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NEW GENERALIZATION OF GAUSS-POLYA’S INEQUALITY

S. ABRAMOVICH, J. PECARIC AND S. VAROSANEC

(communicated by C. E. M. Pearce)

Abstract. We consider inequality of Holder’s type
b ) b 1/pi
Ji el i ([ witostolds 11
AN bl
f: wi (x)dx il f: wi(x)dx

P P2
and give a number of results about functions w;,w,, wz which satisfy the above-mentioned
inequality. Also, in a similar way, we consider an inequality of Minkowski’s type.

In this paper we show a new way of generalization of Gauss’ result about moments.
Namely, in [8] the following theorem was proved.

THEOREM 1. Ler g : [a,b] — R be a nonnegative nonincreasing function,

x;i @ la,b] — R, i = 1,2,...,n, be nonnegative nondecreasing functions with a
continuous first derivative and x;(a) =0 forall i=1,2,....n. If p; i=1,2,...,n,
n
are positive real numbers such that Z — =1 then
io1 Pi
n b 1/pi b/ n /
I1( [ wwewar) = [ (T[]0 ) stoar 1)
i=1 \”¢ a \i=1

This Theorem is a generalization of so—called Gauss—Pdlya’s inequality, [10].
Namely,for n=2,a=0, pL=p2= 2, )C](l) — utl , )Cz(t) — vl , U, > _% we
have

b g u—v 2 b b
/Oqurvg(x)dx <(1- (m> /0x2ug(x)dx/0 XZVg(x)dx, (2)
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where g is nonincreasing function. Setting in inequality (2) b — co, u =0, v =2
we have inequality between the second and the fourth order moments which is due to
C.F. Gauss, [3].

This Gauss—P6lya’s inequality (2) can be generalized in various ways, some of
them are given in the papers [2], [6], [7], [9], [11], [12], [13], [14].

In the first part of this paper we present a number of helpful lemmas one of which
is due to Hardy [4] and the others can be proved using integration by parts, [1]. In the
second part of paper we the improve above mentioned Theorem 1 from [8]. And finally,
in the third part of text we will give an analogue result for Minkowski’s type inequality.

In this paper if the inequality has a number (n) then its reverse version (the reversed
inequality) is denoted by (Rn).

1. Preliminary results

Let us suppose that H is an integrable function on [a, b].

LEMMA 1. a)If S is a nonnegative and nondecreasing function on [a, b] and

b
/ H(t)dt <0 forall x € [a,b],

then
b
/ H(1)S(r)dr < 0.

b) If S is a nonnegative and nonincreasing function on [a,b| and
/ H(t)dt <0 forall x € [a,b],

then
b
/ H(1)S(r)dr < 0.
The statement in case a) was proved in [4, p.298] for interval [0, 1].

LEMMA 2. If S is a nonnegative and symmetrical function on [a,b], (i.e. S(a+
x) = 8(b —x) forall x € [0,%5%]), nonincreasing on [“£>,b] and if

b—x
H()dt <0 for x€[0,%54],
a+x

then

/b H(1)S(r)dr < 0.
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Proof. Using integration by parts and the symmetry of the function S we have

atb

/TH(I)S(t)dt = /M H(t)dt + /M ([# H(t)dt> dS(x).

a

+b atb
2

L " HWs@d = S(b) abH( )t — / ’ ( ) H(t)dt) as(x)

b a a+b—1
= S(a hH 1)dt — ] (/] H(t)dt> ds(r)
a+ atb atd
2 2
b @b at+b—t
= S(a) hH(l)dl+/ /h H(t)dt | dS(7)
o a o
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The terms fab H(t)dr and fxﬁbix H(t)dr are nonpositive, and the term S(a) is

nonnegative and S is nondecreasing on [a, <2

, 321, so, the whole term (3) is nonpositive
and the lemma is proved. [

Similarly, the following four lemmas could be deduced.

LEMMA 3. Let S be a nonnegative right balanced function on |a, b (right bal-
anced means that S(a+x) < S(b—x) forall x € [0,%54]), and let S be nondecreasing
on [ 7a+b} If

H(x) <0 forall x¢€ [“2,b]
and

b—x
/ H(t)dt <0 for x€[0,%54],

a-+x
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then
b
/ H()S(r)dr < 0.

LEMMA 4. Let S be a nonnegative left balanced function on [a, b] (left balanced
means that S(a + x) > S(b — x) forall x € [0,%5%]), and let S be nondecreasing on
[a, 521 If

H(x) <0 forall xe€ [ b]

and

b—x
/ H(t)dt >0 for xe€[0,%54],

+x

then
b
/ H(1)S(r)dr > 0.

LEMMA 5. Let S be a nonnegative left balanced function on |a, b and let S be

a nonincreasing on [“2,b]. If

H(x) <0 forall xE¢€ [a, %]

and

b—x
/ H(t)dt <0 for x€[0,54],

+x

then
b
/ H(1)S(r)dr < 0.

LEMMA 6. Let S be a nonnegative right balanced function on [a,b] and let S be

nonincreasing on [“£2,b]. If

H(x) <0 forall xE¢€ [a, %]

and

b—x
/ H(t)dt >0 for xe€[0,54],

+x

then

/b H(1)S(t)dr > 0.
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2. Main results

THEOREM 2. Let w;, i = 1,2, 3 be nonnegative and integrable functions on [a, b]
and let W; be defined by

Let p1,p> be positive real numbers such that pil + p% =1.

a) If g is a nonnegative nonincreasing function on [a, b] and
WP ()W (x) > Wa(x) forall x€ [a,b], (4)

then

b 2 b 1/pi
Jo wslg@ds _ r7 (j; w,-<x>g<x>dx> | 5)

fab W3(x)dx - i=1 fb W,-(x)dx

b) If g is a nonnegative nondecreasing function on |a,b] and (R4) holds then
inequality (5) is reversed.

Proof. a) Using integration by parts and Holder’s inequality [5], we obtain

\Y
o9
=
_|_
VRS
T~
S
=
o
=
~

zzlb 1
> g(b)+ / WP () WP (x) g (x)
b
> g(b)+ [ Wsi(x)dg(x)
N A
-/ W3 (x)g(x)dx = P

where g = —g.
b) The proof is similar, only instead of discrete Holder’s inequality we use Popovi-
ciu’s inequality, [5, p118]. O

Let us note that assumption (4) are used in the inequality

b b
6)+ [ W W) > 66) + [ Walode()
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Assumption (4) could be substituted by weaker assumptions by using Lemma 1 —
Lemma 6. Namely, the following theorem is valid.

THEOREM 3. Let g be a nonnegative function on [a,b]. In cases a)—g) we will
suppose that g is a differentiable function.
a)lf g'(x) <0 forall x € [a,b], g is convex on [a,b] and

/X Wi(t / HW (1))\/Pidt for all x € [a, b] (6)

then (5) holds.

If ¢'(x) > 0 forall x € [a,b] and g is concave on [a,b] and if (6) holds then
(R5) is valid.

b)If g'(x) <O forall x € [a,b], g is concave on [a,b] and

/b Wi(t / HW (0)\Pidt forall x € [a, b] (7)

then (5) holds.
If ¢ (x) 20 for x € [a,b], g is convex on [a,b] and (7) is valid then (R5) holds.
¢) If g’ is a nonpositive symmetrical function on |a,b] and is nondecreasing on

(442, b] and if

b—x 2
/ HW (NPt forall x € |0, ] (8)

then (5) holds.
If ¢’ is a nonnegative symmetrical function on [a,b] and is nonincreasing on

(<52, b] and if (8) holds then (R5) holds.

atb ]

d) If g is concave on [a, 32], g' is nonpositive left balanced on |a,b] and if

2
< I wi@)'7 forall x € [452, b] (9)
i=1

and if (8) holds, then (5) holds.

If ¢’ is a nonnegative right balanced function on |[a,b], g is convex on [a, #}
and if (9) and (8) hold, then (R5) holds.

e)If g’ is anonpositive right balanced function on [a, b], g is concave on [a, %] ,
(R9) and (8) hold, then (5) holds.

If g’ is a nonnegative left balanced function on |a,b], g is convex on [a, “5%]
(R9) and (8) hold, then (R5) holds.

atb

N If g is convex on [“52,D], g’ is nonpositive right balanced on [a, b] and if

>

2
<[ wix) i forall x € [a, 442 (10)
i=1



NEW GENERALIZATION OF GAUSS-POLYA’S INEQUALITY 337

and if (8) holds, then (5) holds.

If g’ is a nonnegative left balanced function on [a,b], g is concave on [“t2. b]
and if (10) and (8) hold, then (R5) holds.

g) If &' is a nonpositive left balanced function on [a,b], g is convex on |2 b],
(R10) and (8) are valid, then (5) holds.

If g is a nonnegative right balanced function on [a,b], g is concave on |42 b],
(R10) and (8) are valid, then (R5) holds.

h) If g is a nonnegative nonincreasing function on [a, b].
(H Wl/p’> , for x € la, M],

2 2
Wi(b—x) — Wa(a+x) < [[ W7 (b —x) = [ W!'Pi(a +x) (11)
i=1 i=1
for x € [0, 254], then (5) holds.

i) If g is a nonnegative nondecreasing function on [a, b].

(H Wl/p’> , for x € [“L D]

and if (R11) holds then (R5) holds.

Proof. First, we will prove cases a)—g). When g’ < 0 then in cases a), b), ¢), d)
and f) putting S = —g’ and H = W3 — Wll/"’1 W,/" and applying Lemmas 1b), 1a), 2,
3 and 5 respectively we obtain the statements there. In cases e) and g), if g’ < 0 we
put S = —g’ and H = W, W2/” — W, and apply Lemmas 4 and 6 respectively.
When g’ > 0 we replace S = g’ and the same method is used.

Let us prove the case h). Setting S = g and H = W} — (W//”'W)/”)" and
applying Lemma 5 we get

/ (Wl/Pl Wl/Pz / W (x
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Now, using the proof of Theorem 2 we have

1/pi
P —

II

2
i=1

- / (WP WY (g (x)dx

a
b

Wi (x)g (x)dx

WV

a

fab w3 (x)g(x)dx .
fab wi (x)dx

Case i) is proven similarly, applying Lemma3on S = g and H = (Wl1 /p W21/ P2y
wi. O

REMARK 1. Obviously Theorem 2 can be generalized in this way: Let the functions
wi, i=1,2,...,n+ 1, be nonnegative and integrable functions and W; defined as in
Theorem 2.

a) If g is a nonnegative nonincreasing function on [a, b] and

HWVP’ > W,y (x) forall x € [a,b], (12)
then y
b n b pi
Jo gt (fa wil0)g(x >dx> (13)
f W1 (x)dx e fab wi(x)dx
where p; are positive real numbers such that Z =1.

Di
Also, we get this generalization in all other cases of the Theorems 2 and 3.
REMARK 2. Now, we will show that Theorem 1 is a consequence of Theorem 2a)

when in (4) equality holds, (in fact, we will deal with n + 1 function— see Remark 1).
Let x; be a function as defined in Theorem 1. Setting: w; = x; for i = 1,2,...,n

and w,1 = ([ 1x,l/‘”’) we get:

. [T~
=12, m W () = SR 00
IT-

and

H Wl/pl = n+1

Then by using Theorem 2 we get 1nequahty (1). Therefore, Theorems 2 and 3 give us
anew way of generalization of Gauss—P6lya’s inequality.
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3. Inequalities of Minkowski’s type

The following theorems give us inequalities of Minkowski’s type.

THEOREM 4. Let w;, and W; i = 1,2,3, be functions on |a,b] defined as in
Theorem 2.

a) Let p be a real number greater than 1 or less than 0. If g is a nonnegative
nonincreasing function on |a, b] and if

(P1W1(x)l/p +P2W2(x)1/p)p > Ws(x) forall x € [a,b], (14)

where py,pa are positive real numbers such that p; + p, = 1, then

p 1p\ ¥
Sy wi(t)g(r)dr Jy wa(1)g(r)dr S ws(Dg(n)dr
|\~ | T z S
[ wi(t)dr [ wa(t)dr [, wa(r)dt
If g is a nonnegative nondecreasing function and if (14) holds then (R15) holds.
b)If 0 < p < 1, g is a nonnegative nonincreasing function and if (R14) holds

then (R15) holds.
If g is a nonnegative nondecreasing function and if (R14) holds then (15) holds.

Proof. Let us suppose that p > 1, g is a nonnegative nonincreasing function
and (14) holds. Using integration by parts and discrete and integral versions of the
Minkowski inequality we have

oy (Lme0a\™" [ eg0an)
fabwl(t)df fabwz(t)dt
/p

b 1/p b 1
P <g<b>+ / w1<r>d§<r>> +p2 <g<b>+ / w2<r>d§<r>>

> ((plg(b)”’”rng(b)l/p)p
b 1/p b p\ P\ 7
[ ( / w1<r>d§<r>> +pr ( / Wz(t)c@(t))
b , /p
> <g<b>+ / (P +p2wy”) <r>d§<r>>

» 1/p
> (g(b)+/ W3(f)d§(f)>
b

1/p b 1/p
/ | S, wa(0)g(0)dr
<a W“’)g(’)‘”) ‘( I ws (0 ) "
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where in inequality (16) condition (14) is used.
In the case that p < O the Bellman inequality is used instead of the discrete
Minkowski inequality, [5, p.118]. O

As in the previous theorems requirement (14) could be given in the weaker form.
Here we will give only the case when p > 1 or p < 0. The similar results hold for
0<p<l.

THEOREM 5. Let g be a nonnegative function on [a,b]. In cases a)-g) we will
suppose that g is differentiable function.
a)lf g'(x) <0 forall x € [a,b], g is convex on [a,b] and
X X P
/ Ws(2)dt </ (plWl(t)l/p +p2W2(t)1/p) dt forall x € |a,b] (17)
then (15) holds.
If g'(x) > 0 forall x € [a,b] and g is concave on [a,b] and if (17) holds then
(R15) is valid.
b)If g'(x) <O forall x € |a,b], g is concave on |a,b] and
b b »
/ W5 (t)dt </ (plWl(t)l/” +p2W2(t)1/”) dt forall x € [a,b] (18)

then (15) holds.

If ¢ (x) = 0 for x € [a,b], g is convex on |a,b] and (18) is valid then (R15)
holds.

¢) If g is a nonpositive symmetrical function on |a,b] and is nondecreasing on
(<2, b] and if

b—x b—x

Wi (1)dr < / (plWl(t)l/p—l— png(t)l/p)pdt forall x € (0,254 (19)

a+x a+x

then (15) holds.
If ¢’ is a nonnegative symmetrical function on [a,b] and is nonincreasing on
(52, b] and if (19) holds then (R15) holds.

d) If g is concave on [a, #], g’ is nonpositive left balanced on [a,b] and if

W3() < (pWi ()7 + paWa(0)'7)” for all x € [#42, 5] (20)

and if (19) holds, then (15) holds.

If ¢’ is a nonnegative right balanced function on |[a,b], g is convex on [a, “—erb}
and if (20) and (19) hold, then (R15) holds.

e)If ' is anonpositive right balanced function on [a, b], g is concave on [a, 45°
(R20) and (19) hold, then (15) holds.

If ¢’ is a nonnegative left balanced function on [a,b], g is convex on |[a, “—}rb]

(R20) and (19) hold, then (R15) holds.

>
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f If g is convex on [”—erb, b], g is nonpositive right balanced on [a,b] and if

W3(0) < (pWa ()7 + paWa()'?)” forall x € fa, 452 @)

and if (19) holds, then (15) holds.

If ¢’ is a nonnegative left balanced function on [a,b], g is concave on [“£2) D]
and if (21) and (19) hold, then (R15) holds.

g) If ¢ is a nonpositive left balanced function on [a,b), g is convex on [”—erb, b],
(R21) and (19) are valid, then (15) holds.

If ¢’ is a nonnegative right balanced function on [a,b], g is concave on [#, b],
(R21) and (19) are valid, then (R15) holds.

h) If g is a nonnegative nonincreasing function on [a, b).

p I
Wi(x) < ((PlWI(X)l/erPsz(x)l/p) ) , for x€la, %],
W3(b —)C) — Wg(a+x) <
P P
< (pW" W) (b= = (W W) @) (22)

for x € [0, 552], then (15) holds.
i) If g is a nonnegative nondecreasing function on [a, b].

14 !
wi) = (Wl +pwi®)') (), for xe[252,8)

and if (R22) holds then (R15) holds.

The proof is similar to the proof of Theorem 3.
P
REMARK 3. Letusdenote thatin these two theorems the term (p W ? 4 p, W, /p )
is, in fact, a weighted means of the order 1/p for the pair (W, W,).

REMARK 4. A natural generalization of these theorems are to consider not only a
pair of functions (W, W,), but n—tuple (W;, Wa, ..., W,).

REMARK 5. In [11] the following theorem is given.

THEOREM 6. Let g : [a,b] — R be a nonnegative and nondecreasing function,
x;i : a,b] — R (i = 1,...,n) be nonnegative and nondecreasing functions with
continuous first derivative. If p > 1, then

a n l 1/p n b 1/p
(/ ((Z xf(t))”> g(t)dt> = (/ (X?(f))’g(f)df> - (23
b i=1 i=1 \’4
If g is a nonincreasing function and x;(a) = 0 forall i = 1,...,n, then the reverse

inequality of (23) is valid.



342

S. ABRAMOVICH, J. PECARIC AND S. VAROSANEC

When g is nonincreasing, inequality (R23) is a simple consequence of Theorem

4 when equality holds in (14). Namely, putting:

__nb) - wb)

P +a®) 77 ) xab)
IV xi(x) + 000\
wi= (), i= 1,2, ws() ((W;b)) ) ’

1

we have (R23) for n = 2.
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