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NORMS AND DETERMINANTS OF PRODUCTS OF

LOGARITHMIC FUNCTIONS OF POSITIVE
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Abstract. Let A , B be bounded positive semi-definite operators (matrices) on a Hilbert space.
We will show

|| log(1 + A) log(1 + B)|| � {log(1 + ||AB|| 1
2 )}2,

and
|| log(1 + B) log(1 + A) log(1 + B)|| � {log(1 + ||BAB|| 1

3 )}3.

Further we will prove the corresponding determinantal inequalities.

Let A and B be bounded positive semi-definite operators (or matrices) on a Hilbert
space. The following inequalities are known ([3], [2, Section 9.2]):

||AaBa|| � ||AB||a and ||BaAaBa|| � ||BAB||a (0 � a � 1).

These mean

||f (A)f (B)|| � f (||AB||) and ||f (B)f (A)f (B)|| � f (||BAB||),
where f (t) = ta. We want to get similar inequalities for f (t) = log(1 + t). But since
there is a positive number b such that {log(1 + b)}2 > log(1 + b2) , the inequality is
not valid even for the case A = B = bI. We can write, however, the above inequalities
also in the following forms:

||f (A)f (B)|| � {f (||AB|| 1
2 )}2 and ||f (B)f (A)f (B)|| � {f (||BAB|| 1

3 )}3,

where f (t) = ta.
The aim of this short note is to show that the inequalities of these types hold for

f (t) = log(1 + t).
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THEOREM 1. If A , B are bounded positive semi-definite operators, then

|| log(1 + A) log(1 + B)|| � {log(1 + ||AB|| 1
2 )}2, (1)

and
|| log(1 + B) log(1 + A) log(1 + B)|| � {log(1 + ||BAB|| 1

3 }3. (2)

Actuallywewill establishmore general inequalities for a class of functions. Further
we will show

THEOREM 2. If A , B are positive semi-definite matrices, then

det[log(1 + A) log(1 + B)] � det[log(1 + |AB| 1
2 )]2, (3)

and
det[log(1 + B) log(1 + A) log(1 + B)] � det[log(1 + (BAB)

1
3 )]3. (4)

Recall that a real-valued continuous function f (t) on [0,∞) is said to be operator
monotone if f (A) � f (B) whenever A � B � 0. Löwner’s theorem says that f (t)
is operator monotone on [0,∞) if and only if it has an analytic extension f (z) to the
upper half plane such that Im f (z) � 0 for Im z > 0.

A consequence of this characterization is that if f (t) � 0 is operator monotone,

so is f (tp)
1
p (0 < p � 1) .

Examples of operator monotone functions are tp (0 < p � 1) , t
s+t with s > 0

and log(1 + t).
As one of the special properties common to these functions f (t) we single out the

property that log f (ex) is concave on (−∞,∞).
We can easily check this property for tp (0 < p � 1) , t

s+t with s > 0 and
log(1 + t) by calculating the second derivatives. But not all non-negative operator
monotone function has this property as seen in 1 + t

1
2 .

In the following theorems, (1) and (2) of Theorem 1 will be shown in much
generalized forms.

THEOREM 3. Let 0 � f (t) be an operator monotone function on [0,∞) such that
log f (ex) is concave on (−∞,∞) . Then for every A, B � 0, and for every p, q > 0,

||f (B
1
q )qf (A

1
2p )2pf (B

1
q )q|| � f (||BAB|| 1

2p+2q )2p+2q, (5)

||f (A
1
p )pf (B

1
q )q|| � f (||AB|| 1

p+q )p+q. (6)

Proof. Since log f (ex) is concave on (−∞,∞) we can see

f (s
1
p )pf (t

1
q )q � f ((st)

1
p+q )p+q (s, t > 0; p, q > 0). (7)

This implies

f (t
1
q )qf ((

s
t2

)
1
2p )2pf (t

1
q )q � f (s

1
2p+2q )2p+2q (s, t > 0 ; p, q > 0).
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First, we assume p � 1
2 . If B is invertible, by the above, we have

f (B
1
q )qf ((sB−2)

1
2p )2pf (B

1
q )q � f (s

1
2p+2q )2p+2q.

Here we set s = ||BAB|| . Then since A � sB−2 and f (t
1
2p )2p is an operator monotone

function for p � 1
2 , we have

f (A
1
2p )2p � (f (sB−2)

1
2p )2p.

Therefore, it follows from the above inequality that

f (B
1
q )qf (A

1
2p )2pf (B

1
q )q � f (||BAB|| 1

2p+2q )2p+2q.

Thus we obtain (5) for invertible B . For general B � 0 , approximate it by B+ δ I and
let δ ↓ 0. Consequently we have shown (5) for p � 1

2 .
Next, we assume 0 < p < 1

2 . By (7) we have

f (s
1
2p )2pf (t

1
1−2p )1−2p � f (st) (s, t > 0),

from which it follows that

f (A
1
2p )2p � f (t

1
1−2p )−1+2pf (tA) (t > 0).

Using (5) for p = 1
2 , we get

||f (B
1
q )qf (A

1
2p )2pf (B

1
q )q|| � f (t

1
1−2p )−1+2p||f (B

1
q )qf (tA)f (B

1
q )q||

� f (t
1

1−2p )−1+2pf (||tBAB|| 1
1+2q )1+2q.

By setting t = ||BAB|| 1−2p
2p+2q , we can get (5) for 0 < p < 1

2 .
Observe that (6) is equivalent to

||f (B
1
q )qf (A

1
p )2pf (B

1
q )q|| � f (||BA2B|| 1

2p+2q )2p+2q,

which follows from (5) with A replaced by A2 . Thus we conclude the proof. �
The special cases of (5) with p = 1

2 , q = 1 and of (6) with p = q = 1 have
simpler forms:

||f (B)f (A)f (B)|| � f (||BAB|| 1
3 )3, (8)

||f (A)f (B)|| � f (||AB|| 1
2 )2. (9)

With f (t) = log(1+t) (8) and (9) reduce to (2) and (1) of Theorem1, respectively.
Further applying (9) to f (t) = t

t+1 we have

COROLLARY 4.

||(A + I)−1AB(I + B)−1|| � ||AB||
(1 + ||AB|| 1

2 )2
.

If 0 � f (t) is a non-constant operator monotone function on [0,∞) such that
log f (ex) is concave on (−∞,∞) , then necessarily f (0) = 0 and the inverse function
f −1 is defined on [0, ||f ||∞) . Therefore the following is an immediate consequence of
(8) and (9).
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COROLLARY 5. Let 0 � f (t) be a non-constant operator monotone function on
[0,∞) such that log f (ex) is concave on (−∞,∞) . Then for A, B � 0

f −1(||AB||1/2) � ||f −1(A)f −1(B)||1/2,

and
f −1(||BAB||1/3) � ||f −1(B)f −1(A)f −1(B)||1/3.

Since the inverse function of log(1 + t) is exp t − 1 , this implies

COROLLARY 6. For A, B � 0

exp(||AB||1/2) − 1 � ||(expA − 1)(expB − 1)||1/2,

and
exp(||BAB||1/3) − 1 � ||(expB − 1)(expA − 1)(expB − 1)||1/3.

Remark here that the following inequality is known for Hermitian A, B (see [2,
p. 261])

|| exp(A + B)|| � || expA expB||.
In the sequel we consider N ×N positive semi-definite matrices. In the following

theorem, (3) of Theorem 2 will be shown in much generalized forms. Then (4) will
follow as a corollary.

THEOREM 7. Let f (t) be a (not necessarily operator monotone) non-negative
function on [0,∞) such that log f (ex) is concave on (−∞,∞) . Then for every N×N
matrices A, B � 0 and for every p, q > 0

det{f (A
1
p )pf (B

1
q )q} � det f (|AB| 1

p+q )p+q, (10)

where |X| = (X∗X)
1
2 .

Proof. Arrange the eigenvalue of each matrix X � 0 in decreasing order

λ1(X) � λ2(X) � · · · � λN(X).

First assume that both A, B are positive definite. A. Horn’s theorem (see [2, p.72]) says
that

k∏

i=1

λi(|AB|) �
k∏

i=1

λi(A)λi(B) (k = 1, 2, . . . , N − 1)

and
N∏

i=1

λi(|AB|) = det(A) det(B) =
N∏

i=1

λi(A)λi(B).

These mean the sequence {logλi(|AB|)}N
i=1 is majorized by {log(λi(A)λi(B))}N

i=1 .
Then according to a general theorem on majorization (see [1], [4], [2, Section 2.3]) if
g(ex) is convex on (−∞,∞) , then

N∑

i=1

g(λi(|AB|)) �
N∑

i=1

g(λi(A)λi(B)).
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Since for any μ > 0 the function − log f (e
x
μ )μ is convex on (−∞,∞) by assumption,

we have

−
N∑

i=1

log f ((λi(|AB|)) 1
μ )μ � −

N∑

i=1

log f ((λi(A)λi(B))
1
μ )μ ,

from which it follows that

N∏

i=1

f ((λi(A)λi(B))
1
μ )μ �

N∏

i=1

f ((λi(|AB|)) 1
μ )μ .

Here we set μ = p + q. Then by (7) we get

N∏

i=1

f (λi(A)
1
p )pf (λi(B)

1
q )q �

N∏

i=1

f ((λi(A)λi(B))
1

p+q )p+q

�
N∏

i=1

f (λi(|AB|) 1
p+q )p+q.

This implies

N∏

i=1

λi(f (A
1
p )p)λi(f (B

1
q )q) �

N∏

i=1

λi(f (|AB| 1
p+q ))p+q,

from which it follows that

det f (A
1
p )p · det f (B

1
q )q � det f (|AB| 1

p+q )p+q.

Thus we have proved (10) for invertible A, B . For general A, B � 0, approximate them
by A + δ I, B + δ I respectively and let δ ↓ 0. �

Now (3) of Theorem 2 follows from (10) with f (t) = log(1 + t) and p = q = 1.

COROLLARY 8. Let f (t) be a (not necessarily operator monotone) non-negative
function on [0,∞) such that log f (ex) is concave on (−∞,∞) . Then for matrices
A1, . . . , An � 0 and for real numbers p1, . . . , pn > 0

n∏

i=1

det f (A
1
pi
i )pi � det f (|

n∏

i=1

Ai|
1

p1+···+pn )p1+···+pn . (11)

Proof. Since ||A1A2|A3| = |A1A2A3|, by using Theorem 7, we can prove the
assertion by induction on n . �

(4) of Theorem 2 follows from (11) with n = 3, A1 = A3 = B, A2 = A and
p1 = p2 = p3 = 1.
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