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Abstract. We consider inequality of Hölder’s type

∫ b
a w3(x)g(x)dx∫ b

a w3(x)dx
�

2∏
i=1

⎛
⎝∫ b

a wi(x)g(x)dx∫ b
a wi(x)dx

⎞
⎠

1/pi

,
1
p1

+
1
p2

= 1,

and give a number of results about functions w1 , w2 , w3 which satisfy the above-mentioned
inequality. Also, in a similar way, we consider an inequality of Minkowski’s type.

In this paper we show a new way of generalization of Gauss’ result about moments.
Namely, in [8] the following theorem was proved.

THEOREM 1. Let g : [a, b] → R be a nonnegative nonincreasing function,
xi : [a, b] → R , i = 1, 2, . . . , n , be nonnegative nondecreasing functions with a
continuous first derivative and xi(a) = 0 for all i = 1, 2, . . . , n . If pi i = 1, 2, . . . , n ,

are positive real numbers such that
n∑

i=1

1
pi

= 1 then

n∏
i=1

(∫ b

a
x′i(t)g(t)dt

)1/pi

�
∫ b

a

(
n∏

i=1

xi(t)1/pi

)′
g(t)dt. (1)

This Theorem is a generalization of so–called Gauss–Pólya’s inequality, [10].
Namely, for n = 2 , a = 0 , p1 = p2 = 2 , x1(t) = t2u+1 , x2(t) = t2v+1 , u, v > − 1

2 we
have(∫ b

0
xu+vg(x)dx

)2

�
(

1 −
(

u − v
u + v + 1

)2
)∫ b

0
x2ug(x)dx

∫ b

0
x2vg(x)dx, (2)
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where g is nonincreasing function. Setting in inequality (2) b → ∞ , u = 0 , v = 2
we have inequality between the second and the fourth order moments which is due to
C.F. Gauss, [3].

This Gauss–Pólya’s inequality (2) can be generalized in various ways, some of
them are given in the papers [2], [6], [7], [9], [11], [12], [13], [14].

In the first part of this paper we present a number of helpful lemmas one of which
is due to Hardy [4] and the others can be proved using integration by parts, [1]. In the
second part of paper we the improve above mentioned Theorem 1 from [8]. And finally,
in the third part of text we will give an analogue result for Minkowski’s type inequality.

In this paper if the inequality has a number (n) then its reverse version (the reversed
inequality) is denoted by (Rn).

1. Preliminary results

Let us suppose that H is an integrable function on [a, b] .

LEMMA 1. a) If S is a nonnegative and nondecreasing function on [a, b] and

∫ b

x
H(t)dt � 0 for all x ∈ [a, b],

then ∫ b

a
H(t)S(t)dt � 0.

b) If S is a nonnegative and nonincreasing function on [a, b] and∫ x

a
H(t)dt � 0 for all x ∈ [a, b],

then ∫ b

a
H(t)S(t)dt � 0.

The statement in case a) was proved in [4, p.298] for interval [0, 1] .

LEMMA 2. If S is a nonnegative and symmetrical function on [a, b] , (i.e. S(a +
x) = S(b − x) for all x ∈ [0, b−a

2 ] ), nonincreasing on [ a+b
2 , b] and if

∫ b−x

a+x
H(t)dt � 0 for x ∈ [0, b−a

2 ],

then ∫ b

a
H(t)S(t)dt � 0.
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Proof. Using integration by parts and the symmetry of the function S we have

∫ a+b
2

a
H(t)S(t)dt = S(a)

∫ a+b
2

a
H(t)dt +

∫ a+b
2

a

(∫ a+b
2

x
H(t)dt

)
dS(x).

∫ b

a+b
2

H(t)S(t)dt = S(b)
∫ b

a+b
2

H(t)dt −
∫ b

a+b
2

(∫ x

a+b
2

H(t)dt

)
dS(x)

= S(a)
∫ b

a+b
2

H(t)dt −
∫ b

a+b
2

(∫ x

a+b
2

H(t)dt

)
dS(a + b − x)

= S(a)
∫ b

a+b
2

H(t)dt −
∫ a

a+b
2

(∫ a+b−τ

a+b
2

H(t)dt

)
dS(τ)

= S(a)
∫ b

a+b
2

H(t)dt +
∫ a+b

2

a

(∫ a+b−τ

a+b
2

H(t)dt

)
dS(τ).

∫ b

a
H(t)S(t)dt =

∫ a+b
2

a
H(t)S(t)dt +

∫ b

a+b
2

H(t)S(t)dt

= S(a)
∫ a+b

2

a
H(t)dt +

∫ a+b
2

a

(∫ a+b
2

x
H(t)dt

)
dS(x)

+S(a)
∫ b

a+b
2

H(t)dt +
∫ a+b

2

a

(∫ a+b−τ

a+b
2

H(t)dt

)
dS(τ)

= S(a)
∫ b

a
H(t)dt +

∫ a+b
2

a

(∫ a+b−x

x
H(t)dt

)
dS(x). (3)

The terms
∫ b

a H(t)dt and
∫ a+b−x

x H(t)dt are nonpositive, and the term S(a) is
nonnegative and S is nondecreasing on [a, a+b

2 ] , so, the whole term (3) is nonpositive
and the lemma is proved. �

Similarly, the following four lemmas could be deduced.

LEMMA 3. Let S be a nonnegative right balanced function on [a, b] (right bal-
anced means that S(a+x) � S(b−x) for all x ∈ [0, b−a

2 ] ), and let S be nondecreasing
on [a, a+b

2 ] . If
H(x) � 0 for all x ∈ [ a+b

2 , b]

and ∫ b−x

a+x
H(t)dt � 0 for x ∈ [0, b−a

2 ],
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then ∫ b

a
H(t)S(t)dt � 0.

LEMMA 4. Let S be a nonnegative left balanced function on [a, b] (left balanced
means that S(a + x) � S(b − x) for all x ∈ [0, b−a

2 ] ), and let S be nondecreasing on
[a, a+b

2 ] . If

H(x) � 0 for all x ∈ [ a+b
2 , b]

and ∫ b−x

a+x
H(t)dt � 0 for x ∈ [0, b−a

2 ],

then ∫ b

a
H(t)S(t)dt � 0.

LEMMA 5. Let S be a nonnegative left balanced function on [a, b] and let S be
a nonincreasing on [ a+b

2 , b] . If

H(x) � 0 for all x ∈ [a, a+b
2 ]

and ∫ b−x

a+x
H(t)dt � 0 for x ∈ [0, b−a

2 ],

then ∫ b

a
H(t)S(t)dt � 0.

LEMMA 6. Let S be a nonnegative right balanced function on [a, b] and let S be
nonincreasing on [ a+b

2 , b] . If

H(x) � 0 for all x ∈ [a, a+b
2 ]

and ∫ b−x

a+x
H(t)dt � 0 for x ∈ [0, b−a

2 ],

then ∫ b

a
H(t)S(t)dt � 0.
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2. Main results

THEOREM 2. Let wi, i = 1, 2, 3 be nonnegative and integrable functions on [a, b]
and let Wi be defined by

Wi(x) =

∫ x
a wi(t)dt∫ b
a wi(t)dt

i = 1, 2, 3.

Let p1, p2 be positive real numbers such that 1
p1

+ 1
p2

= 1.

a) If g is a nonnegative nonincreasing function on [a, b] and

W1/p1

1 (x)W1/p2

2 (x) � W3(x) for all x ∈ [a, b], (4)

then ∫ b
a w3(x)g(x)dx∫ b

a w3(x)dx
�

2∏
i=1

(∫ b
a wi(x)g(x)dx∫ b

a wi(x)dx

)1/pi

. (5)

b) If g is a nonnegative nondecreasing function on [a, b] and (R4) holds then
inequality (5) is reversed.

Proof. a) Using integration by parts and Hölder’s inequality [5], we obtain

2∏
i=1

(∫ b
a wi(x)g(x)dx∫ b

a wi(x)dx

)1/pi

=
2∏

i=1

(
g(b) +

∫ b

a
Wi(x)dg(x)

)1/pi

� g(b) +
2∏

i=1

(∫ b

a
Widg(x)

)1/pi

� g(b) +
∫ b

a
W1/p1

1 (x)W1/p2

2 (x)dg(x)

� g(b) +
∫ b

a
W3(x)dg(x)

=
∫ b

a
W ′

3(x)g(x)dx =

∫ b
a w3(x)g(x)dx∫ b

a w3(x)dx
,

where g = −g.
b) The proof is similar, only instead of discrete Hölder’s inequality we use Popovi-

ciu’s inequality, [5, p118]. �

Let us note that assumption (4) are used in the inequality

g(b) +
∫ b

a
W1/p1

1 (x)W1/p2

2 (x)dg(x) � g(b) +
∫ b

a
W3(x)dg(x).
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Assumption (4) could be substituted by weaker assumptions by using Lemma 1 –
Lemma 6. Namely, the following theorem is valid.

THEOREM 3. Let g be a nonnegative function on [a, b] . In cases a)–g) we will
suppose that g is a differentiable function.

a) If g′(x) � 0 for all x ∈ [a, b] , g is convex on [a, b] and∫ x

a
W3(t)dt �

∫ x

a

2∏
i=1

Wi(t)1/pidt for all x ∈ [a, b] (6)

then (5) holds.
If g′(x) � 0 for all x ∈ [a, b] and g is concave on [a, b] and if (6) holds then

(R5) is valid.
b) If g′(x) � 0 for all x ∈ [a, b] , g is concave on [a, b] and∫ b

x
W3(t)dt �

∫ b

x

2∏
i=1

Wi(t)1/pidt for all x ∈ [a, b] (7)

then (5) holds.
If g′(x) � 0 for x ∈ [a, b] , g is convex on [a, b] and (7) is valid then (R5) holds.
c) If g′ is a nonpositive symmetrical function on [a, b] and is nondecreasing on

[ a+b
2 , b] and if∫ b−x

a+x
W3(t)dt �

∫ b−x

a+x

2∏
i=1

Wi(t)1/pidt for all x ∈ [0, b−a
2 ] (8)

then (5) holds.
If g′ is a nonnegative symmetrical function on [a, b] and is nonincreasing on

[ a+b
2 , b] and if (8) holds then (R5) holds.

d) If g is concave on [a, a+b
2 ] , g′ is nonpositive left balanced on [a, b] and if

W3(x) �
2∏

i=1

Wi(x)1/pi for all x ∈ [ a+b
2 , b] (9)

and if (8) holds, then (5) holds.
If g′ is a nonnegative right balanced function on [a, b] , g is convex on [a, a+b

2 ]
and if (9) and (8) hold, then (R5) holds.

e) If g′ is a nonpositive right balanced function on [a, b] , g is concave on [a, a+b
2 ] ,

(R9) and (8) hold, then (5) holds.
If g′ is a nonnegative left balanced function on [a, b] , g is convex on [a, a+b

2 ] ,
(R9) and (8) hold, then (R5) holds.

f) If g is convex on [ a+b
2 , b] , g′ is nonpositive right balanced on [a, b] and if

W3(x) �
2∏

i=1

Wi(x)1/pi for all x ∈ [a, a+b
2 ] (10)
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and if (8) holds, then (5) holds.

If g′ is a nonnegative left balanced function on [a, b] , g is concave on [ a+b
2 , b]

and if (10) and (8) hold, then (R5) holds.

g) If g′ is a nonpositive left balanced function on [a, b] , g is convex on [ a+b
2 , b] ,

(R10) and (8) are valid, then (5) holds.

If g′ is a nonnegative right balanced function on [a, b] , g is concave on [ a+b
2 , b] ,

(R10) and (8) are valid, then (R5) holds.

h) If g is a nonnegative nonincreasing function on [a, b] .

W ′
3(x) �

(
2∏

i=1

W1/pi
i

)′

(x), for x ∈ [a, a+b
2 ],

W3(b − x) − W3(a + x) �
2∏

i=1

W1/pi
i (b − x) −

2∏
i=1

W1/pi
i (a + x) (11)

for x ∈ [0, b−a
2 ], then (5) holds.

i) If g is a nonnegative nondecreasing function on [a, b] .

W ′
3(x) �

(
2∏

i=1

W1/pi
i

)′

(x), for x ∈ [ a+b
2 , b]

and if (R11) holds then (R5) holds.

Proof. First, we will prove cases a)–g). When g′ � 0 then in cases a), b), c), d)
and f) putting S = −g′ and H = W3 − W1/p1

1 W1/p2

2 and applying Lemmas 1b), 1a), 2,
3 and 5 respectively we obtain the statements there. In cases e) and g), if g′ � 0 we

put S = −g′ and H = W1/p1

1 W1/p2

2 − W3 and apply Lemmas 4 and 6 respectively.

When g′ � 0 we replace S = g′ and the same method is used.

Let us prove the case h). Setting S = g and H = W ′
3 − (W1/p1

1 W1/p2

2 )′ and
applying Lemma 5 we get

∫ b

a
(W1/p1

1 W1/p2

2 )′(x)g(x)dx �
∫ b

a
W ′

3(x)g(x)dx.
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Now, using the proof of Theorem 2 we have

2∏
i=1

(∫ b
a wi(x)g(x)dx∫ b

a wi(x)dx

)1/pi

� g(b) +
∫ b

a
W1/p1

1 (x)W1/p2

2 (x)dg(x)

=
∫ b

a
(W1/p1

1 W1/p2

2 )′(x)g(x)dx

�
∫ b

a
W ′

3(x)g(x)dx

=

∫ b
a w3(x)g(x)dx∫ b

a w3(x)dx
.

Case i) is proven similarly, applyingLemma 3 on S = g and H = (W1/p1

1 W1/p2

2 )′−
W ′

3. �

REMARK 1. ObviouslyTheorem2 can be generalized in this way: Let the functions
wi , i = 1, 2, . . . , n + 1 , be nonnegative and integrable functions and Wi defined as in
Theorem 2.

a) If g is a nonnegative nonincreasing function on [a, b] and
n∏

i=1

W1/pi
i (x) � Wn+1(x) for all x ∈ [a, b], (12)

then ∫ b
a wn+1(x)g(x)dx∫ b

a wn+1(x)dx
�

n∏
i=1

(∫ b
a wi(x)g(x)dx∫ b

a wi(x)dx

)1/pi

. (13)

where pi are positive real numbers such that
n∑

i=1

1
pi

= 1.

Also, we get this generalization in all other cases of the Theorems 2 and 3.

REMARK 2. Now, we will show that Theorem 1 is a consequence of Theorem 2a)
when in (4) equality holds, (in fact, we will deal with n + 1 function– see Remark 1).

Let xi be a function as defined in Theorem 1. Setting: wi = x′i for i = 1, 2, . . . , n

and wn+1 = (
∏n

i=1 x1/pi
i )′ we get:

Wi(x) =
xi(x)
xi(b)

, i = 1, 2, . . . , n, Wn+1(x) =
∏n

i=1 xi(x)1/pi∏n
i=1 xi(b)1/pi

and
n∏

i=1

W1/pi
i = Wn+1.

Then by using Theorem 2 we get inequality (1). Therefore, Theorems 2 and 3 give us
a new way of generalization of Gauss–Pólya’s inequality.
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3. Inequalities of Minkowski’s type

The following theorems give us inequalities of Minkowski’s type.

THEOREM 4. Let wi , and Wi i = 1, 2, 3 , be functions on [a, b] defined as in
Theorem 2.

a) Let p be a real number greater than 1 or less than 0. If g is a nonnegative
nonincreasing function on [a, b] and if(

p1W1(x)1/p + p2W2(x)1/p
)p

� W3(x) for all x ∈ [a, b], (14)

where p1, p2 are positive real numbers such that p1 + p2 = 1 , then⎛
⎝p1

(∫ b
a w1(t)g(t)dt∫ b

a w1(t)dt

)1/p

+ p2

(∫ b
a w2(t)g(t)dt∫ b

a w2(t)dt

)1/p
⎞
⎠

p

�
∫ b

a w3(t)g(t)dt∫ b
a w3(t)dt

. (15)

If g is a nonnegative nondecreasing function and if (14) holds then (R15) holds.
b) If 0 < p < 1 , g is a nonnegative nonincreasing function and if (R14) holds

then (R15) holds.
If g is a nonnegative nondecreasing function and if (R14) holds then (15) holds.

Proof. Let us suppose that p > 1 , g is a nonnegative nonincreasing function
and (14) holds. Using integration by parts and discrete and integral versions of the
Minkowski inequality we have

p1

(∫ b
a w1(t)g(t)dt∫ b

a w1(t)dt

)1/p

+ p2

(∫ b
a w2(t)g(t)dt∫ b

a w2(t)dt

)1/p

= p1

(
g(b) +

∫ b

a
W1(t)dg(t)

)1/p

+ p2

(
g(b) +

∫ b

a
W2(t)dg(t)

)1/p

�
((

p1g(b)1/p + p2g(b)1/p
)p

+

⎛
⎝p1

(∫ b

a
W1(t)dg(t)

)1/p

+ p2

(∫ b

a
W2(t)dg(t)

)1/p
⎞
⎠

p⎞
⎠

1/p

�
(

g(b) +
∫ b

a

(
p1W

1/p
1 + p2W

1/p
2

)p
(t)dg(t)

)1/p

�
(

g(b) +
∫ b

a
W3(t)dg(t)

)1/p

=

(∫ b

a
W ′

3(t)g(t)dt

)1/p

=

(∫ b
a w3(t)g(t)dt∫ b

a w3(t)dt

)1/p

(16)
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where in inequality (16) condition (14) is used.
In the case that p < 0 the Bellman inequality is used instead of the discrete

Minkowski inequality, [5, p.118]. �
As in the previous theorems requirement (14) could be given in the weaker form.

Here we will give only the case when p > 1 or p < 0 . The similar results hold for
0 < p < 1 .

THEOREM 5. Let g be a nonnegative function on [a, b] . In cases a)–g) we will
suppose that g is differentiable function.

a) If g′(x) � 0 for all x ∈ [a, b] , g is convex on [a, b] and∫ x

a
W3(t)dt �

∫ x

a

(
p1W1(t)1/p + p2W2(t)1/p

)p
dt for all x ∈ [a, b] (17)

then (15) holds.
If g′(x) � 0 for all x ∈ [a, b] and g is concave on [a, b] and if (17) holds then

(R15) is valid.
b) If g′(x) � 0 for all x ∈ [a, b] , g is concave on [a, b] and∫ b

x
W3(t)dt �

∫ b

x

(
p1W1(t)1/p + p2W2(t)1/p

)p
dt for all x ∈ [a, b] (18)

then (15) holds.
If g′(x) � 0 for x ∈ [a, b] , g is convex on [a, b] and (18) is valid then (R15)

holds.
c) If g′ is a nonpositive symmetrical function on [a, b] and is nondecreasing on

[ a+b
2 , b] and if∫ b−x

a+x
W3(t)dt �

∫ b−x

a+x

(
p1W1(t)1/p + p2W2(t)1/p

)p
dt for all x ∈ [0, b−a

2 ] (19)

then (15) holds.
If g′ is a nonnegative symmetrical function on [a, b] and is nonincreasing on

[ a+b
2 , b] and if (19) holds then (R15) holds.

d) If g is concave on [a, a+b
2 ] , g′ is nonpositive left balanced on [a, b] and if

W3(x) �
(
p1W1(x)1/p + p2W2(x)1/p

)p
for all x ∈ [ a+b

2 , b] (20)

and if (19) holds, then (15) holds.
If g′ is a nonnegative right balanced function on [a, b] , g is convex on [a, a+b

2 ]
and if (20) and (19) hold, then (R15) holds.

e) If g′ is a nonpositive right balanced function on [a, b] , g is concave on [a, a+b
2 ] ,

(R20) and (19) hold, then (15) holds.
If g′ is a nonnegative left balanced function on [a, b] , g is convex on [a, a+b

2 ] ,
(R20) and (19) hold, then (R15) holds.
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f) If g is convex on [ a+b
2 , b] , g′ is nonpositive right balanced on [a, b] and if

W3(x) �
(
p1W1(x)1/p + p2W2(x)1/p

)p
for all x ∈ [a, a+b

2 ] (21)

and if (19) holds, then (15) holds.
If g′ is a nonnegative left balanced function on [a, b] , g is concave on [ a+b

2 , b]
and if (21) and (19) hold, then (R15) holds.

g) If g′ is a nonpositive left balanced function on [a, b] , g is convex on [ a+b
2 , b] ,

(R21) and (19) are valid, then (15) holds.
If g′ is a nonnegative right balanced function on [a, b] , g is concave on [ a+b

2 , b] ,
(R21) and (19) are valid, then (R15) holds.

h) If g is a nonnegative nonincreasing function on [a, b] .

W ′
3(x) �

((
p1W1(x)1/p + p2W2(x)1/p

)p)′
, for x ∈ [a, a+b

2 ],

W3(b − x) − W3(a + x) �

�
(
p1W

1/p
1 + p2W

1/p
2

)p
(b − x) −

(
p1W

1/p
1 + p2W

1/p
2

)p
(a + x) (22)

for x ∈ [0, b−a
2 ], then (15) holds.

i) If g is a nonnegative nondecreasing function on [a, b] .

W ′
3(x) �

((
p1W

1/p
1 + p2W

1/p
2

)p)′
(x), for x ∈ [ a+b

2 , b]

and if (R22) holds then (R15) holds.

The proof is similar to the proof of Theorem 3.

REMARK3. Let us denote that in these two theorems the term
(
p1W

1/p
1 + p2W

1/p
2

)p

is, in fact, a weighted means of the order 1/p for the pair (W1, W2) .

REMARK 4. A natural generalization of these theorems are to consider not only a
pair of functions (W1, W2) , but n –tuple (W1, W2, . . . , Wn).

REMARK 5. In [11] the following theorem is given.

THEOREM 6. Let g : [a, b] → R be a nonnegative and nondecreasing function,
xi : [a, b] → R (i = 1, . . . , n) be nonnegative and nondecreasing functions with
continuous first derivative. If p > 1, then

(∫ a

b

(
(

n∑
i=1

xi(t))p

)′
g(t)dt

)1/p

�
n∑

i=1

(∫ b

a
(xp

i (t))
′g(t)dt

)1/p

. (23)

If g is a nonincreasing function and xi(a) = 0 for all i = 1, . . . , n , then the reverse
inequality of (23) is valid.
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When g is nonincreasing, inequality (R23) is a simple consequence of Theorem
4 when equality holds in (14). Namely, putting:

p1 =
x1(b)

x1(b) + x2(b)
, p2 =

x2(b)
x1(b) + x2(b)

,

wi = (xp
i )

′, i = 1, 2, w3(x) =
((

x1(x) + x2(x)
x1(b) + x2(b)

)p)′
,

we have (R23) for n = 2 .
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[4] G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge Univ. Press, 1967.
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Math. - Naturwiss. Klasse (to appear)
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