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OPTIMIZATION OF SCHUR–CONVEX FUNCTIONS

XIN-MIN ZHANG

(communicated by I. Olkin)

Abstract. In this paper, we show that Schur-convex functions share some important properties
with the ordinary convex functions. We apply special properties of Schur-convex functions
to establish some inequalities for the generalized power means that include many well-known
classical analytic inequalities as special cases.

1. Introduction

The Schur-convex function was introduced by I. Schur in 1923 [7] and has many
important applications in analytic inequalities. Hardy, Littlewood, and Pólya were
also interested in some inequalities that are related to Schur-convex functions [2]. The
following definitions and examples can be found in many references such as [3,7,9,10].

DEFINITION 1.1. An n × n matrix S = [sij] is called a doubly stochastic matrix if
sij � 0 for 1 � i, j � n , and

n∑
j=1

sij = 1, i = 1, 2, · · · , n;
n∑

i=1

sij = 1, j = 1, 2, · · · , n.

EXAMPLES 1.2. (a) A permutation matrix is a doubly stochastic matrix. (A per-
mutation matrix is a matrix obtained by permuting the rows of the identity matrix.)

(b) S = [sij] with sij = 1
n , 1 � i, j � n is a doubly stochastic matrix.

Let In = I × I × · · · × I (n copies), where I is an interval of the real number line
R . We are interested in the following special multivariable functions.

DEFINITION 1.3. f : In −→ R (n > 1) is called Schur-convex if for every doubly
stochastic matrix S ,

f (Sx) � f (x) (1)

for all x ∈ In . It is called strictly Schur-convex if the inequality is strict; f is called
Schur-concave (resp. strictly Schur-concave) if the inequality (1) is reversed.
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DEFINITION 1.4. f : In −→ R (n > 1) is called symmetric if for every permutation
matrix P ,

f (Px) = f (x)

for all x ∈ In .
Let us recall that a twice differentiable function f : Rn −→ R is convex (resp.,

strictly convex) if its Hessian matrix, Hess(f ) , is nonnegative (resp., positive) definite
on Rn ([10, p. 103]). It is well-known that a convex function is not necessarily a
Schur-convex function, and a Schur-convex function does not have to be convex in
the ordinary sense either. However, under the assumption of ordinary convexity, f is
Schur-convex if and only if it is symmetric.([10, p. 258]). In this paper, we like to
show that Schur-convex functions do share some very important properties with convex
functions, especially, some basic properties of convex functions about extreme values
that have been used widely in theoretical and appliedmathematics. In practice, due to the
symmetric nature of Schur-convex functions, it is easier to verify the Schur-convexity
than to check for ordinary convexity. As an application, in section 3 we provide a
simple sufficient condition for a function of two variables that guarantees an unique
local minimum a global one. In sections 4 and 5, we shall construct some Schur-convex
and Schur-concave functions in terms of a differentiable function of single variable,
and establish some inequalities for these functions. The new inequalities generalize
several well-known classical analytic inequalities such as the Jensen’s inequality and
the arithmetic-geometric mean inequality.

2. Some Properties of Schur-Convex Functions

In this section, we discuss some special properties of Schur-convex functions
that are essential in extremum problems. For a historical development of this kind of
functions and the fruitful applications to statistics, economics and other applied fields,
refer to the popular book by Marshall and Olkin [7].

LEMMA 2.1. Every Schur-convex function is a symmetric function.

Proof. If P is a permutation matrix, so is its inverse P−1 . Hence if f is Schur-
convex, then

f (x) = f (P−1(Px)) � f (Px) � f (x).

It shows that f (Px) = f (x) for every permutation matrix P . �

It is not hard to see that not every symmetric function can be a Schur-convex
function [10, p. 258]. Similarly, every Schur-concave function is symmetric and the
inverse is not true. However, we have the following so-called Schur’s condition.

LEMMA 2.2. ([10, p. 259]) Let f (x) = f (x1, x2, · · · , xn) be symmetric and have
continuous partial derivatives on In where I is an open interval. Then f : In −→ R
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is Schur-convex if and only if

(xi − xj)
(

∂f
∂xi

− ∂f
∂xj

)
� 0 (2)

on In . It is strictly Schur-convex if (2) is a strict inequality for xi �= xj , 1 � i, j � n.

Since f (x) is symmetric, Schur’s condition can be reduced as ([7, p. 57])

(x1 − x2)
(

∂f
∂x1

− ∂f
∂x2

)
� 0, (3)

and f is strictly Schur-convex if (3) is a strict inequality for x1 �= x2 . The Schur’s
condition that guarantees a symmetric function being Schur-concave is the same as (2)
or (3) except the direction of the inequality.

In Schur’s condition, the domain of f (x) does not have to be a Cartesian product
In . Lemma 2.2 remains true if we replace In by a set A ⊆ Rn with the following
properties ([7, p. 57]):

(i) A is convex and has a nonempty interior;
(ii) A is symmetric in the sense that x ∈ A implies Px ∈ A for any n × n -

permutation matrix P .
In the rest of this paper, we shall be concernedmainly with Schur-convex functions

and related inequalities. Most of the results have their counterparts for Schur-concave
functions. In order to simplify the notations and the statements, let us set

I = (−a, a); Hk = {x = (x1, x2, · · · , xn) ∈ Rn |
n∑

i=1

xi = k},

Jn = In ∩ Hk; Ω = (σ,σ, · · · ,σ) where σ =
1
n

n∑
i=1

xi =
k
n
.

The following property of Schur-convex function plays a key role in the proof of
Theorem 2.4 and implies other important results.

LEMMA 2.3. If f : In −→ R is a Schur-convex function, then f (Ω) is a global
minimum in Jn . If f is strictly Schur-convex on In , then f (Ω) is the unique global
minimum in Jn .

Proof. Since f is Schur-convex in In , therefore,

f (Sx) � f (x),

for every doubly stochastic matrix S and every x in In . If we take S = [sij] with
sij = 1/n , 1 � i, j � n , then Ω = Sx , and

f (Ω) � f (x)
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for all x ∈ Jn . If f is strictly Schur-convex, then f (Ω) < f (x) for all x ∈ Jn ,
x �= Ω . �

Recall that one of the most important properties of a strictly convex function is that
it admits at most one global minimum ([10]). For a Schur-convex function, we are able
to prove the following result.

THEOREM 2.4. Let f : Rn −→ R be a Schur-convex function and have only one
critical point a = (a1, a2, · · · , an) . If f (a) is a local minimum, then it must be the
global minimum.

Proof. First, we claim that a1 = a2 = · · · = an , that is, the only critical
point a must be in the subset D of Rn where D = {(x, x, · · · , x) | x ∈ R} ,
because of the symmetric property of f and the uniqueness of the critical point.
Then we may split the whole space Rn into a disjoint union of the hyperplanes
Hk = {(x1, x2, · · · , xn) | ∑n

i=1 xi = k} , k ∈ R . Lemma 2.3 tells us that f attains
the minimum on each subset Hk at (k/n, k/n, · · · , k/n) , a point in D ∩ Hk , k ∈ R .
Finally, we can show that there is no point in D other than a whose function value is
smaller than f (a) , thereby f (a) is the global minimum of f on Rn . If there exists a
point c = (c, c, · · · , c) ∈ D such that f (a) > f (c) , then there must be a real number
b between a and c , and a point b = (b, b, · · · , b) in D such that the directional
derivative f�u(b) = 0 where �u = �e1 + �e2 + · · · + �en , and �e1, �e2, · · · , �en are the canon-
ical base vectors of Rn . However, on the subset D , we have f x1 = f x2 = · · · = f xn

by the symmetric property of f . Therefore f�u(b) = �f (b) · �u/√n = 0 implies that
f x1(b) = f x2(b) = · · · = f xn(b) = 0 , and we get a second critical point b . This is a
contradiction to the uniqueness of a . �

REMARKS. Optimization problems could be complicated when the objective func-
tion f involves n variables (n � 3 ). Not only locating critical points requires to solve
a system of n equations, the second derivative test requires the calculations of a large
number of determinants with different orders. For details, refer to [6, p. 228]. On the
other hand, when the domain of definition of f is closed, checking function values
on the boundary could be time and energy consuming. For example, even for n = 3
and f is defined on the cube [0, 1]3 . Besides solving �f = 0 in the interior of the
cube, to make sure that f does not attain any extremum on the boundary, one has to
check 6 faces, 12 edges, and 8 vertices of the cube. Bear these in mind, whenever one
has noticed the objective function is symmetric, it is always worth-while to check the
Schur’s condition (2) or (3). If it is Schur-convex, then the optimization problem could
be much simpler. In a lower dimensional case, say, n = 2 , the two statements and the
two examples in the following section along with Theorems 3.5 and 3.6 are accessible
to undergraduates.

3. A Calculus Problem

First, let us consider the following simple statement in a first semester calculus:
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STATEMENT 1.
Let f (x) be a differentiable function defined on an open interval (a, b) .
If x0 is the only critical point of f in that interval, and f (x0) is a local
minimum, then f (x0) must be the global minimum of f on that interval.

Second, when we consider a similar question for a function of two variables, the
answer is somewhat surprising. More specifically, we have the following:

STATEMENT 2.
Let f (x, y) be a differentiable function defined on an open domain D ⊆ R2

having only one critical point (x0, y0) , and f (x0, y0) is a local minimum.
But f (x0, y0) is not necessarily the global minimum of f on D .

EXAMPLE 3.1. ([1]) Consider the following function:

f (x, y) =
−1

1 + x2
+ (2y2 − y4)

(
ex +

1
1 + x2

)
.

A direct calculation shows that (0, 0) is the only critical point, i.e., �f (0, 0) = 0 .
The second derivative test indicates that f has a local minimum at (0, 0) . However,
f (0, 0) = −1 is not the global minimum of f on the plane, say, f (0, 2) = −17 which
is smaller than −1 .

EXAMPLE 3.2. The following example was provided by the referee of the paper
[14]:

f (x, y) = x2(1 + y)3 + y2.

Once again, one may verify that f has only one critical point (0, 0) , and f (0, 0) = 0
is a local minimum. But it is not the global minimum of f on a large open domain
containing (0, 0) , for example, (−5, 5)× (−5, 5) .

There are other examples that support the statement 2 such as [11]. By virtue of
different softwares in mathematics, constructing examples of multivariable functions
with expected properties becomes not only easier, but also very stimulating. However,
the more important question here perhaps is that “what extra condition(s) should be
added to a function of two variables in order its only critical point which is a local
minimum to be the global minimum ?” Ash and Sexton proved the following result:

THEOREM 3.3. ([1]) Let f : R2 −→ R be continuously differentiable and have
only one critical point (a, b) which is a local minimum. If f is proper ( f −1(K) is
compact whenever K is compact), then f (a, b) must be the global minimum.

This theorem imposes a “topological condition” to the function in addition to the
differentiability.

THEOREM 3.4. ([10]) Let f : R2 −→ R be continuously differentiable and have
only one critical point (a, b) which is a local minimum. If f is convex, i.e., Hess (f ) is
positive definite, then f (a, b) must be the global minimum.
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This theorem adds “convexity” to the objective function, where Hess( f ) denotes
the Hessian of f . As a special case of Theorem 2.4 when n = 2 , we present the
following result as another criterion that ensures a local extremum a global one.

THEOREM 3.5. Let f : R2 −→ R be continuously differentiable and have only
one critical point (a, b) which is a local minimum. If

(x − y)(f x − f y) > 0 f or x �= y, (4)

then f (a, b) must be the global minimum.

REMARKS. (i) In Theorem 3.5, the function f does not have to be symmetric.
The condition (4) ensures that the only critical point must be on the line y = x . The
rest of the proof of Theorem 3.5 follows from a similar argument as we used in the
proof of Theorem 2.4. However, when the objective function f involves more than two
variables, we need a family of inequalities like (4) in order to have a theorem that is
similar to Theorem 2.4 without the assumption on the symmetry of f . (ii) If we are
concerned with only functions of two variables, Theorem 3.5 could be generalized even
further to the following one.

THEOREM 3.6. Let f : R2 −→ R be continuously differentiable and have only
one critical point (a, b) which is a local minimum. If

(Ax + By + C)(Af x + Bf y) > 0 (5)

for (x, y) such that Ax + By + C �= 0 , then f (a, b) must be the global minimum.

4. Generalized Power Means

In this section, we shall discuss more symmetric functions that are either Schur-
convex or Schur-concave, and establish some inequalities for these functions. Some
well-known classical analytic inequalities can be included as special cases.

Symmetric functions is a very important class of functions and have been used
widely in many areas of mathematics. For instance, the following symmetric function
is used to define the power mean [3,9]: Let x = (x1, x2, · · · , xn) ∈ Rn

+ , and r �= 0 ,
define

Fr(x1, x2, · · · , xn) =
(

xr
1 + xr

2 + · · · + xr
n

n

)1/r

,

and define F0(x1, x2, · · · , xn) =
[∏n

i=1 xi
]1/n

if r = 0 . It is clear that F1(x) is the
arithmetic mean of x , F0(x) is the geometric mean of x , and F−1(x) is the harmonic
mean of x . It is well-known that Fr −→ F0 as r approaches zero. Moreover, for
r < s , we have Fr(x) � Fs(x) with equality holding if and only if x1 = x2 = · · · = xn

([9, p. 76]).
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Now, let f be a positive twice differentiable function defined on an open interval
(a, b) in R , and define the generalized power mean as follows:

Fr,f (x1, x2, · · · , xn) =
{

f r(x1) + f r(x2) + · · · + f r(xn)
n

}1/r

, r �= 0. (6)

If r = 0 , we define

F0,f (x1, x2, · · · , xn) =

[
n∏

i=1

f (xi)

]1/n

. (7)

Obviously, when f (x) = x , Fr,f (x) becomes the ordinary power mean. It is also
clear that Fr,f −→ F0,f as r approaches zero. In what follows, for simplicity of the
statements, we shall call f strictly rth power-convex if [f r(x)]′′ > 0 ; and call f strictly
logarithmic convex if (ln[f (x)])′′ > 0 . The r th power-concavity and logarithmic
concavity can be defined in the same way if the direction of inequalities are reversed.
Schur-convexity of the generalized power mean can be summarized as follows.

THEOREM 4.1. For the generalized power mean

Fr,f (x1, x2, · · · , xn) =

{ [
1
n

∑n
i=1 f r(xi)

]1/r
if r �= 0[∏n

i=1 f (xi)
]1/n

if r = 0 ,

we have
(i) If r > 0 , (resp., r < 0 ,) then Fr,f is Schur-convex if and only if f is r-th

power-convex (resp., r-th power-concave);
(ii) If r = 0 , then Fr,f is Schur-convex if and only if f is logarithmic convex.

Proof. It is clear that Fr,f (x) is symmetric. By Schur’s condition (3), when r �= 0 ,
we have

∂Fr,f

∂xj
=

1
r

[
1
n

n∑
i=1

f r(xi)

] 1−r
r

· [f r(xj)]
′ , j = 1, 2.

Therefore, if x1 �= x2 and r > 0 , we have

(x1 − x2)
(

∂Fr,f

∂x1
− ∂Fr,f

∂x2

)
� 0

⇐⇒ (x1 − x2)
{
[f r(x1)]

′ − [f r(x2)]
′} � 0

⇐⇒ (x1 − x2)2 [f r(x∗)]′′ � 0

⇐⇒ [f r(x)]′′ � 0,

where x∗ is a real number between x1 and x2 . Similarly, if x1 �= x2 and r < 0 , we
have

(x1 − x2)
(

∂Fr,f

∂x1
− ∂Fr,f

∂x2

)
� 0 ⇐⇒ [f r(x)]′′ � 0.
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This proves (i). For r = 0 , observe that

∂F0,f

∂xj
=

1
n

[
n∏

i=1

f (xi)

](1−n)/n

· f ′(xj) ·
n∏

i=1

f (xi)/f (xj), j = 1, 2.

Hence, if x1 �= x2 , we have

(x1 − x2)
(

∂F0,f

∂x1
− ∂F0,f

∂x2

)
� 0

⇐⇒ (x1 − x2)
{

f ′(x1)
f (x1)

− f ′(x2)
f (x2)

}
� 0

⇐⇒ (x1 − x2) {[ln f (x1)]′ − [ln f (x2)]′} � 0

⇐⇒ (x1 − x2)2 [ln f (x∗)]′′ � 0

⇐⇒ [ln f (x)]′′ � 0,

where x∗ is a point between x1 and x2 . �

NOTE. Since [f r(x)]′′ = rf r−2(x)[(r − 1)(f ′(x))2 + f (x)f ′′(x)] , therefore when
r < 0 , [f r(x)]′′ � 0 if and only if (r − 1)[f ′(x)]2 + f (x)f ′′(x) � 0 . On the other
hand, {ln[f (x)]}′′ � 0 if and only if f (x)f ′′(x)− [f ′(x)]2 � 0 . Hence we may include
logarithmic concavity as the special case of r th power-convexity for r = 0 .

We now collect some immediate consequences of Lemma 2.3 and Theorem 4.1 as
corollaries. Let us set

x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn), Hk
+ = {x ∈ Rn

+ |
n∑

i=1

xi = k}, k ∈ R;

σ =
1
n

n∑
i=1

xi =
k
n

where x ∈ Hk
+; Ωk = (σ,σ, · · · ,σ).

COROLLARY 4.2. Let x = Sy for some doubly stochastic matrix S . If r > 0
(resp.,< 0 ), and f is strictly rth power-convex (resp., strictly rth power-concave), then

Fr,f (x) � Fr,f (y),

with equality holding if and only if S is a permutation matrix.

COROLLARY 4.3. (a) If r > 0 ( resp., < 0 ) and f is strictly rth power-convex
(resp., strictly rth power-concave), then

f (σ) = Fr,f (Ωk) � Fr,f (x) =

[
1
n

n∑
i=1

f r(xi)

]1/r

on Hk
+;
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(b) If r � 0 and f is strictly rth power convex, then

f (σ) = Fr,f (Ωk) � Fr,f (x) =

[
1
n

n∑
i=1

f r(xi)

]1/r

on Hk
+,

with equality holding in either (a) or (b) if and only if x = Ωk .

COROLLARY 4.4. If Fr,f is Schur-convex and Fs,f is Schur-concave, then
Fr,f (x) − Fs,f (x) is Schur-convex, and

Fr,f (x) − Fs,f (x) � 0.

When Fr,f − Fs,f is strictly Shcur-convex, the equality holds if and only if x1 = x2 =
· · · = xn .

REMARKS 4.5. (i) In Corollary 4.4, if r = 1 , s = 0 and f (x) = x , then F1,f (x)
is the arithmetic mean of x which is Schur-convex (not strictly), and F0,f (x) is the
geometricmean of x which is strictly Schur-concave. It is clear that F1,f −F0,f is strictly
Schur-convex, and the inequality in Corollary 4.4 reduces to the arithmetic-geometric
mean inequality. (ii) In Corollary 4.3 (a), if r = 1 , then F1,f (x) = (1/n)

∑n
i=1 f (xi) ,

the r th power-convexity becomes the ordinary convexity, and the inequality is simply
the well-known Jensen’s inequality for positive convex functions

f
(1

n

n∑
i=1

xi

)
� 1

n

n∑
i=1

f (xi) = F1,f (x).

Notice that when r > 1 , Corollary 4.3 (a) follows directly from the basic property of
the ordinary power mean,

F1,f (x) =
1
n

n∑
i=1

f (xi) � Fr,f (x) =

[
1
n

n∑
i=1

f r(xi)

]1/r

.

When r � 0 , the part (b) follows directly by the same reason. Because

F0,f (x) =

[
n∏

i=1

f (xi)

]1/n

which attains the maximum at x = Ωk , and for r < 0 ,

Fr,f (x) � F0,f (x)

by the basic property of the power mean. Therefore, it seems that Corollary 4.3 has
significance only for 0 < r < 1 . To see which kind of functions satisfy the inequalities
in the corollary, we need to solve the following differential inequality

(r − 1)[f ′]2 + f f ′′ > 0, (8)
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where 0 < r < 1 , for positive differentiable functions. The following functions are
some examples of solutions to inequality (8): (A) r = 3/4 , f (x) = x2 defined on
(0, +∞) ; (B) r = 1/2 , and f (x) = ex . For the second example, the classical Jensen’s
inequality asserts that

f
(1

n

n∑
i=1

xi

)
= e

1
n

∑n
i=1

xi � 1
n

n∑
i=1

exi =
1
n

n∑
i=1

f (xi),

and the power mean inequality implies that

F1/2,f (x) =

[
1
n

n∑
i=1

exi/2

]2

� 1
n

n∑
i=1

exi = F1,f (x).

The equality in either of the above inequalities holds if and only if x1 = x2 = · · · = xn .
Now, the Corollary 4.3 (a) claims that

f
(1

n

n∑
i=1

xi

)
� F1/2,f (x),

and with equality holding if and only if x1 = x2 = · · · = xn .

5. More Schur-Convex Functions

There are many different ways to construct a symmetric function F from a differ-
entiable function f of single variable. F could be Schur-convex or Schur-concave if f
satisfies certain conditions such as differential equations or differential inequalities. To
conclude this paper, we shall briefly mention a few examples of this kind of functions.
Some simple symmetric functions include G(x) =

∑n
i=1 g(xi) where g(x) is a differ-

entiable function. As a matter of fact, the Schur-convexity of G(x) had drawn attention
of Hardy, Littlewood, and Pólya while they were investigating convex functions [2,7].
It is known that [10, p. 258],

G is Schur-convex (resp., strictly Schur-convex) if and only if g is convex
(resp., strictly convex), that is, g′′ � 0 , (resp., g′′ > 0 ).

If we consider G(x) =
∏n

i=1 g(xi) where g(x) is a positive differentiable function, then
a direct calculation shows that

G is Schur-convex (resp., strictly Schur-convex) if and only if g is loga-
rithmic convex (resp., strictly logarithmic convex).

In [14], we introduced the following Schur-convex functions that are made of
positive solutions of a second order nonlinear differential equation. This new class of
Schur-convex functions and related inequalities have been used to prove some geometric
inequalities.
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Let us consider the symmetric function

F(x1, x2, · · · , xn) =

(
n∑

i=1

f (xi)

)2

− cn

n∑
i=1

f (xi)f ′(xi) −
[
nf (σ) −

n∑
i=1

f (xi)

]2

(9)

where xi ∈ (0, l), i = 1, 2, · · · , n ,
∑n

i=1 xi = ml , (0 < m < n) , σ = (1/n)
∑n

i=1 xi =
ml/n ; and f (x) is a positive solution of the equation[

f ′(x)
]2 − f (x)f ′′(x) = μ, where μ is a constant, (10)

such that f ′(x)f ′′(x) �= 0 on (0, l) ; and cn = n[f (σ)/f ′(σ)] . In [14] we proved that

F(x1, x2, · · · , xn) � F(σ,σ, · · · ,σ) = 0

if f ′′(x) < 0 on (0, l) , andwith equality holding if and only if x1 = x2 = · · · = xn = σ .
Later on, we find that under the given conditions, the function F(x1, · · · xn) is actually a
Schur-convex function if f ′′(x) < 0 on (0, l) , and it is Schur-concave if f ′′(x) > 0 on
(0, l) . The nonlinear differential equation (10) can be generalized further so that more
positive functions can be included to construct different Schur-convex or Schur-concave
functions. This was done in two recent papers [13, 15] along with some applications.
Although optimization problems of symmetric functions could be conducted by different
techniques. Once the objective function F(x) is confirmed to be Schur-convexor Schur-
concave, it is not only easier to find the extremum, another advantage is to allow us
to compare the function values at two different points where F may not attain the
extremum. That is, if x and y are two points in the domain of definition of F and
y = Sx for some doubly stochastic matrix S , then F(y) � F(x) (resp., � ) if F is
Schur-convex (resp., Schur-concave). In this circumstance, we say “ y is majorized by
x ”. Schur-convex functions preserve that majorization ([7]).
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