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A GEOMETRIC MEAN INEQUALITY AND
SOME MONOTONICITY RESULTS FOR THE ¢-GAMMA FUNCTION

N. ELEZOVIC, C. GIORDANO AND J. PECARIC

(communicated by A. Laforgia)

Abstract. A geometric mean inequality and some monotonicity results for the g -Gamma function
are proved.

1. Introduction and preliminary results

A geometric mean inequality for the Gamma function was proved by A. Laforgia
and S. Sismondi [1]:

THEOREM 1.1. Let T'(x) be the Gamma function. Then for x >0 and 0 < A < 1

the following inequality
Cx+1) T(1/x+1)]"7? __ 1
“T(A+1)

F'x+A) T(A/x+ A1)
holds. Equality is assumed when x = 1 and, of course, when A =0 and A = 1. In
the case A > 1 (1.1) must be reversed.

Note that T'(x + 1)['(1/x + 1) = ['(x)I'(1/x), so that (1.1) can be written in the
following form

(1.1)

M) r(/x 1" 1
{F(X—FM ' F(l/x+)t)] > TA+1) (1.2)

The following monotonicity theorem was proved by D. Kershaw and A. Laforgia

[2]:
THEOREM 1.2. We have that
1 X
{F(l + —)] decreases with x > 0 (1.3)
X
and
1 X
x {F(l + —)] increases with x > 0. (1.4)
X
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In this paper we shall prove some analoguous results for the g-Gamma function
r,:

. O 1 7qn+1
Ty(x) = (1-¢)' " H T—g (0<g<1). (1.5)
n=0

Note that I';(x) — I'(x) as ¢ — 1~ , and that
Wy (x) =Ty (x) /Ty (%)

= —log(1 —q) +logqy_q""™/(1—q"")
n=0

= —log(1 —q) +logqy_q"/(1—-4"). (1.6)
k=1

The following Stieltjes integral representation of ‘¥, is valid:

1—e?

oo —Xxt
‘I’q(x):—log(l—q)—/o £y, O0<g<l,x>0, (L7

where v, is a discrete measure with positive masses —logg at the positive points
—klogq, k=1,2,...,1e.

Yq(t) = —logq» 8(t+klogg), 0<gq<l. (1.8)
k=1
Note that ([3])
e —q°1
/ e Mdy,(t) = w, 0<g<l1,x>0. (1.9)
0 1 —g*
2. Results

THEOREM 2.1. Let T'y(x) be the q-Gamma function. Then for x > 0 and 0 <
A < 1 the following inequality
L) Ty(1/x) 1" 1

LG+a) Taxth] TG+ (2.1)

holds. Equality is assumed when x = 1 and, of course, when A =0 and A = 1. In
the case A > 1 (2.1) must be reversed.

Proof. We shall use idea of proof from [1] (with some simplifications).

In view of the invariance of inequality (2.1) under the substitution x — 1/x, we
can consider only the case 0 < x < 1.

Let us define functions

F()C) . F‘I(x) Fq(l/x) (22)

S Ty(x+A) T,(1/x+2)
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and p
glx) = o log F(x). (2.3)
By (1.7) we can obtain
1 —exp[—Af] [ 1 1
= —— = ——t| — —xt| |dt. 2.4
s = | T (exel g —explx (24)
It is interesting that same function appears in [1], so we can deal as there. Let us define
functions a o N 0
—e —e ), t>0,
1) = 2.5
o ={} o 23)
and 1 1
1) = ——t| — —xt|, t=0. 2.6
¢2(1) = — exp[——t] — exp[—xi], (2.6)

Concerning the function ¢, we have that under our hypothesis 0 < x < 1, there
exists one and only one value #, > O such that @,(zp) = 0. Moreover, @,(t) > 0 if
t <ty and @(r) <0 if t > £y (see [1]). From (2.5) we have

e_M

Q1) = (=P (1 —A)exp[—1] + A —exp[—1(1 — A)] (2.7)

Thus, @] is nonnegative if and only if
(I —A)exp[—t] + A —exp[—#(1 — A)] > 0. (2.8)
For e~' = 7, (2.8) becomes
(1—-A)z+Arz> % (2.9)

what is the well-known arithmetic—geometric mean inequality for numbers z and 1.
Therefore (2.9) (and so (2.8)) is true for A € (0, 1), while for A > 1 we have reverse
inequalities in (2.9) and (2.8). So, for 0 < A < 1, ¢{ is nonnegative and for A > 1
nonpositive, i.e., ¢ is increasing and decreasing respectively.

Now application of Theorem of the mean leads to

oo

a = [ oe0a= [ owenas [ a0en

1o

=00 [ " a0t + oa(12) / " oali)ds
R S ORI

0<n<ty, tHH<h<oo, O<x<l.

So, the sign of ¢ depends only of @;(#1) — @i (#,) whatis negative for 0 < A <1
and positive for A > 1. Therefore, for 0 < x < 1 the function x — F(x) defined by
(2.2) decreases for 0 < A < 1 and increases for A > 1. Since F(1) = [[(A + 1)]72,
we have

Fx)>[T(A+ 173 for0<A <1,
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and
F(x) <[C(A +1)]7% ford > 1.

When x = 1 and A is an arbitrary positive number, (2.1) reduces to an inequality.
Similarly, when A =0 or A = 1 the equality sign holds for arbitrary positive x. This
can be checked by direct substitution in (2.1).

REMARK. For ¢ — 1~ we get (1.2).

THEOREM 2.2. We have that
IN]* .
{Fq (1 + ;)} decreases with x > 0 (2.10)

and

1 X
X {Fq (1 + —)] increases with x > 0 (2.11)
x
Proof. Let, for x > 0, f(x) be defined as in [2], by
1 X
f(x) = .Xa |:Fq(1 + ;):|

where o =0 or o = 1.
To obtain monotonicity results for f, we need to know the sign of the function

_7f’(x) o 1 1 1
a0 =5 = +logT, (1+ ;) - ;‘I’q(l + })' (2.12)
With h(y) = q(1/x), we get
h(y) = oy +logTy(14+y) — y¥,(1 +y). (2.13)
Clearly, we have
h(0) =0, B (y) = o —y¥,(1+y). (2.14)

For a = 0 we have at once #'(y) < 0, and since 2(0) = 0 we have h(y) < 0, i.e.
g(1/x) < 0, which gives (2.10).
When o = 1, (2.14) gives

H(y) =1—y¥,(1+y)

and by (1.7)
W) =1y [ e ()
0 1 — e
oo t o
_ _y/o e ay ) (2.15)
Note that ; ;
<1, (r>0),

e—1 :t+t2/2+...
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s0 (2.15) gives

o0 yl
W) >1—y / ey () = 14y T 18D (2.16)
0 q

Now, we shall prove that the last expression is positive, that is

q"logq
_ <1 2.17
T g (2.17)
ie. with a = 1/q
loga
<1
yay -1
or
yloga < & — 1. (2.18)

Note that the function f(y) = @’ — 1 is convex, so its graph is above the tangent at
y = 0. This gives (2.18). So, now we have &(y) > 0 which gives (2.11).

Moreover we can give the following generalization of the above result for function
(2.11).

THEOREM 2.3. Let

1
a> 189 (2.19)
q—1
Then
1 X
x* {Fq (1 + —)} increases with x > 0. (2.20)
x

REMARK. Itis easy to see that we can always take o < 1 since glogg/(g—1) < 1
for 0 < g < 1 isequivalentto logu < u —1 for u > 1.

Proof. With the same notation as in Theorem 2.2, we shall prove

[e%) ¢ B
W) ==y [ e

= *y/ ! le_y’d)/q(t).

r __
—logqe

It is sufficient to prove

t

<o for t> —logg.
el —1

Denote g(r) = a(e' — 1) —t. For 0 < a < 1, g has exactly two real roots, t = 0 and
t=1t; >0, anditholds g(r) > 0 for > 7, . But,

1i
g(—logq) = aTq +1logg >0
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because of (2.19). Hence, we have

wo) > 1=y [T eano)

¢’ logq
= 1 _—
a( +quy)

and we can proceed as in Theorem 2.2.

REMARK. Note that Theorem 2.2 and Theorem 2.3 give further extension of some
results from [4].
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