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THE JENSEN–STEFFENSEN INEQUALITY

P. S. BULLEN

Abstract. In this paper a simple calculus proof is given of the Jensen-Steffensen inequality, and
of an inverse inequality due to Pečarić.

1. Introduction and notations

In a previous note [3] the basic geometric properties of convex functionswere given
a simple calculus proof. Here we extend those arguments to give an equally simple
proof of Jensen’s inequality, a converse and the extension of Jensen’s inequality due to
Steffensen; see [1, and 4; pp. 23–30.]

If f is a real-valued function defined on R it is said to be strictly convex, or just
convex, if

f ′′(x) � 0, (1)

and every sub-interval contains a point x at which f ′′(x) > 0 . It is easy to modify this
definition to allow for functions that are defined on other kinds of intervals. If −f is
convex then we say that f is concave.

In most standard references the class of convex functions is defined more generally
and then various deductions become more delicate; see [6]. However for applications
to inequalities the above definition will suffice.

Only elementary calculus will be used, but it is worth noting a deduction that can
be made from the mean value theorem.

The theorem itself is:

If f is continuouson [a, b] and differentiable on ]a, b[ then for some c, a < c < b ,

f (b) − f (a) = (b − a)f ′(c); (2)

such a point c will be called a mean-value point of f on [a, b] .
Applying (2) to arbitrary subintervals of [a, b] we get the usual consequences:

(i) if f takes the same value twice then at some point in between f ′ is zero;
(ii) if f ′ � 0 and every sub-interval contains a point at which f ′ > 0 , in

particular if f ′ � 0 with f ′(x) = 0 at only a finite number of points, then f is strictly
increasing.
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392 P. S. BULLEN

This last consequence implies that if f is convex then f ′ is strictly increasing.
A simple deduction from this is that

(
f (y) − f (x)

)
/(y − x) is strictly increasing as a

function of either x or y .
If a = (a1, a2, . . .) is a sequence of real numbers and w = (w1, w2, . . .) is a

sequence of positive numbers, with Wn =
∑n

i=1 wi, n = 1, 2, . . . then

An(a; w) =
1

Wn

n∑
i=1

wiai, n = 1, 2, . . . (3)

is the sequence of the arithmetic means of a with weight w .
For a given n � 1 it is often convenient to put

w1

Wn
= 1 − t2 − · · · − tn,

w2

Wn
= t2, . . . ,

wn

Wn
= tn.

Then 0 < 1 − t2 − · · · − tn < 1 and 0 < ti < 1, 2 � i � n and (3) will be written

An(a; t2, . . . , tn) = (1 − t2 − · · · − tn)a1 + t2a2 + · · · + tnan, .

When n = 2, 3, 4 the notation is usually changed to avoid suffices.
For suitably defined functionswewillwrite f (a) for the sequence (f (a1), f (a2), . . .) .

2. Jensen’s inequality and a converse inequality

If f is convex then an important property is that it satisfies the following inequality
due to Jensen: if n � 1 then

f

(
w1a1 + · · · + wnan

Wn

)
� w1f (a1) + · · · + wnf (an)

Wn
; (J)

or in a shorter notation,
f (An(a; w)) � An(f (a); w);

with equality only if a1 = a2 = · · · an .
Since equality under the conditions stated is trivial, it suffices to prove (J) is strict

under the assumption that not all such ai are equal. Further since if any two ai are
equal this is equivalent to considering (J) for a smaller value of n we can without loss
in generality assume when convenient that all the ai are distinct. In addition we could
allow the weights to be zero, provided only that they are not all zero. Again this is
equivalent to considering (J) for smaller values of n so there is no loss in assuming if
we want that all the weights are positive.

The usual proof of (J) is by an algebraic induction but here we give a simple
geometric induction that is based on the method used for the inequality between the
arithmetic and geometric means; see [2]. The case n = 2 was given in [3] and is
repeated here as it is needed for the induction and also because the method is the basis
of that induction.
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2.1. The case n = 2 . In this case (J) can be rewritten as

f
(
1 − s x + sy

)
� (1 − s)f (x) + sf (y), 0 < s < 1, (J2)

with equality only if x = y . To prove (J2) consider the following function obtained
from the difference between its two sides

D2(x, y; s) = D2(s) = (1 − s)f (x) + sf (y) − f
(
1 − s x + sy

)
where 0 � s � 1 and, from the above remarks, x < y .

Then (J2) is equivalent to D2(s) > 0 , 0 < s < 1 .
Since D2(0) = D2(1) = 0 we have, by (i) of section 1, that for some s0 ,

0 < s0 < 1 , D′
2(s0) = 0 ; then 1 − s0 x + s0y is a mean-value point for f on [x, y] .

Further
D′

2(s) =f (y) − f (x) − (y − x)f ′( 1 − s x + sy
)

D′′
2 (s) = − (y − x)2f ′′( 1 − s x + sy

) (4)

Since D′′
2 � 0 , and is negative in every subinterval it follows that D is concave and

that D′
2 is strictly decreasing. Hence s0 is unique, with D′

2 positive to the left of the
mean-value point, and negative to the right. Since then D2 is not constant we have that
it is positive except at s = 0, 1 , which proves (J2) .

Of course D2(s) is defined for all s ∈ R and the argument given above shows that
D′

2 is strictly decreasing for all s . This implies that D2 is negative outside [0, 1] ; that
is

D2(s)

⎧⎨
⎩

= 0 if s = 0, 1;

> 0 if 0 < s < 1;

< 0 if s < 0 or 1 < s.

(5)

In addition to proving (J2) the above argument also proves a converse inequality,
because D2(s) � D2(s0) with equality only if s = s0 . So if 0 < s < 1 ,

0 � (1 − s)f (x) + sf (y) − f
(
1 − s x + sy

)
� (1 − s0)f (x) + s0f (y) − f

(
1 − s0 x + s0y

)
with equality on the left, (J2) , only if x = y , or on the right, a converse of (J2) , if
x = y or if s = s0 .

Another point we need is to note that if we consider D2 as a function of x with
0 < s < 1 then

D′
2(x) = (1 − s)

(
f ′(x) − f ′( 1 − s x + sy)

)
,

which is negative; while if we consider D2 as a function of y with 0 < s < 1 then

D′
2(y) = s

(
f ′(y) − f ′( 1 − s x + sy)

)
,

which is positive. Hence if x′ � x < y � y′ with not both x′ = x and y′ = y then

D2(x′, y′; s) > D2(x, y; s), 0 < s < 1; (6)

in particular the the maximum value of D2(x′, y′; s) is larger than that of D2(x, y; s) .
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2.2. The case n = 3 and the general case. In a similar manner the case n = 3
of (J),

f
(
1 − s − t x + sy + tz

)
� (1 − s − t)f (x) + sf (y) + tf (z), (J3)

when 0 < s + t < 1, 0 < s < 1, 0 < t < 1 with equality only if x = y = z can be
decided by considering the function,

D3(x, y, z; s, t) = D3(s, t) = (1− s− t)f (x) + sf (y) + tf (z)− f
(
1 − s − t x + sy + tz

)
where x < y < z and

0 � s � 1, 0 � t � 1, 0 � s + t � 1. (T)

Since D3 is continuous it attains both its maximum and its minimum on (T) and if this
occurs in the interior of (T) then it occurs at a turning point. Now

∂

∂s
D3(s, t) =f (y) − f (x) − f ′( 1 − s − t x + sy + tz

)
(y − x),

∂

∂t
D3(s, t) =f (z) − f (x) − f ′( 1 − s − t x + sy + tz

)
(z − x).

(7)

So for a turning point at (s, t) we must have that

f ′( 1 − s − t x + sy + tz
)

=
f (y) − f (x)

y − x
=

f (z) − f (x)
z − x

.

By a remark following (ii) in section 1,
(
f (y)− f (x)

)
/(y−x) <

(
f (z)− f (x)

)
/(z−x) .

So D3 has no turning points in (T) and attains both its maximum and minimum values
on the boundary of (T).

However on a side of (T) the problem reduces to the previous case; for instance
when t = 0 , D3(x, y, z; s, 0) = D2(x, y; s) . Hence D3 attains its minimum value of
zero at the corners of (T), the points (0, 0), (0, 1), (1, 0) . By (6) the maximum of D3

occurs at (0, t0) where 1 − t0 x + t0z is the mean-value point for f on [x, z] .
Thus we have (J3) as well as the following converse, if 0 < s < 1, 1 < t < 1, 0 <

s + t < 1 then

(1 − s − t)f (x) + sf (y) + tf (z) − f
(
1 − s − t x + sy + tz

)
�(1 − t0)f (x) + t0f (z) − f

(
1 − t0 x + t0z

)
,

with equality only if x = y = z .
Now it is clear that this argument easily extends to the general case to give

THEOREM 1. If f is convex and if a1, a2 . . . , an are not all equal, n � 1 and if
wi � 0, 1 � i � n with Wn �= 0 then

(a)

f

(
w1a1 + · · · + wnan

Wn

)
� w1f (a1) + · · · + wnf (an)

Wn

with equality only if all the ai with associated non-zero wi are equal; and
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(b)

w1f (a1) + · · · + wnf (an)
Wn

− f

(
w1a1 + · · · + wnan

Wn

)

� (1 − t0)f (m) + t0f (M) − f
(
1 − t0 m + t0M

)
,

where m, M are, respectively the smallest and the largest of the ai with associated
non-zero wi , and where 1 − t0 m + t0M is the mean-value point for f on [m, M] .
There is equality in (b) only if either all the ai with associated non-zero wi are equal
or if all the wi are zero except those associated with m and M , and then these have
weights 1 − t0, t0 respectively.

3. The Steffensen inequality

We now turn to the interesting extension of Jensen’s inequality due to Steffenesen
that allows a certain range of negative weights.

3.1. The case n = 3 .
While D2(s) is positive precisely on the interval ]0, s[ , see (5), the function D3(s, t)

is positive on a region larger than the interior of the triangle (T). This is because D3 is
continuous and positive on the whole of (T) except for the corners. Precisely D3 � 0
in the region bounded by the 0 -level curve of D3 that contains the triangle (T); this
curve passes through the corners of (T).

This region depends, in general, on the values of x, y, z . Thus if x = y it is the
strip 0 � t � 1 , while if y = z it is the strip 0 � s + t � 1 . The question to be
taken up is to find, if possible, a region larger than (T) that does not depend on x, y, z ,
as (T) does not so depend, and on which D � 0 . The region we are looking for is
S = ∩{(x,y,z);x<y<z}{(s, t); D3(x, y, z; s, t) � 0} .

If T is a proper subset of S then Jensen’s inequality will hold for certain negative
values of the weights. This is the result of Steffensen.

It follows from the above that S is a subset of the parallelogram common to the
two strips 0 � t � 1 and 0 � s + t � 1 ; that is the region:

0 � s + t � 1, 0 � t � 1. (P)

Note that this parallelogram, unlike the triangle (T), is not symmetric with respect to the
variables s, t and so the condition x � y � z will be needed for Steffensen’s extension
to hold.

Since, as we have observed, D3 reduces to a D2 on each of the sides of (T) it
follows from the observations made about D2 , (5), that D3 < 0 on the extensions of
these sides; that is D3(s, t) < 0 if (i) t = 0 and s < 0 or s > 1 ; (ii) s = 0 and t < 0
or t > 1 (iii) s + t = 1 and t < 0 or t > 1 .

In addition considerations of the partial derivatives of D3 at the corners of (T)
show that D3 < 0 in the regions containing the external angles of (T); that is the regions



396 P. S. BULLEN

bounded by two rays on which we have just seen that D3 is negative. For instance
consider the third quadrant which is one of these regions.

∂

∂s
D3(0, 0) =f (y) − f (x) − f ′(x)(y − x)

=(y − x)
(

f (y) − f (x)
y − x

− f ′(x)
)

= (y − x)
(
f ′(c) − f ′(x)

)
∂

∂t
D3(0, 0) =f (z) − f (x) − f ′(x)(z − x)

=(z − x)
(

f (z) − f (x)
z − x

− f ′(x)
)

= (z − x)
(
f ′(d) − f ′(x)

)
,

for some c, d where x < c, d < z ; in addition using properties of convexity mentioned
in section 1, c < d . Hence both of these partial derivatives are positive which implies
that D3 is negative in the third quadrant.

The other corners can be handled in a similar manner.
The tangent to the 0-level curve at the origin makes an angle θ1 with the positive

s -axis where

tan θ1 = −∂D3/∂s (0, 0)
∂D3/∂t (0, 0)

= − (y − x) (f ′(c) − f ′(x))
(z − x) (f ′(d) − f ′(x))

,

and so
−1 < tan θ1 < 0.

This implies that the line s + t = 0 crosses the 0-level curve at the origin, being on the
side of (T) when s < 0 .

Similarly the tangent to the 0-level curve at the (0, 1) makes an angle θ2 with the
positive s -axis where

tan θ2 = − (y − x) (f ′(c) − f ′(z))
(z − x) (f ′(d) − f ′(z))

, ,

and so
−1 < tan θ2 < 0.

This implies that the line s + t = 0 crosses the 0-level curve at this point, being above
the curve when s < 0 .

A similar discussion at the point (1, 0) leads to an angle with a tangent that is
sometimes positive and sometimes negative depending on the values of x, y, z ,since
there we have, with the obvious notation that

tan θ3 = − (y − x) (f ′(c) − f ′(y))
(z − x) (f ′(d) − f ′(y))

,

and so as is to be expected this corner is of no interest to us.
At the first two corners we have that at least locally D3 is positive on the sides of

(P). We now show that in fact D3 is positive on these two sides of (P).
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Let us put φ(s) = D3(s, 1) when

φ ′(s) = f (y)− f (x)− f ′(−sx+sy+z)(y−x), φ ′′(s) = −f ′′(−sx+sy+z)(y−x)2.

So φ is concave, zero at s = 0 , with a uniquemaximumat s0 < 0 , where −s0x+s0y+z
is a mean-value point of f on [x, y] .

Now consider γ (s) = D3(s,−s) . A similar argument shows that γ is concave,
zero at s = 0 with a unique maximum at s1 < 0 where x + s1y − s1z is a mean-value
point of f on [y, z]

So finally consider

D3(−1, 1) = f (x)−f (y)+f (z)−f (x−y+z) = (f (x) − f (x + h))−(f (y) − f (y + h)) ,

where h = z − y . Hence by the convexity of f , we get that D3(−1, 1) > 0 .
So D3 is positive on the sides of (P) except at the corners of (T) and so by the

general properties of D3 we have that on (P) D3 � 0 , being zero only at the corners of
(T) ; in addition D3 attains its maximum value on one of the sides of (P).

Thus in particular we have,on rewriting the inequalities that define (P), that if
x � y � z then (J3) holds, if

0 < 1 − s − t < 1, 0 < 1 − t < 1,

with equality only if x = y = z . This is Steffensen’s extension of Jensen’s inequality
in this case; see [1; p.25].

3.2. The case n = 4 and the general case. Since, as we have seen, there is
no Steffensen extension in the case n = 2 , the preceding result is the first step in the
inductive proof of the Steffensen theorem. As a result, to see how the induction proceeds
we will consider the case n = 4 .

Here the function to look at is,

D4(w, x, y, z; s, t, u) = D4(s, t, u) = (1 − s − t − u)f (w) + sf (x) + tf (y) + uf (z)

− f
(
1 − s − t − u w + sx + ty + uz

)
,

with w < x < y < z and

0 � s + t + u � 1, 0 � t + u � 1, 0 � u � 1. (S)

As before the function D4 attains both its maximum and minimum values on (S) on
the boundary of (S). Unlike the case of (T), and its higher dimensional analogues, the
fundamental simplices, the restriction of D4 to a face of (S) does not immediately
reduce to a case of a lower value of n . However as we will see, it is possible on each
face to make this reduction in at most two steps.

There are six cases to consider:

(I) u = 0; (II) u = 1; (III) t + u = 0;

(IV) t + u = 1; (V) s + t + u = 0; (VI) s + t + u = 1.
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3.2.1. Case (I). Here a simple reduction occurs: D4(w, x, y, z; s, t, 0) = D3(w, x, y;
s, t) , and 0 � s + t � 1 , 0 � t � 1 . So on this face D4 � 0 by the case n = 3
discussed in section 3.1.

3.2.2. Case (II). In this case 0 � −s − t � 1, 0 � −t � 1 and we have to show
that D4(w, x, y, z; s, t, 1) � 0 . Now,

(−s − t)f (w)+sf (x) + tf (y) + f (z)

=(−s − t)f (w) + (s + t)f (x) − tf (x) + tf (y) + f (z),

�(−s − t)f (w) + (s + t)f (x) + f (−tx + ty + z), by the case n = 3,

�f (−s − t w + s + t x + [−tx + ty + z]) , by the case , n = 3,

=f (−s − t w + sx + ty + z) ,

which gives this case.

3.2.3. Case (III). Here 0 � s � 1, 0 � −t � 1 and we have to consider
D4(w, x, y, z; s, t,−t) . Now

(1 − s)f (w) + sf (x) + tf (y) − tf (z) �f (1 − s w + sx) + tf (y) − tf (z), by (J2),

�f (1 − s w + sx] + ty − tz), by the case n=3,

=f (1 − s w + sx + ty − tz).

So D4(w, x, y, z; s, t,−t) � 0 .

3.2.4. Case (IV). Now 0 � −s � 1, 0 � t � 1 and we must show that
D4(w, x, y, z; s, t, 1 − t) � 0 . Now,

−sf (w) + sf (x) + tf (y)+(1 − t)f (z)

� − sf (w) + sf (x) + f (ty + 1 − t z), by (J2),

�f (−sw + sx + [ty) + 1 − t z]), by the case n = 3,

which gives this case.

3.2.5. Case (V). Here 0 � −s � 1, 0 � −s − t � 1 and

f (w) + sf (x)+tf (y) + (−s − t)f (z)

=f (w) + sf (x) − sf (y) + (s + t)f (y) + (−s − t)f (z),

�f (w + sx − sy) + (s + t)f (y) + (−s − t)f (z), by the case n = 3,

�f ([w + sx − sy] + s + t y + −s − tz), by the case n = 3,

=f (w + sx − sy + ty + −s − tz),

which show that D4(w, x, y, z; s, t,−s − t) � 0 .

3.2.6. Case (VI). Like Case (I) this case reduces directly to a case where n = 3
for D4(w, x, y, z; 1 − t − u, t, u) is just D3(x, y, z; t, u) and 0 � t + u � 1, 0 � u � 1 .

These arguments can readily be extended to higher value of n to give
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THEOREM 2. If n > 2 inequality (J) holds for real weights provided a1 � a2 �
· · · � an and the weights satisfy

Wn �= 0, and 0 � Wi

Wn
� 1, 1 � i � n. (8)

There is equality only if the ai with non-zero weights are all equal.

4. Some final remarks

4.1. A general induction argument. While the induction needed for Theorem 2
can be carried out from the above arguments the pattern used in the n = 4 case may not
be immediately clear. So we give the general induction agument here; it can be found
in [1] but that journal may not be readily available.

If (8) holds we can assume without loss in generality that Wn > 0 , when, from
(8) , w1 � 0, wn � 0 . If every wi � 0, 1 � i � n then Theorem 2 follows from
Theorem 1 so there is nothing to prove. Suppose then that for some p, 1 < p < n we
have wi � 0, 1 � i < p and wp < 0 . Then, with all the assumptions of Theorem 2:

An (f (a); w) =
Wp−1

Wn
Ap−1 (f (a); w) +

1
Wn

n∑
i=p

wif (ai),

�Wp−1

Wn
f (Ap−1(a; w)) +

1
Wn

n∑
i=p

wif (ai), by (J),

=
Wp−1

Wn
f (Ap−1(a; w))−Wp−1

Wn
f (ap)+

Wp

Wn
f (ap)+

1
Wn

n∑
i=p+1

wif (ai).
(9)

Now the coefficients Wp, wp+1, . . . , wn satisfy condition (8) and so we can apply the
induction hypothesis to last two terms in (9) to get

An (f (a); w) � Wp−1

Wn
f (Ap−1(a; w))

−Wp−1

Wn
f (ap) + f

⎛
⎝Wp

Wn
ap +

1
Wn

n∑
i=p+1

wiai

⎞
⎠ .

Finally the coefficients Wp−1/Wn, −Wp−1/Wn, 1 allow us to apply the case n = 3 of
Theorem 2 to get (J).

4.2. The case of a general interval. It was stated in section 1 that everything is
easily extended to the case of a function that is convex on a general interval. However
there is one point that needs to be made. If f is convex on the interval I then of course
in Theorems 1,2 ai ∈ I, 1 � i � n , but now we have to show that An(a; w) ∈ I . This
is obvious in the case of Theorem 1 since it is well known and trivial that in the case of
non-negative weights

min
1�i�n

ai � An(a; w) � max
1�i�n

ai,
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see for instance [4; p.35]. However this is not so clear in the case of Theorem 2. The
following lemma that appears in [1] covers this situation.

LEMMA 3. If a1 � · · · � an then

a1 � An(a; w) � an,

iff the weights satisfy (8).

Proof. By the Abel summation formula

An(a; w) = an − 1
Wn

n−1∑
i=1

Wi(ai+1 − ai),

which gives the sufficiency of (8).
Taking a1 = · · · = ak = −1, ak+1 = · · · = an = 0 for 1 � k � n gives the

necessity of (8). �

4.3. A final remark. It should be remarked that the comments at the beginning of
section 3.1 show that Steffensen’s extension of (J) is best possible. There is no larger
domain of weights than that given by (8) for which (J) can hold for all choices of a .

5. An inverse inequality

Simple considerations of the case n = 3 show that a converse for (J) in the
Steffensen extension is not obtainable. The maximum of D3 in (P) occurs on the
boundary, but which section of the boundary depends on the relation between x, y and
z .

However we can ask when the inverse of (J) holds, that is (J) with the � sign
replaced by the � sign; call this inequality (∼ J).

If n = 2 then (5) shows that (∼ J 2 ) holds if either s � 0 , or s � 1 . If n = 3
the discussion in section 2.2 shows that (∼ J 3 ) will hold if either (i) s + t � 1, t � 1 ,
(ii) s + t � 1, t � 0 , (iii) s + t � 0, t � 0 , or (iv) s + t � 0, t � 1 .

In general Pečarić, [5], has proved the following theorem. First let us write

Wk = wn + · · · + wk = Wn − Wk, 2 � k � n; W1 = Wn.

THEOREM 4. If f is convex, n > 1 , Wn > 0 and a1 � · · · � an then (∼ J) holds
iff for some m, 1 � m � n ,

Wk � 0, 1 � k < m and Wk � 0, m < k � n. (10)

[It is understood that if m = 1 then the first condition in (10) is empty and that
second is empty if m = n .]

Proof.
If n = 2, 3 this theorem reduces to the two special cases discussed above. The

necessity part of this theorem is given in [5]; here we will give an alternative proof of
the sufficiency by modifying the argument of section 4.1.
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As the case n = 2 is given above let us assume the result is known for all integers
less than n and suppose that (10) holds for m = p , 1 < p < n ; (the cases of p = 1 or
p = n are handled in a similar manner but the details are simpler). Then as in section
4.1, but using the induction hypothesis for (∼ J p−1 ) with m = p − 1 ,

An (f (a); w) � Wp−1

Wn
f (Ap−1(a; w)) − Wp−1

Wn
f (ap) +

Wp

Wn
f (ap) +

1
Wn

n∑
i=p+1

wif (ai).

(11)
Now the coefficients Wp, wp+1, . . . , wn satisfy (10) with m = 1 and so again using the
induction hypothesis we have from (11),

An (f (a); w) � Wp−1

Wn
f (Ap−1(a; w))

−Wp−1

Wn
f (ap) + f

⎛
⎝Wp

Wn
ap +

1
Wn

n∑
i=p+1

wiai

⎞
⎠ .

Finally the coefficients Wp−1/Wn,−Wp−1/Wn, 1 satisfy (10) with m = 3 and so using
the induction hypothesis again we get (∼ J) holds for the integer n . �

As a final remark note that if f is convex on an interval I we need two extra
conditions to ensure the validity of Theorem 4:
(i) An(a; w) ∈ I ; for obvious reasons;
(ii) [a1, an] ⊂ I , for if [a1, an] = I then, by Lemma 3, (i) cannot hold.
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[4] P. S. BULLEN, D. S. MITRINOVIĆ & P. M. VASIĆ, Means and Their Inequalities, Reidel Publishing Co.

Dordrecht–Boston, 1988.
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