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IMPROVEMENTS OF SOME BOUNDS ON ENTROPY MEASURES

IN INFORMATION THEORY

M. MATIĆ, C. E. M. PEARCE AND J. PEČARIĆ

(communicated by G. Peskir)

Abstract. Recently Dragomir and Goh have produced some interesting new bounds on entropy
measures in information theory. We strengthen their results.

1. Introduction

The entropy function plays a key role in information theory. A key property is
concavity, by virtue of which Jensen’s inequality provides upper bounds for entropy
measures. Recently Dragomir and Goh [1] have addressed the question of establishing
lower bounds for the entropy measures of discrete–valued random variables and shown
that these may also be provided by a suitable extension of Jensen’s theorem. Dragomir
and Goh derive several interesting bounds from their extension of Jensen’s theorem and
a corollary to it.

In this note we show that the key results of [1] can be strengthened by use of a
result relating to Popoviciu’s inequality and derived by one of us in [4]. We deduce
consequent tighter bounds than those found by Dragomir and Goh in [1] for the entropy,
conditional entropy and mutual information for discrete–valued random variables. We
note also that the proofs of Theorem 3 and Corollary 2 of [1] involve a tacit assumption
as to the joint values that may be taken with positive probability by the random variables
involved. In fact if this assumption is not satisfied, the enunciations need modification.

We begin with the following lemma.

LEMMA 1.1. Suppose 0 < ξ1 � ξ2 � · · · � ξn < ∞ or 0 < ξn � ξn−1 � · · · �
ξ1 < ∞ . Suppose also pk � 0 with

∑n
k=1 pk = 1 . Take b > 1 . Then

0 � logb

( n∑
k=1

pkξk

)
−

n∑
k=1

pk logb ξk � 1
ln b

(ξn − ξ1)2

ξnξ1
max

1�k<n
Pk(1 − Pk), (1.1)

where Pk =
∑k

i=1 pi .
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Proof. Since the mapping f : (0,∞) → R given by f (x) = logb x is differen-
tiable and concave on (0,∞) , we have

f (x) − f (y) � f ′(y)(x − y)

for all x, y > 0 , that is,

logb x − logb y � 1
ln b

· x − y
y

∀x, y > 0.

Put x =
∑n

j=1 pjξj and y = ξi ( i = 1, 2, . . . , n ). Then

logb

( n∑
j=1

pjξj

)
− logb ξi � 1

ln b
· 1
ξi

( n∑
j=1

pjξj − ξi

)
(i = 1, 2, . . . , n).

Multiplying by pi and summing over i gives

0 � logb

( n∑
j=1

pjξj

)
−

n∑
i=1

pi logb ξi � 1
ln b

[( n∑
i=1

pi

ξi

)( n∑
j=1

pjξj

)
− 1

]
. (1.2)

It has been shown in [4] (see also [3, p. 302]) that if (ai) is a positive nondecreasing
sequence and (pi) a nonnegative sequence with Pn = 1 , then

n∑
i=1

piai

n∑
j=1

pj

aj
− 1 � (an − a1)2

ana1
max

1�k<n
Pk(1 − Pk). (1.3)

It is easy to see that (1.3) remains true if (ai) is a positive nonincreasing sequence
(simply take (1/ai) instead of (ai) ). Coupling this with (1.2) gives the second
inequality in (1.1). The first is a simple consequence of Jensen’s inequality for concave
functions. �

The second inequality in Lemma 1.1 may be put to use to give the following useful
corollary which does not require the monotonicity of the sequence (ξi)

n
1 and in which

the upper bound does not depend on the numerical values (pi)n
1 .

LEMMA 1.2. Let ξk ∈ (0,∞) (1 � k � n ) and ρ := max
i,k

ξi/ξk . Suppose pk � 0

with
∑n

k=1 pk = 1 and b > 1 . We have

0 � logb

( n∑
k=1

pkξk

)
−

n∑
k=1

pk logb ξk � 1
4 ln b

(√
ρ − 1√ρ

)2

. (1.4)

If
ρ � Φ(ε) := 1 + 2ε ln b + 2

√
(1 + ε ln b)ε ln b (1.5)

for ε > 0 , then

0 � logb

( n∑
k=1

pkξk

)
−

n∑
k=1

pk logb ξk � ε. (1.6)
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Proof. As the two sums in (1.4) are independent of subscript permutations, we can
suppose without loss in generality that ξ1 � · · · � ξn or ξn � · · · � ξ1 , so ρ = ξn/ξ1

or ξ1/ξn . Because
max

1�k<n
Pk(1 − Pk) � 1/4,

we have by (1.1) that (1.4) holds.
Set

1
4 ln b

(√
ρ − 1√ρ

)2

� ε,

so that
ρ2 − 2ρ(1 + 2ε ln b) + 1 � 0.

This holds if and only if

1 + 2ε ln b − 2
√

(1 + ε ln b)ε ln b � ρ � 1 + 2ε ln b + 2
√

(1 + ε ln b)ε ln b.

Since

1 + 2ε ln b − 2
√

(1 + ε ln b)ε ln b = [1 + 2ε ln b + 2
√

(1 + ε ln b)ε ln b]−1,

(1.6) now follows from (1.4), that is, (1.6) holds for all ρ satisfying (1.5). �
REMARK. The second part of Lemma 1.2 gives an improvement of the key result

in [1], where the condition

ρ � φ(ε) := 1 + ε ln b +
√

(2 + ε ln b)ε ln b

is used in place of (1.5). It is easy to show that Φ(ε) = φ(2ε) . Also φ(ε) is obviously
strictly increasing for ε > 0 so that we have φ(ε) < φ(2ε) = Φ(ε) . The first part
gives a more general result not involving any constraints on ρ .

2. Bounds on the entropy of a random variable

Let X be a discrete–valued random variable with finite range {x1, . . . , xr} . As-
sume pi = P{X = xi} > 0 ( i = 1, . . . , r ). The b -entropy of X is defined by

Hb(X) :=
r∑

i=1

pi logb 1/pi.

The following bounds on the entropy function give an improvement of Theorem 1 of
[1].

THEOREM 2.1. With X as above, define ρ := maxi,k pi/pk . We have

0 � logb r − Hb(X) � 1
4 ln b

(√
ρ − 1√ρ

)2

.

If ρ � Φ(ε) for ε > 0 , then

0 � logb r − Hb(X) � ε.

Proof. Set n = r and ξk = 1/pk in Lemma 1.2. �
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3. Bounds on conditional entropy

Let X , Y be a pair of random variables with respective ranges {x1, x2, . . . , xr}
and {y1, y2, . . . , ys} . The conditional b –entropy of X given Y is defined by

Hb(X | Y) :=
∑
i,j

p(xi, yj) logb 1/p(xi|yj),

where
p(xi, yj) := P{X = xi, Y = yj}

and
p(xi|yj) := P{X = xi | Y = yj} = p(xi, yj)/p(yj).

(See, for example, [2, p. 22].) Without loss of generality we need define these quantities
only for those (i, j) for which p(xi, yj) > 0 . There will be n(� rs) such pairs. The
conditional entropy can be interpreted as the amount of uncertainty remaining about X
after Y has been observed.

The following theorem gives improvements of Theorem 3 of [1].

THEOREM 3.1. For 1 � j � s , define Vj := {i : p(xi, yj) > 0} and U := {(i, j) :
i ∈ Vj} . If ρ := max

(i,j),(u,v)∈U
p(xi|yj)/p(xu|yv) , then

0 � logb

[∑
j

p(yj)|Vj|
]
− Hb(X | Y) � 1

4 ln b

(√
ρ − 1√ρ

)2

. (3.1)

If
ρ � Φ(ε), ε > 0, (3.2)

then

0 � logb

[∑
j

p(yj)|Vj|
]
− Hb(X | Y) � ε. (3.3)

Proof. We may label those pairs (i, j) for which p(xi, yj) > 0 as k = 1, 2, · · · , n .
We then put pk = p(xi, yj) and ξk = 1/p(xi|yj) in Lemma 1.2. This gives

0 � logb

[∑
k

p(xi, yj)
p(xi|yj)

]
− Hb(X | Y) � 1

4 ln b

(√
ρ − 1√ρ

)2

.

The desired results follow, since

p(xi, yj)
p(xi|yj)

= p(yj). �

In [1, Theorem 3] it is implicit that p(xi, yj) > 0 for all i = 1, · · · , r and
j = 1, · · · , s . However it is clear from our argument that if this condition fails, the first
term on the right in the first inequality in (3.1) and (3.3) is strictly less than logb r .
This is important for applications, as sometimes the value taken by one random variable
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will restrict the set of possible values that the other can assume simultaneously with
positive probability. Suppose, in particular, that the value of Y uniquely determines
that of X . Then |Vj| = 1 ∀j and so logb

∑
k p(yj)|Vj| = 0 . Since Y determines X

uniquely, we have also Hb(X|Y) = 0 . Further, ρ = 1 . Thus in this case, (3.1) states
that 0 � 0 � 0 .

We now introduce a third discrete–valued random variable Z , assuming values
z1, · · · , zt , each with positive probability. As in [2, Theorem 1.2], we define an as-
sociated random variable A which takes on the value

∑
i,j p(xi, yj, zk)/p(xi|yj) with

probability p(zk) ( k = 1, · · · , t ). The following theorem gives improvements of [1,
Corollary 1].

THEOREM 3.2. With ρ defined as in Theorem 3.1, we have

0 � Hb(Z) + E(logb A) − Hb(X | Y) � 1
4 ln b

(√
ρ − 1√ρ

)2

.

If condition (3.2) holds, then

0 � Hb(Z) + E(logb A) − Hb(X | Y) � ε.

Proof. For fixed z� , put pk = p(xi, yj, z�)/p(z�) and ξk = 1/p(xi|yj) , where much
as in Theorem 3.1 we relabel k = (i, j) for those (i, j) for which p(xi, yj, z�) > 0 . We
derive from Lemma 1.2 that

0 � logb

[∑
k

p(xi, yj, z�)
p(z�)

1
p(xi|yj)

]
−
∑

k

p(xi, yj, z�)
p(z�)

logb
1

p(xi|yj)

� 1
4 ln b

(√
ρ − 1√ρ

)2

.

Multiplication by p(z�) and summation over � yields

0 � Hb(Z) +
∑

�

p(z�) logb

[∑
k

p(xi, yj, z�)
p(xi|yj)

]
− Hb(X|Y)

� 1
4 ln b

(√
ρ − 1√ρ

)2

.

The desired results follow. �

We may use the preceding result for further improvements to Fano’s inequality,
which states the following.

If X , Y have a common range and Pe = P(X �= Y) , then

Hb(X|Y) � Hb(Pe) + Pe logb(r − 1).

We note that it is also tacit in Fano’s inequality that p(xi, yj) > 0 ∀i, j .
The following result extends [1, Corollary 2].
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COROLLARY 3.3. Suppose X , Y have the same range. Define Z by Z = 0 if
X = Y and Z = 1 if X �= Y . Further, define

Tj := |{i : i �= j, p(xi, yj) > 0}|,

Rj := |Vj| − Tj =
{

1 if p(xj, yj) > 0,

0 otherwise.
Then

0 � Hb(Pe) + Pe logb

[∑
j

p(yj)Tj

]
+ (1 − Pe) logb

[∑
j

p(yj)Rj

]
− Hb(X | Y)

� 1
4 ln b

(√
ρ − 1√ρ

)2

.

If (3.2) holds, then

0 � Hb(Pe) + Pe logb

[∑
j

p(yj)Tj

]
+ (1 − Pe) logb

[∑
j

p(yj)Rj

]
− Hb(X | Y)

� ε.

We may interpret this result in terms of the transmission of discrete characters.
If X is sent and Y received, then Pe is the probability of erroneous reception and
Hb(Z) = Hb(Pe) = −Pe logb Pe − (1 − Pe) logb(1 − Pe) .

4. Bounds on mutual information

The b –mutual information between random variables X , Y is defined by

Ib(X, Y) := Hb(X) − Hb(X | Y) =
∑
i,j

p(xi, yj) logb
p(xi, yj)

p(xi)p(yj)
.

The two following results improve the bounds on mutual information given in [1,
Corollary 3].

THEOREM 4.1. Suppose

ρ := max
(i,j),(u,v)∈U

p(xi)p(yj)p(xu, yv)
p(xu)p(yv)p(xi, yj)

.

Then

0 � Ib(X, Y) � 1
4 ln b

(√
ρ − 1√ρ

)2

.

If ρ � Φ(ε) for ε > 0 , then
0 � Ib(X, Y) � ε.

Proof. This follows the lines of our earlier proofs, setting pk = p(xi, yj) and
ξk = p(xi)p(yj)/p(xi, yj) in Lemma 1.2 after suitable relabelling. �

We conclude by stating a result involving bounds on mutual information involving
three random variables. These are improvements of Corollary 4 from [1].
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THEOREM 4.2. Suppose W := {(i, j, k) : p(xi, yj, zk) > 0} and define

ρ := max
(i,j,k),(u,v,w)∈W

p(zk|xi, yj)p(zw|yv)
p(zw|xu, yv)p(zk|yj)

.

Then

0 � Ib(X, Y, Z) − Ib(Y, Z) � 1
4 ln b

(√
ρ − 1√ρ

)2

.

If ρ � Φ(ε) for ε > 0 , then

0 � Ib(X, Y, Z) − Ib(Y, Z) � ε.

5. Remarks and further improvements

Our central result Theorem 2.1 (which improves the result from [1]) is based upon
the inequality (1.3) using the fact that max1�k<n Pk(1 − Pk) � 1/4 . We observe that
if the sequence (pi)r

1 is monotone, we can set ξi = 1/pi in (1.2) to derive

0 � logb r − Hb(X) � 1
ln b

[
r

r∑
k=1

p2
k − 1

]
.

On the other hand, if 0 < p1 � p2 � · · · � pr and
∑r

k=1 pk = 1 , then we have
the simpler bound

r
r∑

k=1

p2
k � rpr

r∑
k=1

pk = rpr,

and since p1 � 1/r we have r
∑r

k=1 p2
k � pr/p1 . So we can obtain the simple result

0 � logb r − Hb(X) � 1
ln b

(
pr

p1
− 1

)
=: β1. (5.1)

The upper bound

β2 :=
1

4 ln b
(pr − p1)2

p1pr

from Theorem 2.1 satisfies

β2 =
1
4

(
1 − p1

pr

)
β1.

This shows that our result in Theorem 2.1 is much better than (5.1). However both
inequalities are optimal in the sense that equality obtains when p1 = . . . pr = 1/r .
Now consider the following simple example.

EXAMPLE 5.1. Let r = 2 , p1 = ε � 1/2 and p2 = 1−ε . Define Hb(ε, 1−ε) :=
Hb(X) . Then ρ = (1 − ε)/ε and β2 → ∞ as ε → 0 . This shows that Theorem 2.1
doesn’t give a nontrivial upper bound for the difference logb 2 − Hb(ε, 1 − ε) when ε
is sufficiently small.
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More generally, since Hb(X) � 0 , Theorem 2.1 gives a nontrivial upper bound for
the difference logb r − Hb(X) if and only if

1
4 ln b

(
√
ρ − 1/

√
ρ)2

< logb r.

This is equivalent to ρ − 2 + 1/ρ < 4 ln r or

ρ2 − 2(1 + 2 ln r)ρ + 1 < 0. (5.2)

Inequality (5.2) holds if and only if

[
1 + 2 ln r + 2

√
(1 + ln r) ln r

]−1
< ρ < 1 + 2 ln r + 2

√
(1 + ln r) ln r.

Since ρ = maxi,k pi/pk � 1 , we may conclude that Theorem 2.1 gives a nontrivial
upper bound for the difference logb r − Hb(X) only for those random variables X for
which we have

ρ < R(ln r),

where
R(u) := 1 + 2u + 2

√
(1 + u)u (u > 0).

In Example 5.1 this condition is (1 − ε)/ε < 1 + 2 ln 2 + 2
√

(1 + ln 2) ln 2 , or

ε > ε1 :=
1
2

(
1 −

√
ln 2

1 + ln 2

)
.

So we have nontrivial upper bound for logb 2 − Hb(ε, 1 − ε) only for ε1 < ε � 1/2 .

What happens if we use (1.3) and keep max1�k<n Pk(1 − Pk) instead of constant
1/4 ? It turns out that we get better results! In Example 5.1, if we use Lemma 1.1 with
ξ1 = 1/ε and ξ2 = 1/(1 − ε) we get

0 � logb 2 − Hb(ε, 1 − ε) � (1 − 2ε)2

ln b
.

The term on the right-hand side in the second inequality tends to 1/ ln b as ε tends to
zero. Also the upper bound is nontrivial if and only if (1− 2ε)2/ ln b < logb 2 and this
condition is equivalent to

ε2 :=
(
1 −

√
ln 2
)

/2 < ε <
(
1 +

√
ln 2
)

/2.

Since we must have ε � 1/2 to ensure ρ � 1 , the upper bound for the difference
logb 2 − Hb(ε, 1 − ε) is nontrivial if and only if ε2 < ε � 1/2 . This result is better
than the previous one since ε2 < ε1 . More generally, we have the following.
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LEMMA 5.2. Suppose ξk ∈ (0,∞) and pk � 0 with
∑n

k=1 pk = 1 . Let σ be

a permutation of (1, . . . , n) such that (ξσ(k))n
1 is monotone and set Pk :=

∑k
i=1 pσ(i)

and ρ := maxi,k ξi/ξk . Define M := max1�k<n Pk(1 − Pk) . Then for b > 1 we have

0 � logb

(
n∑

k=1

pkξk

)
−

n∑
k=1

pk logb ξk � M
ln b

(
√
ρ − 1/

√
ρ)2

. (5.3)

If

ρ � ΦM(ε) := 1 +
ε ln b
2M

+
1

2M

√
(4M + ε ln b)ε ln b (5.4)

for some ε > 0 , then

0 � logb

(
n∑

k=1

pkξk

)
−

n∑
k=1

pk logb ξk � ε. (5.5)

Proof. The proof for (5.3) is evidently the same as for (1.4) with relabelling and
M in place of 1/4 . Furthermore, the inequality

M
ln b

(
√
ρ − 1/

√
ρ)2 � ε

is equivalent to

ρ2 − 2ρ
(

1 +
ε ln b
2M

)
+ 1 � 0,

which holds if and only if[
1+

ε ln b
2M

+
1

2M

√
(4M+ε ln b)ε ln b

]−1

� ρ � 1+
ε ln b
2M

+
1

2M

√
(4M+ε ln b)ε ln b.

Since ρ � 1 , we see that (5.5) holds if (5.4) is satisfied. �
REMARK. We have

ΦM(ε) = Φ(ε/(4M))
and Φ(u) is strictly increasing for u > 0 . Since 4M � 1 , this implies that ΦM(ε) �
Φ(ε) . So Lemma 5.2 gives a better result than Lemma 1.2.

THEOREM 5.3. Let X be a discrete–valued random variable with finite range
{x1, . . . , xr} and probability distribution pk = P{X = xk} (1 � k � r) , and set
ρ := maxi,k pi/pk . Let σ be a permutation of (1, . . . , n) such that (pσ(k))n

1 ismonotone.

Define Pk :=
∑k

i=1 pσ(i) and M := max1�k<n Pk(1 − Pk) . Then

0 � logb r − Hb(X) � M
ln b

(
√
ρ − 1/

√
ρ)2.

If ρ � ΦM(ε) for some ε > 0 then

0 � logb r − Hb(X) � ε.

Proof. Set n = r and ξk = 1/pk in Lemma 5.2. �
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Again we have the situation in which Theorem 5.3 gives a nontrivial upper bound
for the difference logb r − Hb(X) if and only if

M
ln b

(
√
ρ − 1/

√
ρ)2 < logb r,

which is equivalent to

ρ2 − 2

(
1 +

ln r
2M

)
ρ + 1 < 0

and (since ρ � 1 ) to
ρ < RM(ln r),

where

RM(u) := 1 +
u

2M
+

1
2M

√
(4M + u)u

for u > 0 . We have that R(u) is strictly increasing for u > 0 and

RM(u) = R(u/(4M)) � R(u),

since 4M � 1 . So Theorem 5.3 gives a nontrivial upper bound for logb r − Hb(X) for
a wider class of random variables X than Theorem 2.1 does.

REMARK. Analogous improvements can be given for the results in Sections 3
and 4.
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[3] D. S. MITRINOVIĆ, J. E. PEČARIĆ AND A. M. FINK, Classical and new inequalities in analysis, Kluwer

Academ. Publ., Dordrecht, 1993.
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