΔ
(

ai + bi

2

)

= wn
an + bn

2
− w1

a1 + b1

2
+

n∑
i=2

wi
ai + bi

2
ΔWi−1

� wn
an + bn

2
− w1

a1 + b1

2
+

n∑
i=2

Eu,v(ai, bi)ΔWi−1

= wn
an + bn

2
− w1

a1 + b1

2

−
(

wnEu,v(an + bn) − w1Eu,v(a1, b1) −
n−1∑
i=1

ΔEu,v(ai, bi)wi

)

=
n−1∑
i=1

wiΔEu,v(ai, bi).

If (r, s) ∈ A� and (u, v) ∈ A , the inequality is clearly reversed. �

As before, we can make the following deduction.

COROLLARY 3.2. Suppose n –tuples a and b are as in Theorem 1.1.
a) Let w be a nonnegative, nondecreasing n -tuple. If r, u � 1 and s, v � 2 ,

then (3.1) holds. If r, u � 1 and s, v � 2 , then (3.1) is reversed.
b) Let w be a nonnegative, nonincreasing n –tuple. If r � 1 � u and s � 2 � v ,

then (3.1) holds. If r � 1 � u and s � 2 � v , then (3.1) is reversed.
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4. Gini means – preliminaries

Let r, s ∈ R be real numbers. The Gini mean of a positive n –vector x =
(x1, . . . , xn) with weights w = (w1, . . . , wn) with coordinates in R = (0,∞) is
defined by

Gr,s(x; w) = Gr,s(x1, . . . , xn; w)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
w1xr

1 + . . . + wnxr
n

w1xs
1 + . . . + wnxs

n

) 1
r−s

, if r �= s,

exp

(
w1xr

1 ln x1 + . . . + wnxr
n ln xn

xr
1 + . . . + xr

n

)
, if r = s,

(4.1)

(see Gini [3]). If w = (1, . . . , 1) we write Gr,s(x;w) = Gr,s(x) . We remark that
Gr,s = Gs,r .

A comparison theorem of Daróczy and Losonczi [2] provides the basis for our
arguments. See also Páles [7]. The comparison result of [2] may be expressed as
follows.

PROPOSITION D. Let r , s , u , v be real numbers. Then in order that

Gr,s(x) � Gu,v(x) (4.2)

hold for all n ∈ IN and x = (x1, . . . , xn) with x1, . . . , xn > 0 , it is necessary and
sufficient that

min(r, s) � min(u, v) and max(r, s) � max(u, v). (4.3)

A simple consequence is as follows.

LEMMA 4.1. Let r , s , u , v be real numbers satisfying (4.3) . If n –vectors
x = (x1, . . . , xn) and w = (w1, . . . , wn) have all positive coordinates, then

Gr,s(x; w) � Gu,v(x; w). (4.4)

Proof. Replication of values xi extends Proposition D to give (4.4) with positive
integerweights. As the quotients in (4.1) are not changed bymultiplication of numerator
and denominator by the same factor, the result therefore further extends to positive
rational weights. A limiting argument concludes the proof. �

The case n = 2 in (4.2) is of special interest. The following result is due to Páles
[5].

LEMMA E. Let r , s , u , v be arbitrary real numbers such that r �= s and u �= v .
We have the following.

(a) If 0 � min(r, s, u, v) , then a necessary and sufficient condition for

Gr,s(x, y) � Gu,v(x, y) for all positive x, y (4.5)

is that
r + s � u + v and m(r, s) � m(u, v), (4.6)
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where

m(α, β) = min(α, β).

(b) If min(r, s, u, v) < 0 < max(r, s, u, v) , then a necessary and sufficient condi-
tion for (4.5) is that (4.6) applies, where

m(α, β) = (|α| − |β |)/(α − β).

(c) If max(r, s, u, v) � 0 , then a necessary and sufficient condition for (4.5) is
that (4.6) applies, where

m(α, β) = max(α, β).

We shall consider the two special cases

Gr,s(x, y) � G0,1(x, y) = A(x, y) (4.7)

and

Gr,s(x, y) � G0,1(x, y) = A(x, y). (4.8)

Suppose, without loss of generality, that r < s . For (4.7) we set u = 0 , v = 1 in
Lemma E. From (4.6) we get

r + s � 1 and m(r, s) � m(0, 1). (4.9)

As max(r, s, 0, 1) cannot be � 0 , we have only cases (a) and (b) in the definition of
m .

Since 0 � min(r, s, 0, 1) is equivalent to r � 0 , we have

m(r, s) = r and m(0, 1) = 0.

Applying this to (4.9) we get r = 0 and s � 1 .
Similarly min(r, s, 0, 1) < 0 < max(r, s, 0, 1) is equivalent to r < 0 . Then

m(r, s) =
|s| − |r|
s − r

and m(0, 1) = 1.

Using this in (4.9) we have |s|− |r| � s− r . If s � 0 , this becomes r � 0 . For s < 0 ,
it becomes s − r � 0 , which is obviously true.

We thus have that (4.7) holds in the case r < s if r � 0 and r + s � 1 . By
symmetry, (4.7) holds if (r, s) ∈ B , where

B = {(r, s)|r + s � 1 ∧ (r � 0 ∨ s � 0)} (4.10)

(see Figure 2).
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B

B*

1

1

s=r

r

s

r+s=1

Figure 2.

Now consider (4.8). Take u � v and put r = 0 , s = 1 , u = r , v = s in (4.5).
Then (4.6) becomes

r + s � 1 and m(r, s) � m(0, 1), (4.11)

where m is now defined by

m(α, β) =

⎧⎨
⎩

min(α, β) if r � 0

|α| − |β |
α − β

, if r < 0.

So for r � 0 , (4.11) becomes r � 0 , while for r < 0 we have |s| − |r| � s − r .
The latter provides a contradiction both for s � 0 (which gives r � 0 ) and for s < 0
(which gives s � r ).

Thus we have that (4.8) holds when r < s if r + s � 1 and r � 0 applies. By
symmetry, (4.8) holds if (r, s) ∈ B� , where

B� = {(r, s)|r + s � 1, r � 0, s � 0} (4.12)

(see Figure 2).
Therefore we have the following special case of Lemma E.

LEMMA 4.2. If (r, s) ∈ B , where B is defined by (4.10) , then (4.7) holds, while
if (r, s) ∈ B� , where B� is defined by (4.12) , then (4.8) applies.

The following lemma, which compares Gr,s(x; w) with

G0,1(x; w) =
w1x1 + . . . + wnxn

w1 + . . . + wn
(:= A(x; w)),

is a simple consequence of Lemma 4.1.

LEMMA 4.3. (a) Suppose (r, s) ∈ C , where C is defined by

C = {(r, s)|(r � 0 ∧ s � 1) ∨ (r � 1 ∧ s � 0)}
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(see Figure 3). Then
Gr,s(x; w) � G0,1(x; w).

(b) Suppose (r, s) ∈ B� , where

C� = {(r, s)|(r � 0 ∧ s � 1) ∨ (r � 1 ∧ s � 0)}.

Then
Gr,s(x; w) � G0,1(x; w).

0 1

1

C

C*

s

r

Figure 3.

5. Results involving Gini means

THEOREM 5.1. Let g1, . . . , gn : [a, b] → R be positive, nondecreasing functions
with continuous first derivatives and g1(a) = . . . = gn(a), g1(b) = . . . = gn(b) .
Suppose w is a positive n -tuple.

a) Let f be a nonegative, nondecreasing function on [a, b] . If (r, s), (u, v) ∈ B ,
then

Gr,s

(∫ b

a
g′1(t)f (t)dt, . . . ,

∫ b

a
g′n(t)f (t)dt; w

)

�
∫ b

a
(Gu,v(g1(t), . . . , gn(t); w))′ f (t)dt.

(5.1)

If (r, s), (u, v) ∈ B� , then the reverse inequality holds.
b) Let f be a nonnegative, nonincreasing function. If (r, s) ∈ B and (u, v) ∈ B� ,

then (5.1) holds, while if (r, s) ∈ B� and (u, v) ∈ B then the reverse inequality applies.

The proof is the same as to that of Theorem 2.3, except in that we use Lemma 4.3
in place of Lemma 2.1.

In particular, we have the following.
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COROLLARY 5.2. Let g and h be positive, nondecreasing functions with continu-
ous first derivative and g(a) = h(a), g(b) = h(b) .

a) Let f be a nonnegative, nondecreasing function on [a, b] . If (r, s), (u, v) ∈ B ,
then

Gr,s

(∫ b

a
g′(t)f (t)dt,

∫ b

a
h′(t)f (t)dt

)
�
∫ b

a
Gu,v (g(t), h(t))′ f (t)dt. (5.2)

If (r, s), (u, v) ∈ B� , then the reverse inequality holds.
b) Let f be a nonnegative, nonincreasing function. If (r, s) ∈ B and (u, v) ∈ B�

then (5.2) holds, while if (r, s) ∈ B� and (u, v) ∈ B , then the reverse inequality
applies.

Similarly we can establish the following discrete analogues of the above results.
We introduce the notation Δaj,i = aj,i+1 − aj,i .

THEOREM 5.3. Let a1, . . . , an be positive, nondecreasing n –tuples such that
a1,1 = . . . = am,1 and a1,n = . . . = am,n and let w be a positive n –tuple.

a) Suppose f is a nonnegative, nondecreasing n –tuple. If (r, s), (u, v) ∈ C , then

Gr,s

(
n−1∑
i=1

f iΔa1,i, . . . ,

n−1∑
i=1

f iΔam,i; w

)
�

n−1∑
i=1

f iΔGu,v(a1,i, . . . , am,i; w). (5.3)

If (r, s), (u, v) ∈ C� , then the reverse inequality holds.
b) Suppose f is a nonnegative nonincreasing n –tuple. If (r, s) ∈ C and (u, v) ∈

C� then (5.3) applies. If (r, s) ∈ C� and (u, v) ∈ C , then the inequality is reversed.

COROLLARY 5.4. Let a and b be positive, nondecreasing n –tuples such that
an = bn and a1 = b1 .

a) Suppose f is a nonnegative, nondecreasing n –tuple. If (r, s), (u, v) ∈ B , then

Gr,s

(
n−1∑
i=1

f iΔai,

n−1∑
i=1

f iΔbi

)
�

n−1∑
i=1

f iΔGu,v(ai, bi). (5.4)

If (r, s), (u, v) ∈ B� , then the inequality is reversed.
b) Suppose f is a nonegative, nondecreasing n –tuple. If (r, s) ∈ B and (u, v) ∈

B� , then (5.4) applies. If (r, s) ∈ B� and (u, v) ∈ B , then the reverse inequality holds.
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