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Abstract. In this paper we establish certain sharp results concerning the maximum modulus of
the polar derivative of a polynomial P(z) with restricted zeros. Our results generalize and refine
some results of Turán, Malik, Govil and others.

1. Introduction and statement of results

Let P(z) be a polynomial of degree n and P′(z) its derivative. It was shown by
Turán [12] that if P(z) has all its zeros in |z| � 1 , then

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (1)

Inequality (1) was recently refined by Aziz and Dawood [4] and who under the same
hypothesis proved that

max
|z|=1

|P′(z)| � n
2

{
max
|z|=1

|P(z)| + min
|z|=1

|P(z)|
}

. (2)

Both the inequalities (1) and (2) are sharp and equality holds for P(z) = αzn +β where
|α| = |β | . As an extension of (1), Malik [7] showed that if P(z) has all its zeros in
|z| � k where k � 1 , then

max
|z|=1

|P′(z)| � n
1 + k

max
|z|=1

|P(z)|, (3)

whereas if P(z) has all its zeros in |z| � k , k � 1 , then Govil [6] proved that

max
|z|=1

|P′(z)| � n
1 + kn

max
|z|=1

|P(z)|. (4)

Both the estimates (3) and (4) are also sharp, Equality in (3) holds for P(z) = (z+ k)n ,
k � 1 whereas equality in (4) holds for P(z) = zn + kn , k � 1 .

Mathematics subject classification (1991): 30A10, 30C10, 30D15.
Key words and phrases: Inequalities, polar derivatives, self-reciprocal polynomials.

c© � � , Zagreb
Paper MIA-01-21

231



232 A. AZIZ AND N. A. RATHER

Let DαP(z) denote the polar differentiation of the polynomial P(z) of degree n
with respect to the point α , then

DαP(z) = nP(z) + (α − z)P′(z).

The polynomial DαP(z) is of degree at most n − 1 and it generalizes the ordinary
derivative in the sense that

lim
α→∞

[DαP(z)
α

]
= P′(z). (5)

A. Aziz [2] proved several sharp results concerning the maximum modulus of the
polar derivative of a polynomial P(z) with restricted zeros. Recently Shah [11] extended
(1) to the polar derivative of a polynomial and proved that if P(z) has all its zeros in
|z| � 1 , then for every real or complex number α with |α| � 1 ,

max
|z|=1

|DαP(z)| � n
2
(|α| − 1) max

|z|=1
|P(z)|. (6)

Here we first prove the following generalization of (6), which extends (3) to the
polar derivative of a polynomial.

THEOREM 1. If all the zeros of the polynomial P(z) = c
n∏

j=1

(z − zj) of degree n

lie in |z| � k where k � 1 , then for every real or complex number α with |α| � k ,

max
|z|=1

|DαP(z)| � (|α| − k)
n∑

j=1

1
1 + |zj| max

|z|=1
|P(z)|. (7)

The result is best possible and equality holds for P(z) = (z − k)n with α � 1 .

The following corollary, which is a generalization of the inequality (6) and which
extends (3) to the polar derivative of a polynomial, is an immediate consequence of
Theorem 1.

COROLLARY 1. If P(z) is a polynomial of degree n having all its zeros in |z| � k
where k � 1 , then for every real or complex number α with |α| � k ,

max
|z|=1

|DαP(z)| � n
( |α| − k

1 + k

)
max
|z|=1

|P(z)|. (8)

The result is sharp and equality holds for P(z) = (z − k)n with α � 1 .

REMARK 1. For k = 1 , Corollary 1 reduces to (6).

REMARK 2. Dividing the two sides of (8) by |α| , letting |α| → ∞ , and noting
(5), we get the inequality (3).

While seeking the coresponding generalization of the inequality (4) to the polar
derivative of a polynomial P(z) with respect to a real or complex number α , here we
have been able to prove the following result.
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THEOREM 2. If P(z) is a polynomial of degree n having all its zeros in |z| � k
where k � 1 , then for every real or complex number α with |α| � k ,

max
|z|=1

|DαP(z)| � n
( |α| − k

1 + kn

)
max
|z|=1

|P(z)|. (9)

REMARK 3. Dividing the two sides of (9) by |α| and letting |α| → ∞ , we get
the inequality (4).

We next prove the following result which is a generalization of the inequality (2)
to the polar derivative of a polynomial.

THEOREM 3. If P(z) is a polynomial of degree n having all its zeros in |z| � 1 ,
then for every real or complex number α with |α| � 1 ,

max
|z|=1

|DαP(z)| � n
2

{
(|α| − 1) max

|z|=1
|P(z)| + (|α| + 1) min

|z|=1
|P(z)|

}
. (10)

The result is best possible and equality holds for P(z) = (z − 1)n with α � 1 .

REMARK 4. Dividing the two sides of (10) by |α| and letting |α| → ∞ , we get
the inequality (2).

If P(z) is a self-reciprocal polynomial, of degree at most n , that is, if P(z) =

znP
(1

z

)
for all z ∈ C , then it is known [3, 5] that

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (11)

The result is sharp and equality holds for P(z) = zn + 1 .
Finally here we extend the inequality (11) for the polar derivative of a polynomial

P(z) with respect to a real or complex number α with |α| � 1 by proving the following
result.

THEOREM 4. If P(z) is a self-reciprocal polynomial of degree at most n , then for
every real or complex number α with |α| � 1 ,

max
|z|=1

|DαP(z)| � n
2
(|α| − 1) max

|z|=1
|P(z)|. (12)

The result is best possible and equality holds for P(z) = (z − 1)n , where n is an even
positive integer.

REMARK 5. Dividing the two sides of (12) by |α| and letting |α| → ∞ , we get
the inequality (11).

2. Lemmas

For the proofs of these theorem we need the following lemmas. The first result is
due to Malik [7].
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LEMMA 1. If P(z) is a polynomial of degree n which does not vanish in |z| < k
where k � 1 , then

k|P′(z) � |Q′(z)| for |z| = 1

where Q(z) = znP
(1

z

)
.

By applying Lemma 1 to the polynomial znP
(1

z

)
, we immediately get the fol-

lowing result.

LEMMA 2. If P(z) is a polynomial of degree n having all its zeros in |z| � k
where k � 1 , then

k|P′(z)| � |Q′(z)|, |z| = 1

where Q(z) is defined as in Lemma 1.

We also need

LEMMA 3. If P(z) is a polynomial of degree n which has all its zeros in the disk
|z| � k where k � 1 , then

max
|z|=k

|P(z)| � 2kn

1 + kn
max
|z|=1

|P(z)|.

This result is due to A. Aziz [3].

3. Proofs of the theorems

Proof of Theorem 1. Let Q(z) = znP
(1

z

)
, then it can be easily verified that

|Q′(z)| = |nP(z) − zP′(z)| for |z| = 1.

By hypothesis all the zeros of P(z) lie in |z| � k where k � 1 , therefore, by Lemma
2,

k|P′(z)| � |Q′(z)|
= |nP(z) − zP′(z)| for |z| = 1. (13)

Now for every real or complex number α with |α| � k , we have

|DαP(z)| = |nP(z) + (α − z)P′(z)|
� |α||P′(z)| − |nP(z) − zP′(z)| for |z| = 1.

This implies with the help of (13) that

|DαP(z)| � (|α| − k)|P′(z)| for |z| = 1 and |α| � k. (14)
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Since P(z) = c
n∏

j=1

(z − zj) , |zj| � k � 1 , j = 1, 2, . . . , n , therefore, for points eiθ ,

0 � θ < 2π , other than the zeros of P(z) ,

Re
(eiθP′(eiθ)

P(eiθ)

)
=

n∑
j=1

Re
( eiθ

eiθ − zj

)

�
n∑

j=1

1
1 + |zj| ,

which implies

|P′(eiθ)| �
n∑

j=1

1
1 + |zj| |P(eiθ)| (15)

for points eiθ , 0 � θ < 2π , other than the zeros of P(z) . Since (15) is trivially true
for points eiθ , 0 � θ < 2π , which are the zeros of P(z) , it follows that

|P′(z)| �
n∑

j=1

1
1 + |zj| |P(z)| for |z| = 1.

This in conjuction with (14) yields

max
|z|=1

|DαP(z)| � (|α| − k)
n∑

j=1

1
1 + |zj| max

|z|=1
|P(z)|.

which is inequality (7) and this completes the proof of Theorem 1.

Proof of Theorem 2. By hypothesis P(z) has all its zeros in |z| � k , k � 1 ,
therefore, all the zeros of the polynomial G(z) = P(kz) lie in |z| � 1 . Applying
inequality (6) to the polynomial G(z) and noting that |α|/k � 1 , we get

max
|z|=1

|Dα/kG(z)| � n
2

( |α| − k
k

)
max
|z|=1

|G(z)|.

Replacing G(z) by P(kz) , we obtain

max
|z|=1

|Dα/kP(kz)| � n
2

( |α| − k
k

)
max
|z|=1

|P(kz)|.

This implies with the help of Lemma 3 that

max
|z|=1

|nP(kz) + (α/k − z)kP′(kz)|

� n
2

( |α| − k
k

)
max
|z|=k

|P(z)|

� n
2

( |α| − k
k

) 2kn

1 + kn
max
|z|=1

|P(z)|,
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which gives

max
|z|=k

|DαP(z)| = max
|z|=k

|nP(z) + (α − z)P′(z)|

� nkn−1
( |α| − k

1 + kn

)
max
|z|=1

|P(z)|.

Now if F(z) is a polynomial of degree n , then (see [10, p. 346] or [9, vol. I, p. 137])

max
|z|=R>1

|F(z)| � Rn max
|z|=1

|F(z)|.

Applying this result to the polynomial nP(z) + (α − z)P′(z) = DαP(z) , which is of
degree at most n − 1 , it follows that

kn−1 max
|z|=1

|DαP(z)| � nkn−1
( |α| − k

1 + kn

)
max
|z|=1

|P(z)|,

which immediately leads to the desired result and this completes the proof of Theorem
2.

Proof of Theorem 3. Let m = min
|z|=1

|P(z)| . If P(z) has a zero on |z| = 1 , then

m = 0 and the result follows from Corollary 1 with k = 1 . Henceforth we assume
that all the zeros of P(z) lie in |z| < 1 so that m > 0 and m � |P(z)| for |z| = 1 .
By Rouche’s theorem it follows that if β is any complex number such that |β | < 1 ,
then the polynomial F(z) = P(z) − βmzn of degree n has all its zeros in |z| < 1 . If
z1, z2, . . . , zn are the zeros of F(z) , then |zj| < 1 , j = 1, 2, . . . , n . Proceeding similarly
as in the proof of Theorem 1 with k = 1 , we get

|DαF(z)| � (|α| − 1)
n∑

j=1

1
1 + |zj| |F(z)| for |z| = 1

. � n
2
(|α| − 1)|F(z)| for |z| = 1.

This gives

|DαP(z) − mnαβzn−1| � n
2
(|α| − 1)|P(z) − βmzn| for |z| = 1. (16)

It is a simple consequence of Laguerre Theorem (see [1] or [8, p. 52]) on the polar
derivative of a polynomial that for every α with |α| � 1 , the polynomial

DαF(z) = DαP(z) − mnαβzn−1

has all its zeros in |z| < 1 . This clearly implies that

|DαP(z)| � nm|α||z|n−1 for |z| � 1. (17)

Now choosing argument of β in the left hand side of (16) such that

|DαP(z) − mnαβzn−1| = |DαP(z)| − mn|α||β | for |z| = 1
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(which is possible by (17)), we get

|DαP(z)| − mn|α||β | � n
2
(|α| − 1)

{
|P(z)| − |β |m

}
for |z| = 1. (18)

Finally letting |β | → 1 in (18), we easily obtain

max
|z|=1

|DαP(z)| � n
2

{
(|α| − 1) max

|z|=1
|P(z)| + (|α| + 1) min

|z|=1
|P(z)|

}
,

which is inequality (10) and this completes the proof of Theorem 3.

Proof of Theorem 4. Since P(z) is self-reciprocal polynomial of degree at most
n , we have

P(z) = znP
(1

z

)
for all z ∈ C.

This implies

zn−1P′
(1

z

)
= nP(z) − zP′(z),

which in particular gives

max
|z|=1

|P′(z)| = max
|z|=1

∣∣∣zn−1P′
(1

z

)∣∣∣
= max

|z|=1
|nP(z) − zP′(z)|. (19)

Now for |z| = 1 ,

|DαP(z)| = |nP(z) + (α − z)P′(z)|
� |α||P′(z)| − |nP(z) − zP′(z)| (20)

If max
|z|=1

|P′(z)| = |P′(z0)| , then with the help of (19) it follows from (20) that

max
|z|=1

|DαP(z)| �
{
|DαP(z)|

}
z=z0

� |α||P′(z0)| − |nP(z0) − z0P
′(z0)|

� |α||P′(z0)| − max
|z|=1

|nP(z) − zP′(z)|

= (|α| − 1) max
|z|=1

|P′(z)|.

Combining this with inequality (11), we conclude that

max
|z|=1

|DαP(z)| � n
2
(|α| − 1) max

|z|=1
|P(z)|.

This proves the desired result.
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