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ON THE OSCILLATION OF SECOND ORDER

NONLINEAR DIFFERENCE EQUATIONS

RAVI. P. AGARWAL AND PATRICIA J. Y. WONG

Abstract. We shall discuss two powerful techniques, namely, the averaging method, and the
inequalities method, which have been used for quite some time to establish the oscillations of
second order differential equations, whereas their use in the study of difference equations is
recent and deserves more attention.

1. Introduction

It is well known that the average function Ap(t) defined by

Ap(t) =
1

tp−1

∫ t

t0

(t − s)p−1h(s)ds, (p � 1) (1.1)

plays a crucial role in proving the oscillation of solutions of the equation

y′′ + h(t)g(y(t)) = 0, t � t0.

In fact, in the linear case important oscillation criteria of Wintner [26] and Hartman
[7,8], and for the nonlinear case of Butler [2] involve the asymptotic behavior of A2(t)
as t → ∞. Other investigations making use of the average function Ap(t) for particular
values of p for the linear case include Coles [3], Coles and Willett [4], Hartman [9],
Kamenev [11], Willett [25], and for the nonlinear case Kamenev [10], Kwong and Wong
[12], Philos [15-19], Philos and Purnaras [20,21], Wong [28-31], Wong and Yeh [27,32].
Recently Naito [14] has improved most of these oscillation criteria by considering the
general average function Ap(t), p � 1.

While in the last ten years for the oscillation of solutions of difference equations
hundreds of articles have appeared the only paper in which average function for dif-
ference equations has been touched is Erbe and Yan [5]. As a first contribution of this
paper in Section 2, we shall show that the discrete version of the average function (1.1),
which we call as average sum can be used to study the oscillatory behavior of solutions
of the second order nonlinear difference equation

Δ2yk + A(k, yk) = B(k, yk,Δyk), k ∈ N = {0, 1, · · · } (1.2)
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where Δ is the standard forward difference operator defined by Δyk = yk+1 − yk. The
important features of our study are:

1. It generalizes the integral averaging techniques used in literature to discrete case.
2. It leads to new necessary conditions for the existence of a nonoscillatory solution

of (1.2).
3. The contra positive form of the results obtained then gives rise to new oscillation

criteria for (1.2).

In the work of Graef and Spikes [6], Kwong and Wong [13], and Wong and Agarwal
[33], Volterra integral inequalities have been used successfully to obtain oscillatory
criteria for the second order differential equations. As a second contributionof this paper
in Section 3, we shall use Volterra discrete inequalities to offer sufficient conditions for
the oscillation of all solutions of the difference equation

Δ(ak(Δyk)σ) + qk+1f (yk+1) = rk, k ∈ N (1.3)

where σ is a positive quotient of odd integers odd/odd, or even over odd integers
even/odd, and {ak} is an eventually positive real sequence. Our results here extend
the work of Thandapani et al [22,23], and Zhang and Chen [36]. We also remark that
this technique has been recently employed in Thandapani et al [24] for the quasilinear
difference equations of the type

Δ(ak|Δyk|σ−1Δyk) + qk+1f (yk+1) = rk, k ∈ N.

As usual by a solution of (1.2) ((1.3)) we mean a nontrivial sequence y = {yk}
satisfying (1.2) ((1.3)) for k ∈ N. A solution {yk} is said to be oscillatory if it is
neither eventually positive nor negative, and nonoscillatory otherwise.

2. Oscillation via summation averages

With respect to the difference equation (1.2), we shall assume that there exist real
sequences {αk}, {βk} and a function f : Re → Re such that
(i) uf (u) > 0 for all u �= 0;
(ii) f (u) − f (v) = g(u, v) (u − v) for u, v �= 0, where g is a nonnegative function;

and

(iii)
A(k, u)
f (u)

� αk,
B(k, u, v)

f (u)
� βk for u �= 0, k ∈ N.

The ‘average sum’ which is the discrete analog of (1.1) for the difference equation
(1.2) is defined as follows:

Jp(k) =
1

k(p−1)

k∑
�=0

(k − �)(p−1)[α� − β�], (2.1)

where p(� 1) is an integer. For this sum, we state the following two lemmas which
will be used to obtain necessary conditions for the existence of a nonoscilltory solution
of (1.2).
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LEMMA 2.1. [34] Let p be an integer such that p � 2 . Further, suppose that bk

is defined for k ∈ N , and

lim
k→∞

k∑
�=0

b� =
∞∑
�=0

b� ∈ Re ∪ {−∞,∞}.

Then,

lim
k→∞

1
k(p−1)

k∑
�=0

(k − �)(p−1)b� = (p − 1)θ ′
∞∑
�=0

b�,

where θ ′ > 0 is given by

θ ′ =
p−2∑
j=0

(−1)j

(
p − 2

j

)
1

j + 1
.

LEMMA 2.2. [34] Let

lim
k→∞

J2(k) = λ ∈ Re ∪ {−∞,∞}.
Then, for any integer p � 3,

lim
k→∞

Jp(k) = (p − 1)(p − 2)θ ′′λ ,

where θ ′′ > 0 is given by

θ ′′ =
p−3∑
j=0

(−1)j

(
p − 3

j

)
1

j + 2
.

We shall also need the following:

DEFINITION 2.1. We say that equation (1.2) is strictly superlinear if for all k > 0 ,∣∣∣∣∣
∞∑
�=k

Δy�

f (y�)

∣∣∣∣∣ < ∞ and g(yk, yk+1)

∣∣∣∣∣
∞∑
�=k

Δy�

f (y�)

∣∣∣∣∣ � c(f ) > 1;

equation (1.2) is said to be strictly sublinear if for all T > 0, k > T + 1,∣∣∣∣∣
k−1∑
�=T

Δy�

f (y�)

∣∣∣∣∣ < ∞ and g(yk, yk+1)

∣∣∣∣∣
k−1∑
�=T

Δy�

f (y�)

∣∣∣∣∣ � d(f ) > 0;

and, equation (1.2) is linear if f (u) ≡ u and for all T > 0, k > T + 1 ,∣∣∣∣∣
k−1∑
�=T

Δy�

y�

∣∣∣∣∣ > 0.

For the rest of this section,we shall assume that equation (1.2) is strictly superlinear,
strictly sublinear, or linear.
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THEOREM 2.3. Let y be a nonoscillatory solution of (1.2) such that
(A1) y is eventually monotone, i.e., Δy is eventually of fixed sign;

(A2) there exists a constant M > 0 such that
Δyk

f (yk)
f (yk+1)
Δyk+1

� M for sufficiently

large k;
(A3) yΔy is eventually positive.

Then, either
(I) lim sup

k→∞
Jp(k) < ∞ for any integer p � 2, or

(II) lim sup
k→∞

Jq(k) = −∞ where q is any integer satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q � 2, (1.2) is strictly sublinear

q > 2 and
2M(q − 1)
(q − 2)c(f )

< 1, (1.2) is strictly superlinear

q > 2, (1.2) is linear

(2.2)

holds. Further,
(a) the conditions (A1) and (A3) are not needed for (I) to hold;
(b) in the strictly sublinear case, only condition (A3) is required for (II) to hold;
(c) in the strictly superlinear and linear cases, only conditions (A1) and (A2) are

needed for (II) to hold.

Proof. From Lemma 2.2, we see that if lim supk→∞ J2(k) = λ , then lim supk→∞
Jp(k) = (positive constant) × λ for any p � 3. Hence, in statement (I) of Theorem
2.3, it suffices to consider p = 2, and in statement (II) it suffices to consider q = 2
in the strictly sublinear case.

Let y be a nonoscillatory solution of (1.2), say, yk > 0 for k � T � 0. We shall
consider only this case because the proof for the case y is eventually negative is similar.
Let p � 2. >From (1.2), (iii), and summation by parts [1], we find

1
k(p−1)

k∑
�=T

(k − �)(p−1)[α� − β�]

� − 1
k(p−1)

k∑
�=T

(k − �)(p−1) Δ2y�

f (y�)

= − p − 1
k(p−1)

k−1∑
�=T

(k − � − 1)(p−2)

[
�∑

τ=T

Δ2yτ
f (yτ)

]
, k � T + 1

� ΔyT

f (yT)
p − 1
k(p−1)

k−1∑
�=T

(k − � − 1)(p−2) − p − 1
k(p−1)

k∑
�=T+1

(k − �)(p−2) Δy�

f (y�)

− p − 1
k(p−1)

k−1∑
τ=T

k−1∑
�=τ

(k − � − 1)(p−2) ΔyτΔyτ+1g(yτ , yτ+1)
f (yτ)f (yτ+1)
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=
ΔyT

f (yT)
(k − T)(p−1)

k(p−1) − p − 1
k(p−1)

k∑
�=T+1

(k − �)(p−2) Δy�

f (y�)

− 1
k(p−1)

k−1∑
�=T

(k − �)(p−1)Δy�Δy�+1g(y�, y�+1)
f (y�)f (y�+1)

, k � T + 1. (2.3)

Now, we define for k � T + 1 ,

wk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
�=k

Δy�

f (y�)
, a = −1, (1.2) is strictly superlinear

k−1∑
�=T

Δy�

f (y�)
, a = 1, (1.2) is strictly sublinear

k−1∑
�=T

Δy�

y�
, a = 1, (1.2) is linear.

(2.4)

In each case, we have aΔwk = Δyk/f (yk), k � T +1. Therefore, (2.3) can be rewritten
as

1
k(p−1)

k∑
�=T

(k − �)(p−1)[α� − β�] � ΔyT

f (yT)
(k − T)(p−1)

k(p−1)

− a(p − 1)
k(p−1)

k∑
�=T+1

(k − �)(p−2)Δw� − 1
k(p−1)

k−1∑
�=T

(k − �)(p−1)Δw�Δw�+1g(y�, y�+1).
(2.5)

Let

S =
∞∑

�=T

|Δw�Δw�+1|g(y�, y�+1). (2.6)

We shall consider two mutually exclusive cases, namely, S is finite and S is infinite.

Case 1. Suppose that S is finite. We will show that (I) holds. As remarked earlier, it
suffices to prove that lim supk→∞ J2(k) < ∞, or equivalently,

lim sup
k→∞

1
k

k∑
�=T

(k − �)[α� − β�] < ∞.

Substituting p=2 in (2.5), for k � T+1 we get

1
k

k∑
�=T

(k−�)[α�−β�] � ΔyT

f (yT)
k − T

k
+

a
k
wT+1−a

k
wk+1−1

k

k−1∑
�=T

(k−�)Δw�Δw�+1g(y�, y�+1).

(2.7)
If we can show that

lim
k→∞

|wk+1|
k

= 0, (2.8)
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then together with Lemma 2.1 (p = 2 ), it is clear from (2.7) that

lim sup
k→∞

1
k

k∑
�=T

(k − �)[α� − β�] � ΔyT

f (yT)
− θ ′

∞∑
�=T

Δw�Δw�+1g(y�, y�+1). (2.9)

Since S is finite, the right side of (2.9) is finite, i.e., we are done. To prove (2.8), we
shall consider two subcases, namely, (1.2) is strictly superlinear/sublinear and (1.2) is
linear.

Case 1(a). Suppose that (1.2) is strictly superlinear/sublinear. Let τ � T + 1 be an
arbitrary integer. We have

|wk+1| =

{
|wτ |1/2+

k∑
�=τ

Δ
[
|w�|1/2

]}2

�
{
|wτ |1/2 +

k∑
�=τ

|Δw�|
|w�|1/2 + |w�+1|1/2

}2

�
{
|wτ |1/2 +

k∑
�=τ

|Δw�|
2 min

{|w�|1/2, |w�+1|1/2
}

}2

. (2.10)

Using (s + t)2 � 2s2 + 2t2, and Schwarz’s inequality in (2.10), we obtain

|wk+1| � 2|wτ | + 1
2

{
k∑

�=τ

|Δw�|
min

{|w�|1/2, |w�+1|1/2
}

}2

� 2|wτ | + 1
2

{
k∑

�=τ

|Δw�|
|Δw�+1|g(y�, y�+1) min{|w�|, |w�+1|}

}

×
{ ∞∑

�=τ

|Δw�Δw�+1|g(y�, y�+1)

}
.

Thus, it follows that

0 <
|wk+1|

k
� 2|wτ |

k
+

1
2

1
k

{
k∑

�=τ

|Δw�|
|Δw�+1|

1
g(y�, y�+1) min{|w�|, |w�+1|}

}

×
{ ∞∑

�=τ

|Δw�Δw�+1|g(y�, y�+1)

}
. (2.11)

Taking limit supremum in (2.11), applying discrete l’Hospital’s rule [1], and using the
condition (A2), we get

0 � lim sup
k→∞

|wk+1|
k

� M
2

∑∞
�=τ |Δw�Δw�+1|g(y�, y�+1)

lim infk→∞ g(yk+1, yk+2) min{|wk+1|, |wk+2|} . (2.12)

In view of Definition 2.1, we have

lim inf
k→∞

g(yk+1, yk+2) min{|wk+1|, |wk+2|} > 0,



ON THE OSCILLATION OF SECOND ORDER NONLINEAR DIFFERENCE EQUATIONS 355

and hence, since S is finite, by letting τ → ∞ in (2.12)we obtain lim supk→∞ |wk+1|/k
= 0 . This proves (2.8).

Case 1(b). Suppose that (1.2) is linear. Let τ � T + 1 be an arbitrary integer. As in
Case 1(a), we obtain (2.12) with g ≡ 1. By Definition 2.1, we have

lim inf
k→∞

min{|wk+1|, |wk+2|} > 0,

using this together with the fact that S is finite, by letting τ → ∞ in (2.12) we obtain
lim supk→∞ |wk+1|/k = 0, and therefore (2.8) is proved.

Case 2. Suppose that S is infinite. We will show that (II) holds. For this, we need to
consider the following three subcases.

Case 2(a). Suppose that (1.2) is strictly sublinear. As noted earlier, it suffices to show
that lim supk→∞ J2(k) = −∞.

Let y be an eventually positive solution of (1.2) and let T be sufficiently large so
that yk > 0 and ykΔyk > 0, k � T � 0 (i.e., condition (A3) holds). Thus, wk defined
in (2.4) is positive in this case. By substituting p = 2 in (2.5), we obtain (2.7). In
the right side of (2.7), as k → ∞, the first term tends to ΔyT/f (yT), the second term
vanishes, the third term −wk+1/k is negative, and the last term tends to −θ ′S = −∞
(by Lemma 2.1, p = 2 ). Therefore, it is clear that lim supk→∞ J2(k) = −∞.

Case 2(b). Suppose that (1.2) is strictly superlinear. Let y be an eventually positive
solution of (1.2) and let T be sufficiently large so that yk > 0, and Δyk is of fixed sign
for k � T � 0 (i.e., condition (A1) holds), and also condition (A2) holds for k � T.
Let q > 2 and 2M(q − 1) < (q − 2)c(f ). To show that lim supk→∞ Jq(k) = −∞, it
suffices to prove that

lim sup
k→∞

1
k(q−1)

k∑
�=T

(k − �)(q−1)[α� − β�] = −∞. (2.13)

Let

S1(k) =
1

k(q−1)

k∑
�=T+1

(k − �)(q−2)Δw� (2.14)

and

S2(k) =
1

k(q−1)

k−1∑
�=T

(k − �)(q−1)Δw�Δw�+1g(y�, y�+1). (2.15)

Then, (2.5) with p = q can be rewritten as

1
k(q−1)

k∑
�=T

(k−�)(q−1)[α�−β�] � ΔyT

f (yT)
(k − T)(q−1)

k(q−1) −a(q−1)S1(k)−S2(k), k � T+1.

(2.16)
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We note that

|S1(k)| � 1
k(q−1)

k∑
�=T+1

(k − �)(q−2)|Δw�|

=
1

k(q−1)

k∑
�=T+1

[
(k − �)(q−1)(k − �)(q−3)

]1/2
∣∣∣∣k − � − q + 3
k − � − q + 2

∣∣∣∣
1/2

|Δw�|

�
√

2
1

k(q−1)

k∑
�=T+1

[
(k − �)(q−1)(k − �)(q−3)

]1/2
|Δw�|, k � T + 1.

Hence, by Schwarz’s inequality

[S1(k)]2 � 2

[
1

k(q−1)

k−1∑
�=T

(k − �)(q−1)Δw�Δw�+1g(y�, y�+1)

]

×
[

1
k(q−1)

k∑
�=T+1

(k − �)(q−3) Δw�

Δw�+1g(y�, y�+1)

]

� 2MS2(k)

[
1

k(q−1)

k∑
�=T+1

(k − �)(q−3) 1
g(y�, y�+1)

]
, k � T + 1

(2.17)

where we have used condition (A2) in the last inequality. Since Definition 2.1 implies
1/g(y�, y�+1) � |w�|/c(f ), it follows from (2.17) that

[S1(k)]2 � 2M
c(f )

S2(k)
1

k(q−1)

k∑
�=T+1

(k − �)(q−3)|w�|

=
2M
c(f )

S2(k)
1

k(q−1)

[
−(k − � + 1)(q−2)|w�|

q − 2

∣∣∣∣
k+1

T+1

+
k∑

�=T+1

(k − �)(q−2)

q − 2
Δ|w�|

]

� 2M
c(f )

S2(k)
1

k(q−1)(q − 2)

[
(k − T)(q−2)|wT+1| + k(q−1)|S1(k)|

]
, k � T + 1

where in the last inequality, in view of (A1), we have used the fact that w� is of fixed
sign for � � T. Now, the above relation leads to the following quadratic inequality in
|S1(k)|/S2(k)[

S1(k)
S2(k)

]2

� 2M
(q − 2)c(f )

[
(k − T)(q−2)|wT+1|

k(q−1)S2(k)
+

|S1(k)|
S2(k)

]
, k � T + 1

from which we find

|S1(k)|
S2(k)

� 1
2

[
2M

(q − 2)c(f )
+
√

Dk

]
, k � T + 1 (2.18)

where

Dk =
[

2M
(q − 2)c(f )

]2

+
8M

(q − 2)c(f )
(k − T)(q−2)|wT+1|

k(q−1)S2(k)
.
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By Lemma 2.1, S2(k) tends to (q − 1)θ ′S(= ∞) as k → ∞. Thus,

Dk →
[

2M
(q − 2)c(f )

]2

as k → ∞.

Taking limit supremum in (2.18), we get

lim sup
k→∞

|S1(k)|
S2(k)

� 2M
(q − 2)c(f )

.

Hence, there exists a T1 such that

|S1(k)| � 2M
(q − 2)c(f )

S2(k), k � T1. (2.19)

Using (2.19) in (2.16), we obtain for k � T1,

1
k(q−1)

k∑
�=T

(k − �)(q−1)[α� − β�]

� ΔyT

f (yT)
(k − T)(q−1)

k(q−1) + (q − 1)
2M

(q − 2)c(f )
S2(k) − S2(k)

=
ΔyT

f (yT)
(k − T)(q−1)

k(q−1) +
[

2M(q − 1)
(q − 2)c(f )

− 1

]
S2(k). (2.20)

Clearly, the right side of (2.20) tends to −∞ as k → ∞ and (2.13) is proved.

Case 2(c). Suppose that (1.2) is linear. Again, let y be an eventually positive solution
of (1.2) and let T be sufficiently large so that yk > 0, and Δyk is of fixed sign for
k � T � 0 (i.e., condition (A1) holds), and further condition (A2) holds for k � T.

Following the same argument as in Case 2(b), we get (2.17). Since g ≡ 1, for
k � T + 1, we find

[S1(k)]2 � 2MS2(k)
1

k(q−1)

k∑
�=T+1

(k − �)(q−3) = 2MS2(k)
1

k(q−1)

(k − T)(q−2)

q − 2
,

or

|S1(k)| �
[

2M
q − 2

(k − T)(q−2)

k(q−1) S2(k)
]1/2

, k � T + 1. (2.21)

Using (2.21) in (2.16), we get for k � T + 1,

1
k(q−1)

k∑
�=T

(k − �)(q−1)[α� − β�] � ΔyT

f (yT)
(k − T)(q−1)

k(q−1)

+ (q − 1)
[

2M
q − 2

(k − T)(q−2)

k(q−1) S2(k)
]1/2

− S2(k).
(2.22)

It is clear that the right side of (2.22) tends to −∞ as k → ∞. Hence, (2.13) is
proved. �
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COROLLARY 2.4. Suppose that the following hold
(I)′ lim sup

k→∞
Jp(k) = ∞ for some integer p � 2;

(II)′ lim sup
k→∞

Jq(k) > −∞ for some integer q satisfying (2.1).

Then, (1.2) does not have any nonoscillatory solutions satisfying (A1) – (A3).

Proof. This is the contra positive form of Theorem 2.3. �

COROLLARY 2.5. Suppose that the following hold
(III)′ lim sup

k→∞
Jq(k) = ∞ for some integer q satisfying (2.1).

Then, (1.2) does not have any nonoscillatory solutions satisfying (A1) – (A3).

Proof. This is the particular case of Corollary 2.4 when p = q. �

COROLLARY 2.6. Suppose in addition to (I)′ the following hold
(II)′′ lim inf

k→∞
Jr(k) > −∞ for some integer r � 2.

Then, (1.2) does not have any nonoscillatory solutions satisfying (A1) – (A3).

Proof. By Lemma 2.2 condition (II)′′ implies that lim infk→∞ J2(k) > −∞.
Again it follows from Lemma 2.2 that

lim sup
k→∞

Jq(k) � lim inf
k→∞

Jq(k) > −∞

for any q satisfying (2.1). Hence, in particular we get condition (II)′ . The result is
now obvious from Corollary 2.4. �

3. Oscillation via inequalities

Let α, β ∈ N , Nβ = {β , β+1, · · · } , Nα
β = {β , β+1, · · · ,α}, and for notational

simplicity, let wk = ak(Δyk)σ . In what follows, we shall assume that f : Re → Re
and satisfies the assumptions (i) and (ii) of Section 2.

LEMMA 3.1. Let the function K(k, s, y) : Nk0 × Nk0 × Re + → Re be such that
for each fixed k, s, the function K(k, s, ·) is nondecreasing. Furthermore, let {pk} be
a given sequence and {uk} , {vk} be sequences satisfying, for k ∈ Nk0 ,

uk � (�) pk +
k−1∑
s=k0

K(k, s, us) and vk = pk +
k−1∑
s=k0

K(k, s, vs).

Then, uk � (�) vk for all k ∈ Nk0 .

Proof. The proof is by induction and is obvious. �

As an application of Lemma 3.1, we have
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LEMMA 3.2. [35] Let σ = odd/odd. Suppose that {yk} is a positive (negative)
solution of (1.3) for k ∈ Nα

k0
, and there exists k1 ∈ Nα

k0
and m > 0 such that

−ak0(Δyk0)σ

f (yk0)
+

k−1∑
s=k0

[
qs+1 − rs

f (ys+1)

]
+

k1−1∑
s=k0

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

� m (3.1)

for all k ∈ Nα
k1
. Then,

ak(Δyk)σ � (�) − mf (yk1), k ∈ Nα
k1
. (3.2)

THEOREM 3.3. Let σ = odd/odd, and

∞∑
s=0

|rs| < ∞, (3.3)

−∞ <
∞∑

s=k0

qs+1 < ∞, (3.4)

g(u, v) � μ > 0 for all u, v �= 0, (3.5)
∞∑ 1

a1/σ
s

= ∞, (3.6)

∞∑ 1
as

= ∞, (3.7)

and let {yk} be a nonoscillatory solution of (1.3) such that lim infk→∞ |yk| > 0, and
there exists L > 0 such that

|Δyk|

⎧⎪⎪⎨
⎪⎪⎩

� L
1

σ−1 , σ < 1

� ∞, σ = 1

� L
1

σ−1 , σ > 1.

(3.8)

Then,
∞∑

s=k0

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

< ∞, (3.9)

lim
k→∞

ak(Δyk)σ

f (yk)
= 0, (3.10)

and

ak(Δyk)σ

f (yk)
=

∞∑
s=k

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

+
∞∑
s=k

[
qs+1 − rs

f (ys+1)

]
(3.11)
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for sufficiently large k.

Proof. Since lim infk→∞ |yk| > 0, there exist k1 � k0 and m1, m2 > 0 such that
|yk| � m1 and |f (yk)| � m2 for k ∈ Nk1 . Then, it follows from (3.3) that∣∣∣∣∣

k∑
s=k1

rs

f (ys+1)

∣∣∣∣∣ �
k∑

s=k1

∣∣∣∣ rs

f (ys+1)

∣∣∣∣ � 1
m2

k∑
s=k1

|rs| � m3, k ∈ Nk1 (3.12)

where m3 is a finite positive constant.
Suppose that (3.9) does not hold. Then, in view of (3.4) and (3.12), we see that

(3.1) is satisfied for k ∈ Nk1 if k1 is sufficiently large. Suppose that {yk} is positive
for k ∈ Nk1 . Applying Lemma 3.2, we obtain

Δyk � [−mf (yk1)]
1/σ 1

a1/σ
k

, k ∈ Nk1 . (3.13)

Summing (3.13) from k1 to (k − 1), we get

yk � yk1 − [mf (yk1)]
1/σ

k−1∑
s=k1

1

a1/σ
s

. (3.14)

By (3.6) the right side of (3.14) tends to −∞ as k → ∞ whereas the left side is
positive. The case when {yk} is negative for k ∈ Nk1 follows a similar argument.
Hence, (3.9) is proved.

Next, to prove (3.10) and (3.11), we note that (1.3) can be written as

Δwk

f (yk+1)
=

rk

f (yk+1)
− qk+1. (3.15)

Then, it follows from (ii) and (3.15) that

Δ
[

wk

f (yk)

]
=

rk

f (yk+1)
− qk+1 − wk(Δyk)g(yk+1, yk)

f (yk)f (yk+1)
. (3.16)

We sum (3.16) from k0 to (k − 1), to obtain

ak(Δyk)σ

f (yk)
=

ak0(Δyk0)σ

f (yk0)
−

k−1∑
s=k0

[
qs+1− rs

f (ys+1)

]
−

k−1∑
s=k0

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

. (3.17)

In viewof (3.4), (3.12) and (3.9), it follows from (3.17) that β= limk→∞ ak(Δyk)σ/f (yk)
exists. Letting k → ∞ in (3.17) and changing k0 to k provides

ak(Δyk)σ

f (yk)
= β +

∞∑
s=k

[
qs+1 − rs

f (ys+1)

]
+

∞∑
s=k

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

. (3.18)

Hence, (3.10) and (3.11) are proved if we can show that β = 0.
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Case 1. Suppose that β < 0. Then, (3.4), (3.12) and (3.9), respectively, for k ∈ Nk1

imply∣∣∣∣∣
∞∑
s=k

qs+1

∣∣∣∣∣ � −β
6

,

∣∣∣∣∣
∞∑
s=k

rs

f (ys+1)

∣∣∣∣∣ � −β
6

, and

∣∣∣∣∣
∞∑

s=k1

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

∣∣∣∣∣ � −β
6

.

(3.19)
Next, let k = k0 in (3.18) to obtain

ak0(Δyk0)σ

f (yk0)
= β +

∞∑
s=k0

[
qs+1 − rs

f (ys+1)

]
+

∞∑
s=k0

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

. (3.20)

Using (3.20) and also the inequalities (3.5), (3.19), we find

−ak0(Δyk0)σ

f (yk0)
+

k−1∑
s=k0

[
qs+1 − rs

f (ys+1)

]
+

k1−1∑
s=k0

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

= −β −
∞∑
s=k

[
qs+1 − rs

f (ys+1)

]
−

∞∑
s=k1

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

� −β +
β
6

+
β
6

+
β
6

= −β
2

≡ m > 0, k ∈ Nk1 ,

i.e., (3.1) is satisfied. Hence, we can apply Lemma 2.2 and obtain a contradiction as
earlier.

Case 2. Suppose that β > 0 . From the definition of β , we may assume that

wk

f (yk)
=

ak(Δyk)σ

f (yk)
� β

2
, k ∈ Nk1 . (3.21)

Now, using (3.21), (3.5) and (3.8) we find for k ∈ Nk1 ,

wkg(yk+1, yk)
ak(Δyk)σ−1f (yk+1)

=
wkg(yk+1, yk)

ak(Δyk)σ−1[f (yk+1) − f (yk) + f (yk)]

�
wk

f (yk)
g(yk+1, yk)

wk
f (yk)

g(yk+1, yk) + ak|Δyk|σ−1
�

β
2μ

β
2μ + ak|Δyk|σ−1

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β
2μ

β
2 μ + akL

, σ �= 1

β
2 μ

β
2 μ + ak

, σ = 1.

(3.22)
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It follows from (3.21) and (3.22) that

∞∑
s=k1

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

=
∞∑

s=k1

w2
s g(ys+1, ys)

as(Δys)σ−1f (ys)f (ys+1)

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β
2

∞∑
s=k1

β
2 μ

β
2 μ + asL

, σ �= 1

β
2

∞∑
s=k1

β
2 μ

β
2 μ + as

, σ = 1.

(3.23)

By (3.7) the right side of (3.23) is infinite whereas the left side is finite by (3.9). �

We note that if (3.3) and (3.4) hold, then

h0(k) =
∞∑
s=k

(qs+1 − �|rs|), k ∈ Nk0

is finite for any positive constant �. Assume that h0(k) � 0 for sufficiently large k.
Define, for a positive integer m and a positive constant K, the following series

h1(k) =
∞∑
s=k

[h0(s)]2

as + Kh0(s)
and hm+1(k) =

∞∑
s=k

[h0(s) + Khm(s)]2

as + K[h0(s) + Khm(s)]
.

CONDITION (H). For every K > 0, there exists a positive integer M such that
hm(k) is finite for m = 1, 2, · · · , M − 1 and hM(k) is infinite.

THEOREM 3.4. Let σ = odd/odd. Suppose that (3.3) – (3.7) and (H) hold. Let
{yk} be any solution of (1.3) such that (3.8) holds. Then, {yk} is either oscillatory or
satisfies lim infk→∞ |yk| = 0.

Proof. Suppose on the contrary that {yk} is a nonoscillatory solution of (1.3)
and lim infk→∞ |yk| > 0. Hence, by Theorem 3.3, {yk} satisfies (3.9) – (3.11).
Furthermore, there exists k1 � k0 and m1, m2 > 0 such that |yk| � m1 and |f (yk)| �
m2 for k ∈ Nk1 . Hence, from (3.11) we find

wk

f (yk)
=

ak(Δyk)σ

f (yk)
�

∞∑
s=k

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

+ h0(k) (3.24)

� h0(k), k ∈ Nk1 . (3.25)
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It follows from (3.25), (3.5) and (3.8) that

w2
kg(yk+1, yk)

ak(Δyk)σ−1f (yk)f (yk+1)
=

[
wk

f (yk)

]2
g(yk+1, yk)

wk
f (yk)

g(yk+1, yk) + ak(Δyk)σ−1

� [h0(k)]2μ
h0(k)μ + ak|Δyk|σ−1

�

⎧⎪⎪⎨
⎪⎪⎩

[h0(k)]2μ
h0(k)μ + akL

, σ �= 1

[h0(k)]2μ
h0(k)μ + ak

, σ = 1

⎫⎪⎪⎬
⎪⎪⎭

=
K[h0(k)]2

Kh0(k) + ak
, k ∈ Nk1

where

K =

{ μ
L

, σ �= 1

μ, σ = 1.

Therefore,
∞∑
s=k

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

=
∞∑
s=k

w2
s g(ys+1, ys)

as(Δys)σ−1f (ys)f (ys+1)

�
∞∑
s=k

K[h0(s)]2

Kh0(s) + as
= Kh1(k), k ∈ Nk1 .

(3.26)

If M = 1 in (H), then the right side of (3.26) is infinite. This is a contradiction to (3.9).
Next, it follows from (3.24) and (3.26) that

wk

f (yk)
� h0(k) + Kh1(k), k ∈ Nk1

and by using a similar technique, we obtain
∞∑
s=k

as(Δys)σ+1g(ys+1, ys)
f (ys)f (ys+1)

�
∞∑
s=k

K[h0(s) + Kh1(s)]2

K[h0(s) + Kh1(s)] + as
= Kh2(k), k ∈ Nk1 .

(3.27)
If M = 2 in (H), then the right side of (3.27) is infinite. This again contradicts (3.9).
A similar argument yields a contradiction for any integer M > 2. This completes the
proof of the theorem. �

Finally, we state three results for the case rk ≡ 0. In these results we shall use the
equation number (·)0 to denote the case rk ≡ 0.

THEOREM 3.5. [35] Let σ = odd/odd. Suppose that (3.4) – (3.7) and (H) hold.
Let {yk} be any solution of (1.3)0 such that (3.8) holds. Then, {yk} is oscillatory.
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THEOREM 3.6. [35] Let σ = odd/odd. Let {yk} be any solution of (1.3)0 such
that (3.8) holds. Suppose that (3.4) – (3.7) hold, and

ak|Δyk|σ−1 + μh0(k) > 0, k ∈ Nk0 ,

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
s=k0

[h+
0 (s)]2

as + μ
L h0(s)

= ∞, σ �= 1

∞∑
s=k0

[h+
0 (s)]2

as + μh0(s)
= ∞, σ = 1

where h+
0 (s) = max{h0(s), 0}. Then, {yk} is oscillatory.

THEOREM 3.7. [35] Suppose

∞∑
s=k0

qs+1 = ∞.

(a) If σ = odd/odd and (3.6) holds, then all solutions of (1.3)0 are oscillatory.
(b) If σ = even/odd , then a solution {yk} of (1.3)0 is either oscillatory or {Δyk} is

oscillatory.
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