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INEQUALITIES FOR NORMS OF SOME INTEGRAL OPERATORS

A. G. RAMM

(communicated by J. Pečarić)

Abstract. Let (A(a)u)(x) :=
∫ a
0 (1 − xt)−1u(t) dt, 0 < a < 1 . Properties of the operators A(a)

as a → 1 are studied. It is proved that A := A(1) is a bounded, positive self-adjoint operator in
H = L2[0, 1] , ||A|| � π , while A : C(0, 1) → C(0, 1) is unbounded.

1. Introduction

Consider the following operator:

(A(a)u)(x) :=
∫ a

0

u(t) dt
1 − xt

, 0 < a < 1 (1.1)

in the space C(0, a) of continuous functions with the usual sup norm. Clearly, for any
0 < a < 1 , the operator A(a) : C(0, a) → C(0, a) is bounded and

||A(a)||C(0,a)→C(0,a) = max
0�x�a

∫ a

0

dt
1 − xt

=
− ln(1 − a2)

a
, (1.2)

where we have used the well-known formula for the norm of an integral operator in
C(D) (see [2]). Thus,

||A(a)||C(0,a)→C(0,a) → ∞ as a → 1. (1.3)

On the other hand, consider A(a) : Ha → Ha , where Ha = L2(0, a) . We will
prove that, in contrast to (1.3), the norms of A(a) as operators in Ha remain uniformly
bounded as a → 1 , and a bound is given in inequality (1.4) below. Thus, we give an
explicit example of a family of linear operators such that the norms of these operators
remain uniformly bounded if the operators are considered on one functional space and
are not uniformly bounded if the same operators are considered in another functional
space which consists of functions defined on the same set but equipped with a different
norm.
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We prove that the operator A := A(1) is unbounded in C(0, 1) and is bounded in
H := L2[0, 1] , and its norm in H is not greater than π .

For any 0 < a < 1 the operator A(a) in H is a bounded self-adjoint operator.
Moreover, A(a) is obviously a compact operator in Ha if a < 1 , since its kernel is a
continuous function on [0, a]× [0, a] .

The purpose of this paper is to study the behavior of A(a) : Ha → Ha as a → 1 .
We consider the spaces of real-valued functions for convenience of writing.

We prove the following results which are collected in Theorem 1.

THEOREM 1. The following results hold:

1) lim
a→1

||A(a)|| � π, (1.4)

and
||A|| � π. (1.5)

2) The operator A is a positive, self-adjoint, and not compact operator in H .
By positivity we mean

(Au, u) � 0 (= 0 ⇔ u = 0). (1.6)

3) Let u ∈ H ,

uj :=
∫ 1

0
u(t)tj dt, j = 0, 1, 2 . . . . (1.7)

Then

sup
||u||=1

∞∑
j=0

u2
j � π. (1.8)

Inequality (1.8) is similar to the classical inequality for theHilbertmatrix

{
1

i+j+1

}
i,j�0(see [1, p. 226]).

Proofs are given in section 2.

2. Proofs

In this section the operators A(a) and A are considered in the spaces Ha and H ,
respectively. Extending elements u of Ha to [0, 1] by setting u(t) = 0 for a < t � 1 ,
one may assume that Ha ⊂ H and this imbedding is an isometry: if u(t) = 0 for
a < t � 1 then ||u||Ha = ||u||H .

Note that
1

1 − xt
=

∞∑
j=0

xjtj, 0 � x, t � a < 1, (2.1)

so

(A(a)u, u) =
∞∑
j=0

u2
j . (2.2)
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Here and in what follows we do not write index a below the symbol of the inner
product and norm in Ha . Since A(a) is a bounded, positive, selfadjoint operator in
Ha , its norm can be calculated as

||A(a)|| = sup
||u||=1,u∈Ha

(A(a)u, u) = sup
||u||=1,u∈Ha

∞∑
j=0

u2
j . (2.3)

Let u ∈ H . We define ||u||a :=
(∫ a

0 u2(t) dt
) 1

2 , so that any u ∈ H is identified with
the element ua(t) of Ha , where

ua(t) =
{

u(t), 0 � t � a,

0, a < t � 1.

Clearly

||u||a → ||u||, (u, v)a → (u, v)H as a → 1, (2.4)

and formula (2.3) shows that (1.4) follows from (1.5).
If 0 < a � b � 1 then 0 < A(a) � A(b) . The inequality A � B in a Hilbert

space H means that (Au, u) � (Bu, u) for all u in the domain of the operator B , and,
if the operators A and B are unbounded, then it is understood that the domain of B is
contained in that of A .

THEOREM 2.1. One has ||A|| � π.

Proof of this theorem requires the following known result (see, e.g. [6, p. 22]):

LEMMA 2.1. (Schur) Suppose that

(Au)(x) :=
∫
D

A(x, t)u(t) dt (2.5)

where D ⊂ Rn is an arbitrary domain. Assume that there exist two positive functions
a(t) and b(t) such that ∫

D
|A(x, t)|a(t) dt � c1b(x), (2.6)

∫
D
|A(x, t)|b(x) dx � c2a(t). (2.7)

Then the operator A , defined in (2.5), is a bounded operator in H = L2(D) and

||A|| � √
c1c2. (2.8)
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Proof of Lemma 2.1. One has

||Au||2 =
∫
D

dx

∣∣∣∣
∫
D

A(x, t)u(t) dt

∣∣∣∣
2

�
∫
D

dx

(∫
D
|A(x, t)| |u(t)| dt

)2

=
∫
D

dx

(∫
D
|A(x, t)| 1

2 a
1
2 (t)

|u(t)|
a

1
2 (t)

|A(x, t)| 1
2 dt

)2

�
∫
D

dx
∫
D
|A(x, t)|a(t) dt

∫
D
|u(t)|2 |A(x, t)|

a(t)
dt

� c1

∫
D

dx
∫
D

b(x)|A(x, t)| |u(t)|2
a(t)

dt � c1c2

∫
D

dt|u(t)|2. (2.9)

In the above chain of inequalities we have used the Cauchy inequality (at the fourth
step) and then the basic assumptions (2.6) and (2.7). Lemma 2.1 is proved. �

REMARK 2.1. In the proof of Theorem2.1we will use Lemma2.1with D = [0,∞)
and a(t) = b(t) = 1√

t
.

Proof of Theorem 2.1. One has

w := Au =
∫ 1

0

u(t)dt
1 − xt

∣∣∣∣ t=eτ
x=eξ

=
∫ 0

−∞

u(eτ)eτ

1 − eτ+ξ dτ
∣∣∣∣ τ=−t
ξ=−x

=
∫ ∞

0

u(e−t)e−t

1 − e−(t+x) dt. (2.10)

Likewise ∫ 1

0
u2(t)dt =

∫ ∞

0
u2(e−t)e−tdt. (2.11)

Let
v(t) := u(e−t)e−

t
2 , (Bv)(x) = w(e−x)e−

x
2 , (2.12)

then

(Bv)(x) =
∫ ∞

0

v(t)e−
x+t
2

1 − e−(x+t) dt :=
∫ ∞

0
B(x + t)v(t)dt. (2.13)

Using the same substitutions as in (2.10), (2.11), one gets∫ 1

0
w2(x) dx =

∫ ∞

0
w2(e−x)e−x dx =

∫ ∞

0
(Bv)2(x) dx. (2.14)

Therefore, from (2.10)-(2.14) it follows that

||A||L2[0,1] = ||B||L2(0,∞). (2.15)

Theorem 2.1 is proved if one proves that ||B|| � π . Let us prove this inequality.
Note that

e−
x
2

1 − e−x
� 1

x
, x > 0. (2.16)
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This elementary inequality the reader can easily check.
Therefore, the kernel B(x + t) , defined in (2.13), satisfies the estimate

0 < B(x + t) � 1
x + t

, x, t > 0. (2.17)

For x, t � 1 , this kernel satisfies the estimate:

0 < B(x + t) � e−
x+t
2

1 − e−2
� c e−

x+t
2 , x, t � 1, c = const > 0, (2.18)

which implies: ∫ ∞

ε
B(x)(1 + xm)dx := bm(ε) < ∞ m = 0, 1, 2, . . . , (2.19)

for any ε > 0 , where bm(ε) are some constants depending on ε .
If B(x) > 0 is a continuous function, bounded on [ε,∞) for any ε > 0 and

inequalities (2.19) hold, then the operator B with the kernel B(x + t) considered as an
operator in Lp[ε,∞), p = 1, 2, is compact for any ε > 0 . The reader can verify this
statement using the standard compactness criteria.

One has

||Bv||2 =
∫ ∞

0
dx

∣∣∣∣
∫ ∞

0
B(x + t)v(t)dt

∣∣∣∣
2

�
∫ ∞

0
dx

(∫ ∞

0
B(x + t)|v(t)|dt

)2

�
∫ ∞

0
dx

(∫ ∞

0

|v(t)|
x + t

dt

)2

� π2||v||2. (2.20)

Here we have used Lemma 2.1 and have taken a(t) = b(t) = 1√
t
, c1 = c2 = π . We

have ∫ ∞

0

dt

(x + t)
√

t

∣∣∣∣
t=y2

= 2
∫ ∞

0

dy
x + y2

=
π√
x
. (2.21)

Thus
||A||L2(0,1) = ||B||L2(0,∞) � π. (2.22)

Theorem 2.1 is proved. �
REMARK 2.2. It is a classical result [1, p. 226] which says that if f , g ∈ Lp(0,∞) ,

p > 1 , p′ = p
p−1 , then

∫ ∞

0

∫ ∞

0

|f (x)g(y)|
x + y

dx dy � π
sin(πp)

(∫ ∞

0
|f (x)|pdx

) 1
p
(∫ ∞

0
|g(x)|dx

) 1
p′

,

with equality sign only for f = 0 or g = 0 , and the majorization constant π
sin(πp) is

sharp.
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Let us turn to Claim 2 of the introduction. Since A is a linear bounded symmetric
operator on H , it is selfadjoint on H . To check positivity, note that

(Au, u) =
∞∑
j=0

u2
j � 0, u ∈ L2[0, 1], (2.23)

and if (Au, u) = 0, then

uj :=
∫ 1

0
u(t)tjdt = 0, j = 0, 1, 2, . . . (2.24)

By the well-known Weierstrass theorem, or Müntz theorem, the system
{
tj
}

0�j<∞ is

total in L2(0, 1) , so (2.24) implies u(t) = 0 . This proves positivity of A . See also [5,
p.146] for a connection with Hausdorff moment problem.

The last statement of claim 2) is the content of the following Lemma.

LEMMA 2.2. The operator A is not compact in H .

Proof of Lemma 2.2. Proving that operator A is not compact in H is equivalent
to proving that B is not compact in L2(0,∞) . One writes

Bv =
∫ 1

0
B(x + t)v(t) dt +

∫ ∞

1
B(x + t)v(t) dt := B1v + B2v.

The operator B2 has smooth and rapidly decaying kernel B2(x+t) , so one checks easily
that B2 is compact in L2(0,∞) , that is, as an operator from L2(1,∞) into L2(0,∞) .

Let us prove that B1 is not compact in L2(0,∞) . One can argue as before that the
operator B1 : L2(0, 1) → L2(1,∞) is compact.

Let us consider B1 : L2(0, 1) → L2(0, 1) , and show that it is not compact. If this
is done, Lemma 2.2 is proved.

For v ∈ L2[0, 1] and x ∈ [0, 1] , one has:

|B1v| =
∣∣∣∣
∫ 1

0
B(x + t)v(t) dt

∣∣∣∣ �
∫ 1

0
B(x + t)|v(t)| dt,

c1

x + t
� B(x + t) � 1

x + t
,

where c1 := 2(e1 + e−1)−1. The second inequality the reader can easily check:

c1

x
� e−

x
2

1 − e−x
� 1

x
, 0 � x � 2, 0 < c1 < 1.

Let us choose an orthonormal infinite sequence

|vn| := wn,

∫ 1

0
wn(t)wm(t) dt = δnm.

Then, for x ∈ [0, 1] ,

c1

∫ 1

0

wm(t) dt
x + t

�
∫ 1

0

wm(t) dt
x + t

:= (Twm)(x).

It is sufficient to prove that T is not compact in H = L2[0, 1] , since if B1 were compact
in H , then T would be compact in H by a known theorem [3, p. 90]:
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THEOREM. If a linear operator T with positive kernel T(x, t) is given, such that
T(x, t) � B1(x, t) and the operator B1 is compact in H , then T is compact in H .

To prove that T is not compact, one writes

(T wm)(x) =
∫ ∞

−∞

wm(−t)
x − t

:= (πHwm(−t))(x),

where H is the Hilbert transform and wm(t) was extended to the interval (−∞,∞)
by setting wm(t) = 0 outside the interval [0, 1] . The sequence wm(−t) has support in
[−1, 0] , it is an orthonormal sequence in L2(−∞,∞) , and, by the known properties of
the Hilbert transform H , the sequence Twm is not compact in L2(−∞,∞) . Therefore
the sequence Twm is not compact in H = L2[0, 1] . Lemma 2.2 is proved. �

In the proof of Lemma 2.2 we have used the known fact: the operator (−iH)2 = I ,
where I is the identity operator. Therefore (Hwm,Hwn) = (wm, wn) = δmn if the
system wm, m = 1, 2, ...., is an orthonormal system in L2(−∞,∞) . Thus, the system
Hwm is an infinite orthonormal system and therefore it is not compact in L2(−∞,∞) .

Finally, let us prove Claim 3.

Proof of inequality (1.8) . We have already proved in Claims 1 and 2 that A is a
selfadjoint positive operator in H and ||A|| � π . For a selfadjoint operator A one has

||A|| = sup
||u||=1

(Au, u). (2.25)

The proof of Claim 3 is now completed by combining (1.5), (2.23) and (2.25). �
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