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Abstract. Let A be a complex n × n matrix and let Nn be the set of normal n × n matrices.
A conjecture is that

‖A − Nn‖2
F � n − 1

n
dep2(A),

where dep2(A) = ‖A‖2
F − ∑n

i=1 λ
2
i (A) and λi(A), i = 1, . . . , n are the eigenvalues of A .

We prove that the conjecture is correct for all even n and for n = 3, 5, 7 . However, for the
dimensions, n = 3, 5, 6, 7 , and presumably also other problem dimensions it is possible to derive
sharper bounds. We also prove a bound for odd n which converges to the bound in the conjecture
when n tends to infinity. The main idea in the proofs is to use LP problems with constraints
based on different ways to approximate A with normal matrices.

1. Introduction

The following notation will be used:
1. Mn is the set of complex n × n matrices.
2. Nn is the set of n × n normal matrices. A matrix A is normal if and only if

AHA = AAH .
3. Un is the set of n × n upper triangular matrices.
4. ‖A‖F is the Frobenius norm of A ∈ Mn .
5. dep(A) =

√
‖A‖2

F − ‖Γ‖2
F is the departure from normality as defined by

Henrici with Γ = diag(λi) being the diagonal matrix of the eigenvalues of
A ∈ Mn .

6. ā denotes the conjugate of a .
7. ‖A − Nn‖F = infN∈Nn ‖A − N‖F .
8. diag(A) is the diagonal part of A .

In this paper we study the possibility to find bounds of the form

‖A − Nn‖2
F � cndep2(A). (1.1)

where cn is a number which depends on n .
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Let us begin with one of the main ideas when we study the problem to approximate
a matrix A with normal matrices. Let A = URUH be the Schur decomposition of A .
If N is normal then also UHNU is normal and

‖R − UHNU‖2
F = ‖A − N‖2

F.

This implies that a bound of ‖A − Nn‖F is correct for all A ∈ Mn if and only if it is
correct for all A ∈ Un . Without loss of generality we will consider upper triangular
matrices in all proofs in this paper.

It is of interest to see how small cn can be selected in (1.1). It is trivial that we can
select cn = 1 , that is ‖A − Nn‖2

F � dep2(A) , since for A ∈ Un the diagonal matrix
diag(A) is normal and ‖A − diag(A)‖2

F = dep2(A) . It has turned out to be possible
but not trivial to derive bounds which are slightly sharper than this trivial bound. All
methods we use to get sharper bounds is based on the idea to use a normal N with
the same diagonal as the upper triangular matrix A and some off-diagonal elements
nonzero such that we get an N with ‖A − N‖2

F < dep2(A) .
Professor Lajos László [5] has presented the following conjecture:

CONJECTURE 1. [5] If A ∈ Mn , then

‖A − Nn‖2
F � n − 1

n
dep2(A). (1.2)

It is well known that the conjecture (1.2) is correct for n = 2 . If

A =
[
λ1 a12

0 λ2

]
,

then we can select

N =
[
λ1 a12/2
u λ2

]
, (1.3)

where

u =
{−(λ1 − λ2)/(λ̄1 − λ̄2) · ā12/2 if λ1 �= λ2

−ā12/2 if λ1 = λ2.

This gives ‖A − N‖2
F = 1

2dep2(A).
Professor Kh. D. Ikramov [3, 4] has proved that for any upper triangular 3 × 3

matrix

B =

⎡
⎣ b11 b12 b13

0 b22 b23

0 0 b33

⎤
⎦

it is possible to find complex numbers n21 , n31 and n32 such that

N(B) =

⎡
⎣ b11 b12 b13

n21 b22 b23

n31 n32 b33

⎤
⎦ , (1.4)
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is normal. It is known that this implies that the conjecture (1.2) is correct for n = 3
[5]. In this paper we use (1.4) to derive a sharper bound for the case n = 3 .

Professor L. Elsner and Kh. D. Ikramov [1] have proved that if László’s conjecture
(1.2) is correct for all n � m then the slightly weaker inequality

‖A − Nn‖2
F � n − (1 − 1/m)

n
dep2(A), (1.5)

is satisfied for arbitrary n . Before this paper,

‖A − Nn‖2
F � n − 2/3

n
· dep2(A) (1.6)

was the sharpest bound we could get from their result.
In this paper we prove that László’s conjecture (1.2) is correct for all even n ,

n = 3 , n = 5 and n = 7 . However, for n = 3, 5, 6, 7 we have proved sharper bounds
than (1.2). We also prove a bound which is close to the conjecture when n is odd.

The paper is outlined as follows. In Section 2 we prove a sharper bound in the
case n = 3 . A Lemma is presented in Section 3, which is used to prove the conjecture
(1.2) for even n in section 4. Section 5 presents a bound close to the conjecture (1.2)
for odd n . In Section 6 we describe a general method to find constraints which is used
in Sections 7-8 to prove sharper bounds for n = 5, 6 and 7 .

2. The case n = 3

In the case n = 3 , we can prove the following upper bound for the distance to the
closest normal matrix, which is sharper than the bound in László’s conjecture (1.2).

THEOREM 1. If A ∈ M3 , then

‖A − N3‖2
F � (1 − 3

8
)dep2(A). (2.1)

Proof. The idea in the proof is to derive a Linear Program (LP-problem), where
the inequalities are given by different ways to approximate A with normal matrices.
The unknowns in the LP problem are

[x1, x2, x3, x4]T ≡ [|a12|2, |a13|2, |a23|2, dep2(A) − ‖A − N3‖2
F]T/dep2(A).

Let

B =

⎡
⎣ a11 a12/2 a13/3

0 a22 a23/2
0 0 a33

⎤
⎦ ,

and let N(B) be the completion (1.4) of the matrix B . From the diagonal elements of
NH(B)N(B) = N(B)NH(B) we get

|b12|2 + |b13|2 = |n21|2 + |n31|2, (2.2)
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|n21|2 + |b23|2 = |b12|2 + |n32|2,
|n31|2 + |n32|2 = |b13|2 + |b23|2. (2.3)

By combing (2.2) and (2.3) we get

2|n31|2 + |n21|2 + |n32|2 = |b12|2 + 2|b13|2 + |b23|2,
which implies that

|n31|2 + |n21|2 + |n32|2 � |b12|2 + 2|b13|2 + |b23|2, (2.4)

and

‖A − N(B)‖2
F = |n31|2 + |n21|2 + |n32|2 +

1
4
|a12|2 +

4
9
|a13|2 +

1
4
|a23|2

� 1
4
|a12|2 +

2
9
|a13|2 +

1
4
|a23|2 +

1
4
|a12|2 +

4
9
|a13|2 +

1
4
|a23|2

=
1
2
|a12|2 +

2
3
|a13|2 +

1
2
|a23|2

= dep2(A) − 1
2
|a12|2 − 1

3
|a13|2 − 1

2
|a23|2.

Consequently,
−x1/2 − x2/3 − x3/2 + x4 � 0.

It is also possible to use the idea in (1.3) to find a normal matrix N with the structure

N =

⎡
⎣ a11 0 a13/2

0 a22 0
u 0 a33

⎤
⎦ , (2.5)

where |u| = |a13|/2 . This N satisfies

‖A − N‖2
F = dep2(A) − |a13|2/2,

which together with the obvious inequality ‖A − N3‖F � ‖A − N‖F implies that

− x2/2 + x4 � 0. (2.6)

Consequently, x4 must be larger than the solution of the problem

min x4

subject to

−x1/2 − x2/3 − x3/2 + x4 � 0,

−x2/2 + x4 � 0,

x1 + x2 + x3 = 1,

xi � 0, i = 1, . . . , 4.
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This LP-problem can be solved with conventional methods for LP problems, see e. g.
[2]. Its solution is not unique. One minimizer is

[x1, x2, x3, x4]T = [1/4, 3/4, 0, 3/8]T,

and another one is

[x1, x2, x3, x4]T = [0, 3/4, 1/4, 3/8]T.

However, the minimum is unique and 3/8 , which proves that

‖A − N3‖2
F � (1 − 3

8
)dep2(A). �

Note that all constraints are active in the solution of the LP problem in the above
proof. It implies that if we formulate an LP problem where any of the constraints is left
out then we get a weaker bound.

3. A first general bound

It is possible to combine the idea in the proof of Elsner and Ikramov’s bound (1.5)
with Theorem 1 to get a sharper bound than (1.6). The result is proved in the following
lemma. (The reason why we present it as a lemma is that we will use it to prove even
sharper bounds in the next sections.)

LEMMA 1. If A ∈ Mn , then

‖A − Nn‖2
F � (1 − 3

4n
)dep2(A). (3.1)

Proof. (Basically the same idea as in the proof in [1]). We consider an A ∈ Un .
Let k = �n/3� and let r = �(n− 3k)/2� , (which implies that r = 1 if n ≡ 2(mod 3) ,
r = 0 otherwise). Construct a set of disjoints sets of the numbers 1, . . . , n such that
k sets are of size 3 and r sets are of size 2. That is, we get S1 = (i11, i12, i13) ,
S2 = (i21, i22, i23), . . . , Sk = (ik1, ik2, ik3) where ij1 < ij2 < ij3 , j = 1, . . . k , and if
r = 1 , Sk+1 = (ik+1,1, ik+1,2) , with ik+1,1 < ik+1,2 . Let Aj ∈ U3∪U2 be the submatrix
of A consisting of rows and columns with index in set Sj , j = 1, . . . , k + r , and let Nj

be the corresponding submatrix of a normal N . The elements of N which are not on
the diagonal and not covered by any Nj are zero. There exists a permutation matrix P
such that PNPT = diag(N1, N2, . . .) , where diag(N1, N2, . . .) is block diagonal, which
implies that N is normal if all Nj are normal. The diagonal of N is identical to the
diagonal of A . The rest of the elements of N are selected such that Nj is normal and

‖Aj − Nj‖2
F � dep2(Aj) · (1 − 3

8
), j = 1, . . . , k,

and if r = 1 ,

‖Aj − Nj‖2
F � dep2(Aj) · (1 − 1

2
), j = k + 1.
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This is possible by Theorem 1 and (1.3). Then

‖A − N‖2
F � dep2(A) − 3

8
·

k∑
j=1

(|aij1,ij2 |2 + |aij1,ij3 |2 + |aij2,ij3 |2
) − 1

2

r∑
j=1

|aik+r,1,ik+r,2 |2.

Let

γ =
1

n(n − 1)/2

n−1∑
i=1

n∑
j=1

|aij|2.

The average of all bounds which can be derived with the above method is

dep2(A) − 3
8

k∑
j=1

(γ + γ + γ ) − 1
2

r∑
j=1

γ .

Let Nb be the best approximation of all N which can be constructed in this way. Then
it is at least as good as the average of all bounds derived in this way. The average gives

‖A − Nb‖2
F � dep2(A) − 3

8
· 3kγ − 1

2
rγ = dep2(A) ·

(
1 − 3k · 3

8 + r · 1
2

n · (n − 1)/2

)
.

Since,
3k · 3

8 + r · 1
2

(n − 1)/2
=

9k
4 + r

n − 1
� 3

4
,

for all n � 4 the lemma is proved. �

4. A proof of László’s conjecture for even n

We prove László’s conjecture (1.2) in the cases where n is even.

THEOREM 2. If A ∈ Mn , where n is an even number then

‖A − Nn‖2
F � n − 1

n
dep2(A). (4.1)

Proof. Consider an A ∈ Un . From (3.1) we see that we can find a normal matrix
of the form

N =
[

N1 0
0 N2

]
,

where N1, N2 ∈ Nn/2 , such that

‖A − N‖2
F � dep2(A) − 3

4(n/2)

(n/2−1∑
i=1

n/2∑
j=i+1

|aij|2 +
n−1∑

i=n/2+1

n∑
j=i+1

|aij|2
)

.
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However, this inequality can be sharpened. It is possible to find a unitary matrix of the
form

Q =
[

Q1 0
0 Q2

]
,

where Q1, Q2 ∈ Mn/2 are unitary, such that

QNQH =
[

D1 0
0 D2

]
, QAQH = Ã =

[
Ã11 Ã12

0 Ã22

]
,

where all blocks ∈ Mn/2 , D1 , D2 are diagonal, and ‖Ã12‖F is equal to the Frobenius
norm of the corresponding block of A . Let (i1, i2, . . . , in/2) be one way to sort the
numbers (1, . . . , n/2) and let (j1, . . . jn/2) be one way to sort the numbers (n/2 +
1, . . . , n) . For each such sorting we can find a normal Ñ which is equal to QNQH

except in the elements (ik, jk) , (jk, ik) , k = 1, . . . , n/2 . With the idea in (2.5) these
elements are selected such that

‖Ã − Ñ‖2
F = ‖Ã − QNQH‖2

F − 1
2

n/2∑
k=1

|ãik,jk |2.

(For example, in the case n = 4 , we can use i1 = 1 , i2 = 2 , j1 = 3 , j2 = 4 and a
normal matrix Ñ with the structure

Ñ =

⎡
⎢⎣

ã11 0 ã13/2 0
0 ã22 0 ã24/2
u1 0 ã33 0
0 u2 0 ã44

⎤
⎥⎦

with |u1| = |ã13/2| and |u2| = |ã24/2| such that

‖Ã − Ñ‖2
F = ‖Ã − QNQH‖2

F − 1
2
(|ã13|2 + |ã24|2).

We can also use i1 = 1 , i2 = 2 , j1 = 4 , j2 = 3 and a normal matrix Ñ with the
structure

Ñ =

⎡
⎢⎣

ã11 0 0 ã14/2
0 ã22 ã23/2 0
0 u2 ã33 0
u1 0 0 ã44

⎤
⎥⎦

with |u1| = |ã14/2| and |u2| = |ã23/2| such that

‖Ã − Ñ‖2
F = ‖Ã − QNQH‖2

F − 1
2
(|ã14|2 + |ã23|2).

)
Let Ñb be the best approximation of all these Ñ . Then it must be at least as good

as the average of all these inequalities which gives

‖Ã − Ñb‖2
F � ‖Ã − QNQH‖2

F − 1
n
‖Ã12‖2

F.
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This implies that
‖A − QHÑbQ‖2

F � (4.2)

dep2(A) − 3
4(n/2)

(n/2−1∑
i=1

n/2∑
j=i+1

|aij|2 +
n−1∑

i=n/2+1

n∑
j=i+1

|aij|2
)
− 1

n

n/2∑
i=1

n∑
j=n/2+1

|aij|2.

Let

x1 =
(n/2−1∑

i=1

n/2∑
j=i+1

|aij|2 +
n−1∑

i=n/2+1

n∑
j=i+1

|aij|2
)

/dep2(A),

x2 =
n/2∑
i=1

n∑
j=n/2+1

|aij|2/dep2(A),

x3 = (dep2(A) − ‖A − Nn‖2
F)/dep2(A),

then the inequality (4.2) gives

− 3
2n

x1 − 1
n
x2 + x3 � 0. (4.3)

It is also obvious that
x1 + x2 = 1, x1 � 0, x2 � 0. (4.4)

Obviously, x3 is larger than the solution of the LP problem where we minimize x3

subject to (4.3) and (4.4). This LP problem has the solution

[x1, x2, x3]T = [0 1 1/n]T

which proves the theorem. �

5. A bound for odd n

For odd n Theorem 2 can be used to prove the following bound which is slightly
weaker than the bound in László’s conjecture (1.2).

THEOREM 3. If A ∈ Mn , where n is an odd number then

‖A − Nn‖2
F �

(
1 − 1

n
· n − 7/4

n − 1

)
dep2(A). (5.1)

Proof. Consider the possible ways to divide the numbers (1, . . . , n) in one set
(i1, i2, . . . in−3) with n − 3 numbers and one set (j1, j2, j3) with three numbers. The
sets are sorted such that i1 < . . . < in and j1 < j2 < j3 . For each such partition it is
possible to find a normal matrix of the form

N = P

[
N1 0
0 N2

]
PT ,
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where N1 ∈ Mn−3 , N2 ∈ M3 and P is a permutation matrix such that rows and
columns (i1, . . . in−3) come first. From (2.1) and (4.1) we see that we can select N1

and N2 such that

‖A − N‖2
F � dep2(A) −

(
1

n − 3

n−4∑
k=1

n−3∑
l=k+1

|aik ,il |2 +
3
8

2∑
k=1

3∑
l=k+1

|ajk ,jl |2
)

. (5.2)

Let Nb be the best approximation of all these N then it must be at least as good as the
average of the right hand-sides in (5.2) for all different divisions. It gives

‖A − Nb‖2
F � dep2(A)

(
1 − 1

(n − 3)
· (n − 3)(n − 4)

n(n − 1)
− 3

8
· 3 · 2
n(n − 1)

)

= dep2(A)(1 − 1
n
· n − 7/4

n − 1
). �

6. General method to derive constraints

It is possible to derive sharper bounds if we work with constraints on the element
level. Here we describe the general method that is used to derive such constraints and
that is used in Sections 7-8 to derive sharper bounds for n = 5, 6, 7 .

There are basically two kinds of constraints that will be used in the rest of this
paper. Let us begin with the first kind. Consider the case where we want to find a
bound in the case n = m , where m � 4 . Let m1 and m2 be two integers such that
m1 + m2 = m . There exist several ways to divide the numbers (1, 2, . . .m) in two sets
(i1, i2, . . . , im1) and (j1, j2, . . . jm2) , with i1 < i2 < . . . < im1 , j1 < j2 < . . . < jm1 . For
each such division there exists a permutation matrix P such that

PTAP =
[

Ã11 Ã12

Ã21 Ã22

]
,

where Ã11 consists of rows and columns i1, . . . , im1 , (that is the (k, l) element of Ã11

is equal to the (ik, il) element of A ) and Ã22 consists of rows and columns j1, . . . , jm2 .
If we in the case n = m1 have a bound of the form

‖A − N‖2
F � dep2(A) −

m1−1∑
k=1

m1∑
l=k+1

c(1)
kl |akl|2,

where c(1)
kl , k = 1, . . . , m1 − 1, l = k + 1, . . .m1 are different real positive numbers,

then we can find a normal N1 ∈ Mm1 such that

‖Ã11 − N1‖2
F � dep2(Ã11) −

m1−1∑
k=1

m1∑
l=k+1

c(1)
kl |aik ,il |2.



314 ANDERS BARRLUND

Similarly, if we in the case n = m2 have a bound of the form

‖A − N‖2
F � dep2(A) −

m2−1∑
k=1

m2∑
l=k+1

c(2)
kl |akl|2,

then we can find a normal N2 ∈ Mm2 such that

‖Ã22 − N2‖2
F � dep2(Ã22) −

m2−1∑
k=1

m2∑
l=k+1

c(2)
kl |ajk ,jl |2.

Then , in the case n = m1 + m2 , the matrix

N = P

[
N1 0
0 N2

]
PT ,

satisfies

‖A − N‖2
F � dep2(A) −

m1−1∑
k=1

m1∑
l=k+1

c(1)
kl |aik ,il |2 −

m2−1∑
k=1

m2∑
l=k+1

c(2)
kl |ajk ,jl |2.

The constraint (2.6) is an example that is derived in this way with (i1, i2) = (1, 3) .
We continue with the second kind. In the case (i1, . . . , im) = (1, . . . , m) we get

P = I and can derive sharper bounds. Here we first select normal matrices N1 ∈ Mm1

and N2 ∈ Mm2 such that

N =
[

N1 0
0 N2

]

satisfies

‖A − N‖2
F � dep2(A) −

m1−1∑
k=1

m1∑
l=k+1

c(1)
kl |akl|2 −

m2−1∑
k=1

m2∑
l=k+1

c(2)
kl |ak+m1,l+m1 |2.

It is possible to find a unitary matrix Q of the form

Q =
[

Q1 0
0 Q2

]
,

such that

QNQH =
[

D1 0
0 D2

]
, QAQH =

[
Ã11 Ã12

0 Ã22

]
,

where Q1 ∈ Mm1 and Q2 ∈ Mm2 are unitary, D1 and D2 are diagonal matrices, and
‖Ã12‖2

F = ‖A12‖2
F . Let mmin = min(m1, m2) and mmax = max(m1, m2) . We can select

two sets of mmin numbers (i1, i2, . . . , immin) and (j1, j2, . . . , jmmin) such that all numbers
are distinct and all ik � m1 and all jk > m1 . We can select a normal Ñ which is
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identical to QNQH except in the elements (ik, jk) , (jk, ik) , k = 1, . . . , mmin . These
elements are selected such that

‖A − Ñ‖2
F = ‖A − N‖2

F − 1
2

mmin∑
k=1

|ãik ,jk |2

with the idea (1.3). Let Ñb be the best approximation of these Ñ then it will satisfy

‖A − QHÑbQ‖2
F � ‖A − N‖2

F − mmin

2m1 · m2
‖Ã12‖2

F =

dep2(A)−
m1−1∑
k=1

m1∑
l=k+1

c(1)
kl |akl|2−

m2−1∑
k=1

m2∑
l=k+1

c(2)
kl |ak+m1,l+m1 |2−

1
2 · mmax

m1∑
k=1

m2∑
l=1

|ak,l+m1 |2

which gives an inequality to an LP problem. The constraint (4.3) is an example that is
derived in this way.

When we derived the results in Sections 7-8, we have first derived all constraints
which can be derived by the above methods. Next, an LP problem with all these
constraints is solved with matlab. We only present the constraints which are active in
the solution points in the proofs in Sections 7-8, since the inactive constraints does not
effect the solution.

7. The case n = 5

In the case n = 5 we derive the following bound. Since 71/342 > 0.2076 >
0.2 = 1/5 , the bound is sharper than the bound in László’s conjecture (1.2).

THEOREM 4. If A ∈ M5 , then

‖A − N5‖2
F � (1 − 71

342
)dep2(A). (7.1)

Proof. Let x = [x12, x13, x14, x15, x23, x24, x25, x34, x35, x45, xb] where

xij = |aij|2/dep2(A), xb = (dep2(A) − ‖A − N‖2
F)/dep2(A). (7.2)

(We label the elements in x in this way to make it easier to understand how we get the
constraints). The following inequalities can be satisfied for various N ∈ N5 .

− (x12 + x25 + x34)/2 − x15/3 + xb � 0, (7.3)

− (x13 + x25 + x34)/2 − x14/3 + xb � 0, (7.4)

− (x13 + x24 + x35)/2 − x15/3 + xb � 0, (7.5)

− (x14 + x23 + x45)/2 − x15/3 + xb � 0, (7.6)

− (x15 + x23 + x34)/2 − x24/3 + xb � 0, (7.7)

− (x14 + x23 + x35)/2 − x25/3 + xb � 0, (7.8)
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− (x12 + x45)/2 − 1
4

2∑
i=1

5∑
j=4

xij + xb � 0, (7.9)

− (x12 + x34)/2 − 1
4

2∑
i=1

4∑
j=3

xij − 1
8

4∑
i=1

xi5 + xb � 0, (7.10)

− (x12 + x23 + x45)/2 − x13/3 − 1
6

3∑
i=1

5∑
j=4

xij + xb � 0, (7.11)

− (x12 + x34 + x45)/2 − x35/3 − 1
6

2∑
i=1

5∑
j=3

xij + xb � 0, (7.12)

Let us see how the constraints can be derived with the general method in section
6. The constraints (7.3)-(7.8) are of the first kind with m1 = 3 and m2 = 2 . The sets
(i1, i2, i3) are (1,2,5), (1,3,4), (1,3,5), (1,4,5), (2,3,4) and, (2,3,5), respectively. The
constraint (7.9) is of the first kindwith m1 = 4 , m2 = 1 and (i1, i2, i3, i4) = (1, 2, 4, 5) .
The constraints (7.10)-(7.12) are of the second kind with m1 = 4, 3 and 2, respectively.

If we minimize xb subject to these constraints and the obvious constraints

xij � 0, i = 1, . . . , 4, j = i + 1, . . . , 5,

4∑
i=1

5∑
j=i+1

xij = 1,

then one of infinitely many solutions is

x = [416 844 2466 3108 540 1554 2196 570 784 176 2627]T/12654.

Since xb = 2627/12654 = 71/342 the theorem is proved. �

8. The cases n = 6, 7, . . .

In the case n = 6 we derive the following bound. Since 217/1184 > 0.1832 >
1/6 , the bound is sharper than the bound in László’s conjecture (1.2).

THEOREM 5. If A ∈ M6 , then

‖A − N6‖2
F � (1 − 217

1184
)dep2(A). (8.1)

Proof. Let x = [x12, . . . , x56, xb] where xij and xb are defined as in (7.2).
The following inequalities are satisfied for various N ∈ N6 .

− 1
2
(x12 + x34 + x56) − 1

4
(x13 + x14 + x23 + x24) − 1

8

4∑
i=1

6∑
j=5

xij + xb � 0, (8.2)
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− 1
2
(x12 + x34 + x56) − 1

4
(x35 + x36 + x45 + x46) − 1

8

2∑
i=1

6∑
j=3

xij + xb � 0, (8.3)

− 1
2
(x12 + x23 + x45 + x56) − 1

3
(x13 + x46) − 1

6

3∑
i=1

6∑
j=4

xij + xb � 0, (8.4)

− 1
2
(x12 + x26 + x34 + x45) − 1

3
(x16 + x35) + xb � 0, (8.5)

− 1
2
(x13 + x24 + x35 + x46) − 1

3
(x15 + x26) + xb � 0, (8.6)

− 1
2
(x13 + x24 + x36 + x45) − 1

3
(x16 + x25) + xb � 0, (8.7)

− 1
2
(x14 + x23 + x36 + x45) − 1

3
(x15 + x26) + xb � 0, (8.8)

− 1
2
(x14 + x23 + x35 + x46) − 1

3
(x16 + x25) + xb � 0, (8.9)

− 1
2
(x15 + x23 + x34 + x56) − 1

3
(x16 + x24) + xb � 0, (8.10)

− 1
2
(x12 + x24 + x56) − x14/3 − 1

8

4∑
i=1

6∑
j=5

xij + xb � 0, (8.11)

− 1
2
(x12 + x25 + x34) − x15/3 − 1

6
(x16 + x26 + x56) + xb � 0, (8.12)

− 1
2
(x25 + x34 + x56) − x26/3 − 1

6
(x12 + x15 + x16) + xb � 0, (8.13)

− 1
2
(x12 + x35 + x56) − x36/3 − 1

8

2∑
i=1

6∑
j=3

xij + xb � 0. (8.14)

The ways these constraints are derived are similar to the ways the constraints in
the previous proof were derived. Therefore we omit to explain the constraints here.

If we minimize xb subject to these constraints and the obvious constraints

xij � 0, i = 1, . . . , 5, j = i + 1, . . . , 6,

5∑
i=1

6∑
j=i+1

xij = 1,

then we get the unique solution

x = [368 208 1812 2490 3025 0 1604 1955 2490 1000 1604 1812 0 208 368 3472]T/18944.

Since xb = 3472/18944 = 217/1184 the theorem is proved. �
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We have also performed the calculations in the case n = 7 and got the result
in Theorem 6. The proof of Theorem 6 is based on the same idea as the proof of
Theorem 5. However, since the proof of Theorem 6 is very messy it is omitted here.
Since 9393/64921 > 0.1446 > 1/7 , the bound is sharper than the bound in László’s
conjecture (1.2).

THEOREM 6. If A ∈ M7 , then

‖A − N7‖2
F � (1 − 9393

64921
)dep2(A). (8.15)

Presumably, it is possible to continue in the same way and prove sharper bounds
for n = 8, 9, . . . . However, the LP problems get more and more messy and the results
in the cases n=5, 6 and 7 are only slightly sharper than (5.1). There does not seem to be
much point in solving evenmessier LP problems to get presumably small improvements.
Therefore we stop here.

9. Summary

We have proved that Láslzló’s conjecture (1.2) is correct for all n � 8 and all
even n . However, for the dimensions n = 3, 5, 6, 7 we have proved the sharper bounds
(2.1), (7.1), (8.1), (8.15). It can be mentioned that the author has also tried to find a
sharper bound in the case n = 4 without success, however in the case n = 8 the author
has found a sharper bound which is omitted in this paper. Presumably, it is also possible
to use the ideas in the proofs to find sharper bounds for other dimensions. We have also
proved the general bound (5.1) which is close to (1.2) when n is large.
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