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A BEST POSSIBLE HADAMARD INEQUALITY

A. M. FINK

(communicated by L.-E. Persson)

Abstract. The classical Hadamard-Hermite inequality requires that the measure be a symmetric
and positive. We prove versions which require neither of these conditions. Furthermore, we
prove that no such theorems exist with less restrictions than ours, ie. they are best possible.

Introduction. The Hadamard inequality, [5], sometimes denoted the Hermite-
Hadamard inequality, is

f

(
a + b

2

)
� 1

b − a

b∫
a

f (x)dx � f (a) + f (b)
2

, (1)

which holds for f convex. This inequality is a special case of a result of Fej́er [1]

f

(
a + b

2

) b∫
a

p(t)dt �
b∫

a

f (t)p(t)dt � f (a) + f (b)
2

b∫
a

p(t)dt, (2)

which holdswhen f is convex and p is a nonnegative functionwhose graph is symmetric
with respect to the center (a + b)/2 . One wonders what the symmetry has to do with
this result and if such an inequality holds for other functions. In particular, one would
like to have a result which cannot be generalized by being a ‘best possible inequality’,
see [2], [3], and [4]. Here it would mean being able to prove the two statements.

(A) The inequality (2) holds for all functions p ∈ M if and only if f is
convex; and

(B) The inequality (2) holds for all convex f if and only if p ∈ M .

The problem is to find the correct class of functions or measures M . It turns out
that the class M will not be a subset of the positive measures.

The Lower Bound. For convenience, we will take the interval to be [−1, 1] and
concentrate on the left hand inequality of (2) first. To see that symmetry is not essential
in Fej́er’s result, we first see how one might establish a result in this direction. To do this
we will replace p(x)dx by a nonnegative regular Borel measure μ with the requirement

that
1∫

−1
dμ(x) > 0 .
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Since f is convex, its graph lies above its tangent lines. Let y be an arbitrary
number in [−1, 1] and write down this condition

f (x) � f (y) + f ′(y)(x − y). (3)

Let the moments of the measure be defined by Pk =
1∫

−1
xkdμ(x) . If we integrate the

inequality (3) we arrive at

1∫
−1

f (x)dμ(x) � f (y)P0 + f ′(y)(P1 − yP0). (4)

This inequality holds for any y in [−1, 1] so we may choose any y we please. But we
get the best one by maximizing the right hand side of this inequality. Assuming that
f has two derivatives one gets the derivative of this quantity to be f ′′(y)(P1 − yP0) .
Since P1 − P0 � 0 and P1 + P0 > 0 , the maximum is at y0 = P1/P0 . So we arrive at

1∫
−1

f (x)dμ(x) � P0f (P1/P0). (5)

Of course, if μ is an even measure we have P1 = 0 and Fej́er’s result. At this stage
we are able to prove statement (A) (with (2) replaced by (5)) if we take M to be the
nonnegative regular Borel measures. For the sufficiency is the above argument and the
necessity is obtained by taking the measure

dμ = αδx + (1 − α)δy (6)

for δz the unit mass at z and 0 � α � 1 . Then (5) becomes the convexity of f . Of
course the sufficiency in the statement (B) also obtains from the above argument. It
is the necessity that fails. That is, we cannot prove that if (5) holds for all convex f
then the measure must be nonnegative. This turns out to be false. If we allow μ to be
a signed measure, the above proof fails since we may not integrate an inequality. But
here is what we can prove. Let (EP for end positive)

t∫
−1

(t − x)dμ(x) � 0 and

1∫
t

(x − t)dμ(x) � 0 for t ∈ [−1, 1]. (EP)

This condition will be revisited in the section on upper bounds.

THEOREM 1. Let f be continuous on [−1, 1] and μ a regular Borel measure such
that μ[−1, 1] > 0 . Then

i) the inequality (5) holds for all measures μ satisfying (EP) if and only
if f is convex; and

ii) The inequality (5) holds for all convex f if and only if μ satisfies (EP).

Equality holds in (5) for linear f .
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Proof. We first argue the sufficiency. For f convex, we can write

f (x) = a + b(x − y) +

x∫
y

(x − t)dσ(t). (7)

The non-negative measure σ , a and b depend on the choice of y . The reader may
take dσ to be f ′′(t)dt for first understanding. For the general case, a bounded convex
function f has a derivative f ′ a.e. and f ′ is an increasing function. So f ′ can be

written as b +
x∫
y

dσ where dσ may contain point masses and b is the slope of some

supporting line at y . Then

1∫
−1

f (x)dμ(x) = (a − yb)P0 + bP1 + R (8)

where R =
1∫

−1

x∫
y
(x − t)dσ(t)dμ(x) which can be written as

y∫
−1

⎛
⎝

t∫
−1

(t − x)dμ(x)

⎞
⎠ dσ(t) +

1∫
y

⎛
⎝

1∫
t

(x − t)dμ(x)

⎞
⎠ dσ(t).

It is now obvious that σ � 0 and μ ∈ (EP) make R � 0 , and again we may choose
y = y0 = P1/P0 to get (5) (since a = f (y0)) . To prove the converse in i) we observe
that the measure defined in (6) is in (EP). To prove that if (5) holds for all convex f
then μ ∈ (EP) we take for f (x) the function f (x) = (x − t)+ for t ∈ [−1, 1] , Then

1∫
t

(x − t)dμ(x) �
1∫

−1

dμ
(

P1

P0
− t

)
+

. (9)

Since the right hand side is nonnegative we get the second condition in (EP). Note that
for t = −1 , (9) reads P1 + P0 � 0 so that y0 = P1/P0 � −1 . If t � y0 then (9)
becomes

1∫
t

(x − t)dμ(x) �
1∫

−1

xdμ(x) − t

1∫
−1

dμ(x)

which becomes
t∫

−1
(t − x)dμ(x) � 0 , the first of (EP) for t � y0 . If t > y0 we have

tP0 > P1 . The identity

t∫
−1

(t − x)dμ(x) = (tP0 − P1) +

1∫
t

(x − t)dμ(x)
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gives the first term in (EP) as the sum of two positive terms. Note that at t = 1 this
condition gives P0 − P1 � 0 or y0 � 1 .

EXAMPLE 1. Let dμa(x) = (x2 − a)dx, 0 < a < 1
3 . Then

t∫
−1

(t − x)dμ(x) =

1∫
t

(x − t)dμ(x) =
1
12

(t2 − 1)2 and P0 = P1 = 0.

Thus for 0 < a < 1
3 dμ is not a nonnegative measure and

1∫
−1

(x2 − a)f (x)dx � 2

(
1
3
− a

)
f (0) (10)

for any convex f . For a = 1
3 we have (11).

1∫
−1

x2f (x)dx � 1
3

1∫
−1

f (x)dx (11)

for any convex f .

REMARK 1. If f is concave, all of the above inequalities are reversed.

The n th Order Case. One can obtain inequalities with f ′′ � 0 replaced by
f (n+1) � 0 . For then, we look at the simple case when μ � 0 .

f (x) �
n∑

k=0

f (k)(y)
k!

(x − y)k. (12)

If μ � 0 we have

1∫
−1

f (x)dμ(x) �
n∑

k=0

f (k)(y)
k!

1∫
−1

(x − y)kdμ(x) ≡ g(y). (13)

It follows that g′(y) =
f (n+1)(y)

n!

1∫
−1

(x − y)ndμ(x) .

THEOREM 2. If n is even, f (n+1) � 0 on [−1, 1] and μ � 0 , then

1∫
−1

f (x)dμ(x) �
n∑

k=0

f (k)(1)
k!

1∫
−1

(x − 1)kdμ(x) (14)

with equality if f is a polynomial of degree n .

Proof. If n is even g′ � 0 so we get the best inequality by taking g(1) .
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THEOREM 3. If n is odd, f (n+1) � 0 on [−1, 1] and μ � 0 then

1∫
−1

f (x)dμ(x) �
n−1∑
k=0

f (k)(y0)
k!

1∫
−1

(x − y0)kdμ(x) (15)

where
1∫

−1
(x − y0)ndμ(x) = 0 .

Proof. If n is odd then g′ has a factor
1∫

−1
(x− y)ndμ(x) which has opposite signs

at ±1 and this factor has a derivative which is less than zero, so it has a unique zero.
This zero maximizes g(y) .

This result is reversed if f (n+1) � 0 . Moreover if μ is even than
1∫

−1
xndμ(x) = 0

if n is odd, so that μ0 = 0 .

REMARK 2. If n = 1 then (15) becomes (5) since y0 = P1/P0 in this case.

EXAMPLE 2. If n is odd, μ an even measure and f (n+1) � 0 then

1∫
−1

f (x)dμ(x) �
n−1

2∑
k=0

f (2k)(0)
(2k)!

1∫
−1

x2kdμ(x).

Having disposed of the easy case we look at the replacement of nonnegative
measures by signed measures. Here (12) is replaced by

f (x) =
n∑

k=0

f (k)(y)
k!

(x − y)k + R1 (16)

where

R1 =

x∫
y

(x − t)n

n!
f (n+1)(t)dt.

THEOREM 4. Let f ∈ Cn+1[−1, 1] and μ a regular Borel measure. Then

(i) The inequality (13) holds for all y ∈ [−1, 1] and all f with f (n+1) � 0
if and only if μ satisfies (EP)n .

(ii) The inequality (13) holds for all y ∈ [−1, 1] and measures μ satisfying
(EP)n if and only if f (n+1) � 0 .

Proof. Proceeding as in the proof of Theorem 1, we arrive at

R =

y∫
−1

f (n+1)(t)
n!

t∫
−1

(−1)(x − t)ndμ(x)dt +

1∫
y

f (n+1)(t)
n!

1∫
t

(x − t)ndμ(x)dt. (17)
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So the sufficiency of (13) is that

1∫
t

(x − t)ndμ(x) � 0 and

t∫
−1

(x − t)ndμ(x) � 0; t ∈ [−1, 1]. (EPn )

The necessity is gotten by taking f (n+1)(t) = δt0 i.e. f (t) =
(t − t0)n

+

n!
. For then R � 0

gives (EP)n .
To show that (13) holding implies that f (n+1) � 0 one needs to assume the

existence of f (n+1) . The (n + 1)st divided difference g[x1, . . . , xn+2] at distinct points
of a function g is a linear combination of the values of g at these points. That is,

g[x1, . . . , xn+2] =
n+2∑
1
αixi the coefficients being determined by the (n + 2) points

x1, . . . , xn+2 . Consequently, the measure dμ =
n+2∑
1
αiδxi has the property that

g[x1, . . . , xn+2] =

1∫
−1

g(x)dμ(x).

We take this measure in (13). Now g[x1, . . . , xn+2] = g(n+1)(s)
(n+1)! by a generalized mean

value theorem. Consequently
1∫

−1
(x−y)kdμ(x) = 0 for k = 0, . . . , n and (13) becomes

f [x1, . . . , xn+2] =
1∫

−1
f (x)dμ(x) � 0 . Now it is known that lim f [x1 . . . , xn+2] =

f (n+1)(x)
(n + 1)!

where the limit has all the xi → x . To complete the proof we must argue that

this measure μ satisfies (EP)n . Since we are assuming (13) for all y ∈ [−1, 1] we

may take y = 1 so that (EP)n reduces to the simple condition
1∫

−1
(x − t)n

t dμ(x) � 0 ,

see (17).

Now
1∫

−1
(x− t)n

+dμ(x) is the (n + 1)st divided difference of the function (x− t)n
+

as a function of x . This is the classical B -spline M(t, x0, . . . , xn+2) , which is known
to be nonnegative. See [6, page 2]. This completes the proof.

Upper Bounds. One could begin a study of the upper bound by using (7) to
compute

f (x) − f (1)
x + 1

2
− f (−1)

1 − x
2

= h(x)

and then
1∫

−1
hdμ(x) as a linear combination of f (y), f ′(y) as in formula 8 and an

integral which is generally like R in (8). When one does this, the integral term turns
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out to be independent of y , and the coefficients of f (y) and f ′(y) are zero. If R � 0 ,
one gets

1∫
−1

f (x)dμ(x) − f (1)
2

(P0 + P1) − f (−1)
(

P0 − P1

2

)
� 0

which replicates Fej́er’s upper bound if μ is nonnegative and even. The general
condition on μ obtained in this way suggests a much easier proof and statement of the
theorem.

THEOREM 5. Let f be a twice differentiable convex function and let μ be ameasure
such that the solution to the boundary value problem y′′ = dμ; y(−1) = y(1) = 0 , is
� 0 on [−1, 1] , then

1∫
−1

f dμ � P0
f (−1) + f (1)

2
+ P1

f (1) − f (−1)
2

.

REMARK 3. The meaning of the boundary value problem is this. Let G(x, t) be
the Green’s function for the problem Ly = y′′, y(1) = y(−1) = 0 (note the change

in sign in L ) then y(x) =
1∫

−1
G(x, t)dμ(t) is a C′ function satisfying the boundary

conditions and if dμ(t) = p(t)dt, y′′ = p a.e.. The boundary value problem is self
adjoint so G(x, y) = G(y, x) .

Proof of the theorem.

Let y(x) =
1∫

−1
G(x, t)dμ(t) , then

1∫
−1

f ′′(x)y(x)dx =

1∫
−1

f ′′(x)

1∫
−1

G(x, t)dμ(t)dx

=

1∫
−1

1∫
−1

G(x, t)f ′′(x)dx dμ(t) =

1∫
−1

⎛
⎝

1∫
−1

G(t, x)f ′′(x)dx

⎞
⎠ dμ(t).

Now
1∫

−1
G(t, x)f ′′(x)dx is a functionwhose second derivative is f ′′ and whose values at

±1 is zero since G is theGreen’s function. This function is f (x)−f (−1) 1−x
2 −f (1) 1+x

2 ,
a.e. So we have

1∫
−1

f (x)μ(x) − f (−1)
2

(P0 − P1) − f (1)
2

(P1 + P0) =

1∫
−1

f ′′(x)y(x)dx.

Now f ′′ � 0 and y � 0 by hypothesis. This completes the proof.
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Note that it can be verified that G � 0 so that if μ � 0 , then y � 0 .
At this point it is instructive to look at the condition (EP). The functions in (EP)

t∫
−1

(t−x)dμ(x) and
1∫
t
(x− t)dμ(x) are solutions of initial value problems (respectively)

y′′ = dμ; y(−1) = y′(−1) = 0; y(1) = y′(1) = 0.

For (EP)n the initial value problem is y(n+1) = (−1)n+1

n! dμ and y(k)(−1) = 0, k =
0, . . . , n ; y(k)(1) = 0, k = 0, . . . , n respectively.

EXAMPLE 3. Let p(x) = x2 − 1
6 then y in Theorem 5 is y(x) = x2

12 (x
2 − 1) � 0 .

Moreover P0 = 1
3 and P1 = 0 so we get

1∫
−1

f (x)
(
x2 − 1

6

)
dx � f (1)+f (−1)

6 for f

convex. For a non-symmetric example, let p(x) = x2− x so that P0 = −P1 = 2
3 . Then

y(x) = 1
12 (x

2 − 1)(x − 1)2 � 0 and we have

1∫
−1

f (x)(x2 − x)dx � 2
3
f (1) for f convex.

We cannot expect the result in Theorem 5 to be best possible. Convexity from an
inequality which is an upper bound on f seems impossible.
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[1] L. FEJ́ER, Über die Fouriereichen II, Gesammelte Arbeiten I (German) Budapest (1970), 280–297.
[2] A.M. FINK, Toward a theory of best possible inequalities, Nieuw Archief von Wiskunde 12 (1994),

19–29.
[3] A.M. FINK AND MAX JODEIT, JR., On Chebyshev’s other inequality; Inequalities in Statistics and

Probability, (Lecture Notes IMS, No. 5) Inst. Math. Statistics, Haywood, CA (1984), 115–120.
[4] , Jensen inequalities for functions with higher monotonicities, Aeq. Math. 49 (1952), 26–43.
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