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(communicated by J. Pecaric)

Abstract. In this paper we establish certain sharp results concerning the maximum modulus of
the polar derivative of a polynomial P(z) with restricted zeros. Our results generalize and refine
some results of Turdn, Malik, Govil and others.

1. Introduction and statement of results

Let P(z) be a polynomial of degree n and P’(z) its derivative. It was shown by
Turdn [12] that if P(z) has all its zeros in |z| < 1, then

max |P'(2)] > § max P(2)]. (1)

Inequality (1) was recently refined by Aziz and Dawood [4] and who under the same
hypothesis proved that

max |P'(z)|
|z]=1

\\/

5{max |P@Q)] + min P()] . 2)

Both the inequalities (1) and (2) are sharp and equality holds for P(z) = " + 8 where
|| = |B|. As an extension of (1), Malik [7] showed that if P(z) has all its zeros in
lz] < k where k < 1, then

n
ma > —— max |P(z)|, 3
nax [P(2)] > 1 max |P(Q) 5)
whereas if P(z) has all its zeros in |z| < k, k > 1, then Govil [6] proved that
n
ma > max |P(z)]|. 4
nax /(2 1+k”$§\&ﬂ @)

Both the estimates (3) and (4) are also sharp, Equality in (3) holds for P(z) = (z+k)",
k < 1 whereas equality in (4) holds for P(z) ="+ k", k > 1.

Mathematics subject classification (1991): 30A10, 30C10, 30D15.
Key words and phrases: Inequalities, polar derivatives, self-reciprocal polynomials.

© ﬂEI’EN Zagreb 231

Paper MIA-01-21



232 A. Az1z AND N. A. RATHER

Let DyP(z) denote the polar differentiation of the polynomial P(z) of degree n
with respect to the point o, then

Do P(z) = nP(z) + (a0 — 2)P'(z).

The polynomial D, P(z) is of degree at most n — 1 and it generalizes the ordinary
derivative in the sense that

lim [L"s )

} = P'(2). (5)

A. Aziz [2] proved several sharp results concerning the maximum modulus of the
polar derivative of a polynomial P(z) with restricted zeros. Recently Shah [11] extended
(1) to the polar derivative of a polynomial and proved that if P(z) has all its zeros in
|z] < 1, then for every real or complex number o with |a| > 1,

o— 00

max [DoP(2)| > 3 (o] — 1) max [P(2)|. (6)

Here we first prove the following generalization of (6), which extends (3) to the
polar derivative of a polynomial.

THEOREM 1. If all the zeros of the polynomial P(z) = ¢ H 7 —zj) of degree n
j=1
liein |z| < k where k < 1, then for every real or complex number o with |ot| > k

n

1
max|DuP(2) > (|a] "‘)Zm‘ﬂ PG\ (7)

The result is best possible and equality holds for P(z) = (z — k)" with o > 1.

The following corollary, which is a generalization of the inequality (6) and which
extends (3) to the polar derivative of a polynomial, is an immediate consequence of
Theorem 1.

COROLLARY 1. If P(z) is a polynomial of degree n having all its zeros in |z| < k
where k < 1, then for every real or complex number o with || > k,

of &
max |DoP(2)| > (57 ) max P ®)

The result is sharp and equality holds for P(z) = (z — k)" with o > 1.
REMARK 1. For k = 1, Corollary 1 reduces to (6).

REMARK 2. Dividing the two sides of (8) by |a|, letting || — oo, and noting
(5), we get the inequality (3).

While seeking the coresponding generalization of the inequality (4) to the polar
derivative of a polynomial P(z) with respect to a real or complex number «, here we
have been able to prove the following result.
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THEOREM 2. If P(z) is a polynomial of degree n having all its zeros in |z| < k
where k > 1, then for every real or complex number o with || > k,

o] — k
D, P > P . 9
max |DeP (2 n(Hkn)mg\ (2) )

REMARK 3. Dividing the two sides of (9) by |ct| and letting |ot| — oo, we get
the inequality (4).

We next prove the following result which is a generalization of the inequality (2)
to the polar derivative of a polynomial.

THEOREM 3. If P(2) is a polynomial of degree n having all its zeros in |z] < 1,
then for every real or complex number o with || > 1,
max [DeP(3)| > 5{(jo] ~ 1) max |P(3)| + (o] + 1) min PR/} (10)
= Z|=

z|=1
The result is best possible and equality holds for P(z) = (z— 1)" with a > 1.

REMARK 4. Dividing the two sides of (10) by || and letting |a] — oo, we get
the inequality (2).
If P(z) is a self-reciprocal polynomial, of degree at most n, that is, if P(z) =

1
z”P(—) for all z € C, then it is known [3, 5] that
z

n
—max |P(z)|. 11
may 5 max P(2) (11)

The result is sharp and equality holds for P(z) = 2" + 1.

Finally here we extend the inequality (11) for the polar derivative of a polynomial
P(z) withrespectto areal or complex number o with |a| > 1 by proving the following
result.

THEOREM 4. If P(2) is a self-reciprocal polynomial of degree at most n, then for
every real or complex number o with |a| > 1,

max [DeP(2)| > 3 (o] — 1) max [P(2)]. (12)

|z]=1 Z|

The result is best possible and equality holds for P(z) = (z — 1)", where n is an even
positive integer.

REMARK 5. Dividing the two sides of (12) by || and letting |a] — oo, we get
the inequality (11).

2. Lemmas

For the proofs of these theorem we need the following lemmas. The first result is
due to Malik [7].
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LEMMA 1. If P(z) is a polynomial of degree n which does not vanish in |z| < k
where k > 1, then

kP (z) <|Q'(2)|  for |z =1

where Q(z) = z"@.

1
By applying Lemma 1 to the polynomial z”P(:) , we immediately get the fol-
z

lowing result.

LEMMA 2. If P(z) is a polynomial of degree n having all its zeros in |z] < k
where k < 1, then

KPR =210 [l =1
where Q(z) is defined as in Lemma 1.

We also need

LEMMA 3. If P(2) is a polynomial of degree n which has all its zeros in the disk
|z| < k where k > 1, then

2k"
max |P > — max |P(z)|.
|Z‘:kl (2)] T |Z‘:ll (2)]

This result is due to A. Aziz [3].

3. Proofs of the theorems

I
Proof of Theorem 1. Let Q(z) = z"P(:) , then it can be easily verified that
Z
|Q'(2)| = [nP(z) — 2P'(z)| for [z = 1.

By hypothesis all the zeros of P(z) lie in |z] < k where k < 1, therefore, by Lemma
25

kIP'(z)| > |0/ ()]
= |nP(z) — zP'(z)| for |z| =1. (13)

Now for every real or complex number o with |¢t| > k, we have

|DaP(2)| = [nP(z) + (o0 — 2)P'(2)]|
> |a||P'(2)] — [nP(z) — zP'(z)| for |z] = 1.

This implies with the help of (13) that

IDoP ()| > (la] = K)|P'(z)| for [ =1 and [a| >k (14)
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Since P(z) = cH \zj <k<1,j=1,2,...,n, therefore, for points e,

0<06<2m, other than the zeros of P(z),

i0 pr ( ,i6 n i0
P (") e
e (Z20) 5 mre (L)
TPy ) T ey
>3
g ) 1+|ZJ|’
which implies
P(e 10 15
| §31+\Z, ) (15)

for points ¢, 0 < 6 < 27, other than the zeros of P(z). Since (15) is trivially true
for points ¢, 0 < 0 < 2m, which are the zeros of P(z), it follows that

n

|P'(2)] > Z ! |P(z)| for |z] =1.

il

This in conjuction with (14) yields

max |DoP(z)| = (Jot] — Z |P(2)]-
—1

lzl= 1+\Z|\z|1

which is inequality (7) and this completes the proof of Theorem 1.

Proof of Theorem 2. By hypothesis P(z) has all its zeros in |z| < k, k >
therefore, all the zeros of the polynomial G(z) = P(kz) lie in |z] < 1. Applymg
inequality (6) to the polynomial G(z) and noting that |ot|/k > 1, we get

n/lol—k
DyG(2)| > Gz
max [ Do G(2)| 2( Z )gﬁ§\(ﬂ

Replacing G(z) by P(kz), we obtain

n/lal—k
Dy Pk >—( P(k
max D P (k)| > 5 () max [Pko)l.

This implies with the help of Lemma 3 that

malx |nP(kz) + (a/k — 2)kP’ (kz)]

n/lol—k
> 2 P(z
s (T ) el

nlel —ky 2k
2 Y P ’
2( k )1+kﬂﬁ3|(ﬁ
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which gives

max |DaP(z)| = max nP(z) + (o — 2)P'(2)]
z|= z|=
o —k
s e (Y
() max Po)

Now if F(z) is a polynomial of degree n, then (see [10, p. 346] or [9, vol. I, p. 137])

max |F(z)| < R"max|F(z)|.
|z|=R>1 |z]=1

Applying this result to the polynomial nP(z) + (a — z)P'(z) = DP(z), which is of
degree at most n — 1, it follows that

_ /o] —k
K"~ 'max |DoP(z)| > nk" 1(| )maxPz7
max (D P(:) C) max ()

which immediately leads to the desired result and this completes the proof of Theorem
2.

Proof of Theorem 3. Let m = ln‘m} |P(z)|. If P(z) has a zero on |z| = 1, then
Z=

m = 0 and the result follows from Corollary 1 with k£ = 1. Henceforth we assume
that all the zeros of P(z) liein |z < 1 so that m > 0 and m < |P(z)| for |z] = 1.
By Rouche’s theorem it follows that if § is any complex number such that |B| < 1,
then the polynomial F(z) = P(z) — Bmz" of degree n has all its zeros in |z] < 1. If
21,22, - - Zn arethe zerosof F(z),then |z;| < 1,j=1,2,...,n. Proceeding similarly
as in the proof of Theorem 1 with k = 1, we get

n

1
IDoF(z)| > (laf = 1)) TI»I‘F(Z” for |z| =1
R

> g(\a| —1|F()| for |z = 1.
This gives
|DoP(z) — mnafz'| > g(|a\ —1)|P(z) — Pm"| for |z| =1. (16)

It is a simple consequence of Laguerre Theorem (see [1] or [8, p. 52]) on the polar
derivative of a polynomial that for every o with |a| > 1, the polynomial

DyF(z) = DyP(z) — mnofz" !
has all its zeros in |z] < 1. This clearly implies that
|DoP(z)| = nm|a|z|"™" for |z > 1. (17)
Now choosing argument of f in the left hand side of (16) such that

|DoP(z) — mnafz" | = |DyP(z)| — mn|a||B] for |z =1
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(which is possible by (17)), we get
DaP(2)| = mnla]|B] > S (1l = D{IP()| — |Blm} for | =1 (18)
Finally letting |8| — 1 in (18), we easily obtain

max |DoP(z)| > 5{(\04 - l)mgIP(Z)I + (Jaf +1) lrg‘li:r} \P(Z)\},

which is inequality (10) and this completes the proof of Theorem 3.

Proof of Theorem 4. Since P(z) is self-reciprocal polynomial of degree at most
n, we have

1
P(z) = z"P(—) forall ze C.
b4
This implies

anlp’(é) =nP(z) — zP'(2),

which in particular gives

1
max |P'(z)| = max z”_lP’(—)
lz|=1 lzl=1 z

= rﬁi)l( [nP(z) — zP'(2)|. (19)

Now for |z| =1,
IDoP(2)| = [nP(z) + (& — 2)P'(2)]
> |a]|P'(2)] — [nP(z) — 2P'(2)] (20)

If max |P'(z)| = |P'(20)|, then with the help of (19) it follows from (20) that
z|=1

max [DoP(z)| > {IDaP(2)!}
|z]=1 =20

|atl[P'(20)] = [nP(z20) = z0P" (z0)]

>
> | |P'(z0)] — max InP(z) — zP'(z)|
na.

= (|| = l)mgIP’(Z)

Combining this with inequality (11), we conclude that

max |DoP(z)| > ’l(\a| — 1) max |P(z)|.
|z|=1 2 lz]=1

This proves the desired result.
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