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Abstract. In this paper we consider multidimensional knapsack polytope. Some important
concepts and preliminaries are given at the beginning. Then we give a result connected with
valid and dominating inequalities for this polytope, and a modular arithmetic approach for valid
inequalities and cutting planes generation for the (one-dimensional) knapsack polytope.

1. Introduction. Basic concepts, formulations and definitions

Denote by R the set of real numbers, by Rn the totality of vectors with n real
components, by R+ the set of all real non-negative numbers and by Rn

+ the totality of
vectors with n real non-negative components. Analogous notations apply for the set of
integers Z .

DEFINITION 1. A polyhedron P ⊆ Rn is the set of points that satisfy a finite
number of linear inequalities, i.e. P = {x ∈ Rn : Ax � b, Am×n, b ∈ Rm} . A bounded
polyhedron is called a polytope.

DEFINITION 2. [1], [10], [12]. Let S ⊂ Rn , ππ , x ∈ Rn . The inequality ππx � π0

(i.e.
∑n

j=1 πjxj � π0) is said to be a valid inequality for S if it is satisfied by all x ∈ S.
Every inequality is valid for empty set ∅ by definition.

DEFINITION 3. [12]. The valid inequalities ππx � π0 and γγ x � γ0 are said to be
equivalent if γγ = μππ and γ0 = μπ0 for some μ > 0 .

DEFINITION 4. [10], [12] . If the valid inequalities ππx � π0 and γγ x � γ0 are not
equivalent and there exists λ > 0 such that λγγ � ππ and λγ0 � π0 then we say that
γγ x � γ0 dominates or is stronger than ππx � π0 or that ππx � π0 is dominated by or is
weaker than γγ x � γ0 .

Mathematics subject classification (1991): 90C27, 90C35.
Key words and phrases: Combinatorial optimization, integer programming, knapsack problem, valid

inequalities, cutting planes.
This paper is supported in part by the Ministry of Education, Science and Technology, Republic of Bulgaria under

Grant No. I-518/95.

c© � � , Zagreb
Paper MIA-01-28

285



286 S. M. STEFANOV

A maximal valid inequality is one that is not dominated by any other valid inequal-
ity.

DEFINITION 5. [10], [12]. If ππx � π0 is a valid inequality for polyhedron P and
F = {x ∈ P : ππx = π0} , F is called a face of P and ππx = π0 is said to represent F.
A face F is said to be proper for P if F �= ∅ and F �= P.

∅ and P are faces of P by definition and they are called improper faces.
Let C be a closed convex set.

DEFINITION 6. [2], [12]. A face F of C such that 0 � dimF = dimC−1 is called
a facet of C .

Equivalent definition is:

DEFINITION7. [13], [14]. Let P ⊂ Rn . The face defined by the inequality ππx � π0

is called a facet of P if:
(i) x ∈ P implies ππx � π0 (i.e. ππx � π0 is a valid inequality for P );
(ii) there exist exactly n affinely independent vertices xi of P satisfying ππxi �

π0 , i = 1, . . . , n with an equality, while all x ∈ P satisfy ππx � π0 .
We use the term facet for the face from definitions 6, 7 as well as for the inequality

ππx � π0 which produces this facet.

DEFINITION 8. An additional linear constraint to the linear program is said to define
a regular cutting plane (a regular cut) if it is:

a) not satisfied by the “nonintegral” solution to continuous linear problem;
b) satisfied by all integral points of the polyhedron of this problem.

Therefore cutting plane cuts off points from the polyhedron of continuous problem
but does not cut off “integral” points.

According to definitions 6 (or 7) and 8 facets of the polytope

PI
def= conv{x ∈ Zn : ax � a0, d′ � x � d}

are regular cutting planes of corresponding “continuous” polytope.
M. W. Padberg [14] notices that while cutting planes generally constitute valid

inequalities, facets of PI generate “deepest” cutting planes, and facets belong to the
class of inequalities that uniquely determines PI .

REMARK 1. The inequality which defines a facet of polyhedron is the “strongest”
inequality for this polyhedron.

Any maximal valid inequality for P defines a nonempty face of PI and the set of
maximal valid inequalities contains all of the facet-defining inequalities for PI , where
P ⊆ Zn [12].

If S ⊆ P and ππx � π0 is a valid inequality for P then obviously ππx � π0 is a
valid inequality for S as well.
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LEMMA 1. Let variables x1, . . . , xn be ordered such that

c1

a1
� c2

a2
� · · · � cn

an
. (1)

Then the solution to the continuous knapsack problem

max cx =
n∑

j=1

cjxj (2)

subject to
n∑

j=1

ajxj � a0 (3)

xj ∈ R+, j = 1, . . . , n (4)

is

x∗1 =
a0

a1
, x∗j = 0, j = 2, . . . , n. (5)

Lemma 1 is a corollary (with xj ∈ R+, j = 1, . . . , n ) of the following proposition.

PROPOSITION 1. ([3, p. 118–121] — equivalent formulation)
Let variables x1, . . . , xn be ordered so that (1) holds. Then the solution to the continuous
problem (2), (3),

0 � xj � dj, j = 1, . . . , n (4′)

is x∗ = (x∗1 , . . . , x
∗
n) with

x∗j = dj, j = 1, . . . , r0,

x∗r0+1 =
1

ar0+1

⎛⎝a0 −
r0∑

j=1

ajdj

⎞⎠ ,

x∗j = 0, j = r0 + 2, . . . , n

where r0 = max{r :
∑r

j=1 ajdj � a0} .

When xj ∈ R+ , j = 1, . . . , n, that is, dj = +∞ , j = 1, . . . , n then r0 = 0.

2. Equivalent, dominating and valid inequalities

Following Theorem 1 is a generalization of Proposition 1.1 [12, p. 208] (which
refers to polyhedron {x ∈ Rn

+ : Ax � b} ) and we use analogous formulation. Theorem
1 relates to so-called multidimensional knapsack problem and to its polytope denoted
by P(A,αα, d′, d) below.
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THEOREM 1. Let A be an m × n matrix with columns aj , j = 1, . . . , n ; αα =
(α1, . . . ,αm) ∈ Rm ; d′ = (d′

1, . . . , d
′
n) , d = (d1, . . . , dn) ∈ Rn ;

P(A,αα, d′, d) def= {x ∈ Rn : Ax � αα, d′
j � xj � dj, j = 1, . . . , n}

and ππx � π0 be a valid inequality for P(A,αα, d′, d) , ππ ∈ Rn , π0 ∈ R .
Then ππx � π0 is either equivalent to or is dominated by an inequality of the form

(λλA − u + v)x � λλαα − ud′ + vd, λλ ∈ Rm
+; u, v ∈ Rn

+

if any of the following conditions hold:
i) P(A,αα, d′, d) �= ∅;
ii) D

def= {λλ ∈ Rm
+; u, v ∈ Rn

+ : λλA − u + v = ππ} �= ∅;
iii) A =

(
A′

I

)
, where I is an n × n identity matrix.

Proof. i)Since ππx�π0 is a valid inequality for P(A,αα, d′, d) and P(A,αα, d′, d) �=
∅ then the (primal) linear program:

maxππx

x ∈ P(A,αα, d′, d)

has an optimal solution x0 and ππx � π0 for all x ∈ P(A,αα, d′, d) . According to
Duality theorem, the dual program:

min(λλαα − ud′ + vd)
y ≡ (λ1, . . . , λm, u1, . . . , un, v1, . . . , vn) ∈ D

also has an optimal solution (λλ 0, u0, v0) ∈ Rm+2n
+ such that λλ 0A − u0 + v0 = ππ and

λλ 0αα − u0d′ + v0d = ππx0 . Therefore

ππx = (λλ 0A − u0 + v0)x ≡ λλ 0(Ax) − u0x + v0x

� λλ 0αα − u0d′ + v0d = ππx0 � π0.

Here we have used the inequalities that define P(A ,α ,d′, d) .
ii) We assume that P(A,αα, d′, d) = ∅ , otherwise we are in case i). Since D �= ∅

then there exist λ̂λ ∈ Rm
+; û, v̂ ∈ Rn

+ such that

λ̂λA − û + v̂ = ππ.

If λ̂λαα− ûd′ + v̂d � π0 , the statement was proved. Otherwise, since P(A,αα, d′, d) = ∅
(that is, x ∈ Rn, d′ � x � d implies Ax > αα ) it follows that there exist λλ ∈ Rm

+; u, v ∈
Rn

+ such that
λλA − u + v = 0, λλαα − ud′ + vd < 0.
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Hence, for some μ > 0 we have:

(λ̂λ + μλλ)A − (û + μu) + (v̂ + μv) ≡ (λ̂λA − û + v̂) + μ(λλA − u + v) = ππ

(λ̂λ + μλλ )αα − (û + μu)d′ + (v̂ + μv)d ≡ (λ̂λαα − ûd′ + v̂d)

+μ(λλαα − ud′ + vd) � π0.

For λ̂λ , λλ ∈ Rm
+ ; û , u , v̂ , v ∈ Rn

+ ; μ > 0 denote:

λλ 0 ≡ λ̂λ + μλλ ∈ Rm
+; u0 ≡ û + μu ∈ Rn

+; v0 ≡ v̂ + μv ∈ Rn
+.

Then λλ 0A−u0 +v0 = ππ , that is, (λλ 0, u0, v0) ∈ D , λλ 0αα−u0d′ +v0d � π0 and since
we have ππx � π0 , the statement of ii) was proved.

iii) Let A =
(

A′

I

)
. Therefore A′ = (a′ij) is an (m − n) × n matrix. Choose an

arbitrary vector ππ ∈ Rn . From the vector equation λλA − u + v = ππ , λλ ∈ Rm
+ ; u ,

v ∈ Rn
+, which in this case has the form(

m−n∑
i=1

λia
′
i1 + λm−n+1 − u1 + v1, . . . ,

m−n∑
i=1

λia
′
in + λm − un + vn

)T

= (π1, π2, . . . , πn)T , (6)

if we fix arbitrary non-negative values λ1 � 0, . . . , λm−n � 0 , we determine the values

lj := λm−n+j − uj + vj, j = 1, . . . , n (7)

uniquely in terms of a′ij , πj , λi , i = 1, . . . , m − n ; j = 1, . . . , n . Since we have these
values, we can choose λm−n+j � 0 , uj � 0 , vj � 0 , j = 1, . . . , n so that (7) holds.
Due to the structure of the system (6) (of the matrix A , respectively) we are able to do
this.

Hence, D �= ∅, and with the use of case ii), it follows the statement of iii).
Therefore in the three cases the inequality (λλ 0A− u0 + v0)x � λλ 0αα − u0d′ + v0d

dominates or is equivalent to ππx � π0 by definition. �

When dj = +∞ , j = 1, . . . , n then the dual variables vj are equal to zero: vj = 0 ,
j = 1, . . . , n because the right (upper) inequalities do not exist in this case. Thus, if
d′

j = 0 , dj = +∞ , j = 1, . . . , n then Theorem 1 implies Proposition 1.1 ([12], p. 208).

COROLLARY 1. Let P0
def= {x ∈ Rn : Ax � αα , 0 � xj � dj , j = 1, . . . , n} , A

be m × n matrix, αα ∈ Rm , d = (d1, . . . , dn) ∈ Rn , ππx � π0 be a valid inequality
for P0,ππ ∈ Rn , π0 ∈ R . Then ππx � π0 is either equivalent to or is dominated by the
inequality of the form (λλA + v)x � λλαα + vd, where λλ ∈ Rm

+ ; v ∈ Rn
+ , if any of the

following conditions hold:
i) P0 �= ∅;
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ii) L0
def= {λλ ∈ Rm

+ , v ∈ Rn
+ : λλA + v � ππ} �= ∅;

iii) A =
(

A′

I

)
, where I is an n × n identity matrix.

This Corollary 1 can also be proved directly using technique similar to that of Proof
of Theorem 1.

3. Valid inequalities generation – modular arithmetic approach

Let

S = {x ∈ Zn
+ :

n∑
j=1

ajxj = a0}, aj ∈ R, j = 0, 1, . . . , n. (8)

Assume q ∈ Z, q > 0 . Let us express every aj , j = 0, . . . , n as follows:

aj = αjq + bj (9)

where 0 � bj < q , αj ∈ Z , j = 0, 1, . . . , n , i.e. aj ≡ bj(mod q), bj are the remainders
when aj is devided by q , j = 0, 1, . . . , n .

Consider the (continuous) problem:

max cx (10)

x ∈ S0
def= {x ∈ Rn

+ :
n∑

j=1

ajxj = a0} (11)

where c is an arbitrary n -vector. S0 is obtained from S (8) by relaxing integrality
requirements x ∈ Zn

+ . Without loss of generality we can consider (10) – (11) as a
canonical form of the one-dimensional linear knapsack problem.

Hence,
∑n

j=1(αjq + bj)xj = α0q + b0 according to (9) and (11), that is,

n∑
j=1

bjxj − b0 = α0q − q
n∑

j=1

αjxj. (12)

Let x be an integral feasible solution to (10) – (11), that is, x ∈ S (8). Therefore
right-hand side of (12) is integer. Hence,

n∑
j=1

bjxj − b0 ≡ γ ∈ Z. (13)

Suppose that γ � −q . Hence
∑n

j=1 bjxj � b0 − q, and
∑n

j=1 bjxj + q � b0 .
For xj ∈ Z+, 0 � bj < q, j = 1, . . . , n we have :

∑n
j=1 bjxj � 0. Hence, b0 � q .
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But 0 � b0 < q - contradiction. It follows that the assumption was wrong. Therefore
γ > −q , and since γ ∈ Z , it follows that γ � −q + 1 . From (13) it follows that

n∑
j=1

bjxj � b0 + 1 − q (14)

for each integral x ∈ S0 (11). It means that (14) is a valid inequality for S0 (11)
for each integral x ∈ S0 , that is, for each point of S (8), and this is a class of valid
inequalities for S (8) with different q ∈ Z, q > 0 .

When q = 1 we have: αj = [aj], 0 � bj < 1, j = 0, 1, . . . , n , where [x]
denotes the greatest integer, not greater than x . From (14) with q = 1 we have that∑n

j=1 bjxj � b0 is a valid inequality, and it is the strongest inequality among inequalities
(14). In this case it has the form:

n∑
j=1

(aj − [aj])xj � a0 − [a0] (15)

and it is called a Gomory cutting plane. The inequality (15) can also be written in the
equivalent form:

xn+1 ≡
n∑

j=1

(aj − [aj])xj − (a0 − [a0]), xn+1 � 0 (15′)

where xn+1 is an additional variable to linear program (10) – (11).
The inequality (15) is well-known. The contribution of the approach suggested

consists in the fact that we have obtained a class of valid inequalities and (15) is merely
an element of this class.

Without loss of generality let x1 be the (single) basic variable to (10) – (11);
therefore xj = 0, j = 2, . . . , n . What is more, according to Lemma 1 the optimal
solution to (continuous) linear program (10) – (11) when (1) holds (we can assume
that these requirements are satisfied) is namely (5). From (11) it follows that

x1 =
a0

a1
−

n∑
j=2

aj

a1
xj.

Therefore

x1 =
[
a0

a1

]
+ γ0 −

n∑
j=2

([
aj

a1

]
+ γj

)
xj

where

γj ≡ aj

a1
−
[

aj

a1

]
, 0 � γj < 1, j = 0, 2, . . . , n. (16)



292 S. M. STEFANOV

Then

x1 −
[
a0

a1

]
+

n∑
j=2

[
aj

a1

]
xj = γ0 −

n∑
j=2

γjxj. (17)

i) If x is an integral feasible solution to (10) – (11) then left-hand side of (17) is
integer. Therefore the same is fulfilled for the right-hand side:

γ0 −
n∑

j=2

γjxj ≡ ξ ∈ Z.

Hence, γ0 −
∑n

j=2 γjxj � γ0 < 1 because γ0 � 0 , xj � 0 , j = 1, . . . , n by assumption
and according to (16). But integer which is less than 1 , is less or equal to 0 . Therefore
the necessary and sufficient condition for integrality of right-hand side of (17) is:
γ0 −

∑n
j=2 γjxj � 0 , that is,

xn+1 ≡
n∑

j=2

γjxj − γ0 � 0 (18)

where x1 is the single basic variable for problem (10) – (11), xn+1 is an additional
variable for (10) – (11). The inequality (18) is a valid inequality for S (8) and it is
called a Gomory cutting plane.

Each integral feasible solution to (10) – (11) satisfies (18) with equality because
γ0 = 0 in this case and xj = 0, j = 2, . . . , n .

ii) If wewrite equality
∑n

j=1 ajxj = a0 from (8) in the equivalent form
∑n

j=1
aj
a1

xj =
a0
a1

(assuming that a1 �= 0 ) then for x /∈ Zn we have: a0
a1

/∈ Z in general. Therefore
γ0 ≡ a0

a1
− [ a0

a1
] > 0 strictly, and from (18) we obtain that xn+1 ≡ −γ0 < 0 for an

arbitrary “nonintegral” solution to (10) – (11). Hence, this “nonintegral” solution does
not satisfy inequality (18).

From i) and ii) it follows that valid inequality (18) for S is a regular cutting plane
for S0 by definition. �

4. Bibliographical notes
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VALID INEQUALITIES AND CUTTING PLANES FOR SOME POLYTOPES 293

Acknowledgments. I am greatful to the referee for his remarks and suggestions and
for references [7], [8], [9].

RE F ER EN C ES

[1] E. BALAS, Facets of the knapsack polytope, Mathematical Programming, 8 (1975) 146–164.
[2] A. BRØNDSTED, An Introduction to Convex Polytopes, Springer-Verlag New York Inc., 1983.
[3] V. A. YEMELICHEV, V. I. KOMLIK, Method for Construction a Sequence of Plans for Solving Discrete

Optimization Problems, Moscow, Nauka, 1981. (in Russian)
[4] V. A. YEMELICHEV, M. M. KOVALEV, M. K. KRAVTSOV, Polytopes, Graphs and Optimization, Cambridge

University Press, Cambridge, 1984.
[5] F. FORGO, Nonconvex Programming, Akademiai Kiado, Budapest, 1988.
[6] E. G. GOLSHTEIN, D. B. YUDIN, New Aspects of the Linear Programming, Moscow, Soviet Radio, 1966.

(in Russian)
[7] R. E. GOMMORY, Outline of an Algorithm for Integer Solutions to Linear Programs, Bulletin of the

American Mathematical Society, 64 (1958) 275–278.
[8] , Solving Linear Programming Problems in Integers, in: Combinatorial Analysis (R. Bellman

and M. Hall, Jr., eds.), Proceedings of Simposia in Applied Mathematics X, American Mathematical
Society, Providence, R.I., 1960, 211–215.

[9] , An Algorithm for Integer Solutions to Linear Programs, in: Recent Advances in Mathematical
Programming (R. L. Graves and P. Wolfe, eds.), McGraw-Hill, New York, 1963, 269–302.

[10] P. L. HAMMER, E. L. JOHNSON AND U. N. PELED, Facets of regular 0-1 polytopes, Mathematical
Programming, 8 (1975) 179-206.

[11] G. L. NEMHAUSER AND L. E. TROTTER, JR., Properties of vertex packing and independence system
polyhedra, Mathematical Programming, 6 (1974) 48–61.

[12] G. L. NEMHAUSER, L. A. WOLSEY, Integer and Combinatorial Optimization, John Wiley & Sons, 1988.
[13] M. W. PADBERG, On the facial structure of set packing polyhedra, Mathematical Programming, 5 (1973)

199-215.
[14] , A note on zero-one programming, Operations Research, 23 (1975) 833-837.
[15] , (1, k) -configurations and facets for packing problems, Mathematical Programming, 18 (1980)

94–99.
[16] R. L. RARDIN, M. SUDIT, Paroids: a canonical format for combinatorial optimization, Discrete Applied

Mathematics, 39 (1992) 37–56, North-Holland.
[17] H. A. TAHA, Operations Research. An Introduction, Macmillan Publishing Co., Inc., New York; Collier

Macmillan Publishers, London, 1982.
[18] R. WEISMANTEL, On the 0/1 knapsack polytope, Mathematical Programming, 77 (1997) 49–68.
[19] L. A. WOLSEY, Faces for a linear inequality in 0− 1 variables, Mathematical Programming, 8 (1975)

165–178.

(Received June 17, 1997) Stefan M. Stefanov
Department of Mathematics

Neofit Rilski South-West University
Blagoevgrad, Bulgaria

e-mail: stefm@aix.swu.bg
Mailing Address: 4 Ilio Vlaev Str.

5400 Sevlievo, Bulgaria

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


