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DELAY–DIFFERENCE EQUATIONS WITH PERIODIC

COEFFICIENTS: SHARP RESULTS IN OSCILLATION THEORY

Y. DOMSHLAK

Abstract. The following aspects of oscillation theory for Delay-difference equation

x(n + 1) − x(n) + b(n)x(n − k) = 0, k ∈ N, b(n) � 0, n � n0 (1)

are investigated:
1. Two following facts are equivalent:

a) There exists at least one non-oscillatory solution of Eq. (1).
b) There is no regularly (slowly) oscillatory solution of Eq. (1).

2. An explicit condition for oscillation of all solutions of Eq. (1), in which b(n) � a(n) � 0 ,
a(n + r) = a(n) ∀n , is elaborated. In the particular case b(n) = a(n), ∀n it turns to
the sufficient and necessary condition. For some particular cases [{r = k}; {r = k + 1};
{k = 1, r = 3 or 4}; {r = 2}] this condition is formulated in a recognisable form in terms
of coefficients.

1. Introduction

A new method for investigation of oscillation properties of discrete difference
equations was elaborated in our papers [1], [2], [3]. It can be defined as Discrete version
of Sturmian Comparison Method. In this work a further development of the method is
presented.

In order that the presented results should be recognisable, we will be considering
the simplest DΔE only: so called (see [5]) “Delay-difference equation” (DΔE )

x(n + 1) − x(n) + b(n)x(n − k) = 0, k ∈ N, b(n) � 0, n � n0 (1)

with both general (non-periodic) and periodic coefficients.
We would like that the principal idea should be as clear as possible. And so, we

don’t touch here on such important problems in oscillation theory as
— oscillation properties of Eq. (1) with an oscillating coefficient b(n) ,
— obtaining the explicit upper estimates for lengths of sign-preservation intervals of

solutions.
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We will be considering the equation

y(n − 1) − y(n) + b̃(n + k)y(n + k) = 0, n � n0, b̃(n) � 0 (2)

which is closely connected with Eq. (1).
We list here some results, proved in [1]–[3] which are adapted for Eq. (1) and

formulated in convenient form.

THEOREM A. [1] Let p , q ∈ N , q − p � k + 1 , {b0(n)}∞1 , 0 � b0(n) � b(n) ,∑k
j=1 b0(n + j) > 0 ∀n and {z(n)}∞1 , z(n) > 0 be arbitrary sequences and the

following conditions hold:

1◦

b(i) � sin(νz(i)b0(i))

sin(ν
∑i+k

i+1 z(n)b0(n))

i∏
l=i−k

sin(ν
∑l+2k

l+k+1 z(n)b0(n))

sin(ν
∑l+2k

l+k z(n)b0(n))
(3)

for ∀i ∈ 〈 p − k, q〉 ;
2◦

q+k∑
p+1+k

z(n)b0(n) � π
ν

,
π
ν

�
i+k∑

p+1+k

z(n)b0(n) � 2π
ν

, i ∈ 〈 q + 1, q + k〉 .

Then any solution of Eq. (1) has at least one change of sign on the interval 〈 p− k, q〉 .

Define a sequence {d0(i)}∞1 by the following expression:

d0(i) :=
1

z(i)

i+k∏
l=i

(
l+k∑
l

z(n)b0(n)

)[
i+k∏

l=i+1

(
l+k∑
l+1

z(n)b0(n)

)]−1

. (4)

By the limiting transition ν → 0 in (3) we have the following:

THEOREM B. [1] Let the sequences {b0(i)} and {z(n)} be as above and∑∞ z(n)b0(n) = ∞ . If

lim inf
n→∞ d0(n) > 1 (5)

then all solutions of Eq. (1) are oscillatory.

Remark 1. Let b0(n) > 0 ∀n and put z(n) :=
1

b0(n)
in (4). Then Cond.(5)

reduces to the well known Ladas’s condition

lim inf
n→∞ b(n) >

kk

(k + 1)k+1
. (6)
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Definition 1. We call an interval 〈 p, q〉 as regular half-cycle of Eq. (1) if there
exists a solution {x(n)} such that

x(n) � 0, n ∈ 〈 p − k, p〉 ; x(n) > 0, n ∈ 〈 p + 1, q〉 ; x(q + 1) � 0. (7)

Definition 1 ′ . We call an interval 〈 p, q〉 as regular half-cycle of Eq. (2) if there
exists a solution {y(n)} such that q − p � k + 1 and

y(p) � 0; y(n) > 0, n ∈ 〈 p + 1, q〉 ; y(n) � 0, n ∈ 〈 q + 1, q + k〉 . (8)

Definition 2. We call Eq. (1) or Eq. (2) regularly (or slowly) oscillatory if for ∀n0

there exists a regular half-cycle 〈 p, q〉 such that p > n0 .

Definition 3. An oscillatory solution of Eq. (1) or Eq. (2) for which all its half-
cycles 〈 p, q〉 are such that q − p � k , called quickly oscillatory solution.

THEOREM C [C ′ ]. (Sturmian Oscillation Theorem.) If

b(n) � b̃(n) � 0 [b̃(n) � b(n) � 0], ∀n � n0 (9)

and Eq. (2) [Eq. (1)] has at least one regularly oscillatory solution, then all solutions
of Eq. (1) [Eq. (2)] are oscillatory.

An equivalent formulation of Th. C[C ′ ] is the following

THEOREM D[D ′ ]. (Sturmian Non-Oscillation Theorem.) If
b(n) � b̃(n) � 0 [b̃(n) � b(n)] ∀n � n0

and Eq. (1) [Eq. (2)] has at least one non-oscillatory solution, then Eq. (2) [Eq. (1)]
has no regularly oscillatory solution �

Note that Theorems C, C ′ , D and D ′ are also true for more general difference
equations rather than Eq. (1).

2. Existence of a non-oscillatory solution

The main result of this section is following:

THEOREM 2.1. Let {γn}∞k , 0 < γn � 1, γn ≡ 1, n = −k, 0 be an arbitrary
sequence and

0 � b(n) � (1 − γn+1)
n∏

n−k+1

γj, n � 0. (10)
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Then Eq. (1) has at least one solution {x(n)}∞k such that

n∏
1

γj � x(n) � 1, x(n) � x(n − k) ·
n∏

n−k+1

γj, n � 0. (11)

The proof of Th. 2.1 based on the well known Schauder-Tichonov Fixed Point
Theorem: Consider the Banach space l∞ := {{un}∞−k : supn ‖un‖ < ∞} and an
operator Φ : l∞ → l∞ which is continuous in W∗ -topology of l∞ . If Sγ is a convex
set belonging to l∞ and ΦSγ ⊂ Sγ then there exists x ∈ Sγ such that Φx = x .

Proof of Th. 2.1. We define the set Sγ ⊂ l∞ as follows:

Sγ :=

{
u ∈ l∞ : un=1, n=−k, 0;

n∏
1

γi�un�1 and un�un−k

n∏
n−k+1

γi for n�1

}
(12)

1◦ The set Sγ is convex. (We omit the proof of this simple fact).
2◦ Define the operator Φ : l∞ → l∞ by the following equality:

vn = (Φu)n :=

{
1, n = −k, 0∏n−1

j=0 [1 − b(j) uj−k
uj

], n � 1 (13)

3◦ Show that the operator Φ maps of Sγ inself. Indeed, vn = 1 for ∀n = −k, 0.
For n � 1 we have

vn =
n−1∏

0

[1 − b(j)
uj−k

uj
] �

n−1∏
0

⎡
⎣1 − (1 − γj+1)

j∏
j−k+1

γl· 1∏j
j−k+1 γl

⎤
⎦

=
n−1∏

0

γj+1 =
n∏
1

γj , and vn � 1 . (14)

Further,

vn

vn−k
=

n−1∏
j=n−k

(1 − b(j)
uj−k

uj
) �

n−1∏
j=n−k

[1 − (1 − γj+1) ·
j∏

j−k+1

γl ·
γ∏

j−k+1

γ−1
l ]

=
n∏

n−k+1

γj. (15)

Thus, ΦSγ ⊂ Sγ .
4◦ Now consider the Banach space l1 := {{wn}∞−k :

∑∞ |wn| < ∞} and
define the following neighborhoods system of u(0) ∈ l∞ constructed by the elements
{w(1), w(2), . . . , w(N)} ⊂ l1 :

Ωw(1),...,w(N) (u(0)) := {u ∈ l∞ :
∞∑

n=1

|un − u(0)
n ||w(i)

n | < ∞, i = 1, N}. (16)
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This Ω -system defines a W∗ -topology in l∞ . This topology is equivalent to the
convergence in lloc

∞ :

u(m) lloc∞→ u(0) ⇐⇒ {‖u(m)‖∞ < ∞ and lim
m→∞ u(m)

n = u(0)
n ∀n}.

5◦ We omit the proof of the following evident fact: the operator Φ is continuous
with respect to the topology of lloc∞ . So, there exists x ∈ Sγ such that Φx = x , i.e.

xn+1 =
∏n

0(1− b(j)
xj−k

xj
) ⇐⇒ xn+1

xn
= 1− b(n)

xn−k

xn
⇐⇒ Eq. (1) with the conditions

(11). �

REMARK. For the particular case γn = k
k+1 ∀n this result was proved in [4]. The

Cond. (10) for such {γn} turns to be

b(n) � kk

(k + 1)k+1
, ∀n � n0. (17)

3. Delay-difference equations which are not possessing
regular oscillatory solutions

We define the following properties of any Delay-difference equation (DΔE ):
The AOS-property: All solutions of DΔE are oscillatory.
The ENO-property: There is at least one non-oscillatory solution of DΔE .
The NRO-property: DΔE has no regularly oscillation solution.
The ANO-property: All solutions of DΔE are non-oscillatory.
When the question about the negation of AOS-property is investigated, efforts

are directed to proving that ENO-property is present. Doing this, all the information
concerning other solutions is lost. Our method allows to single out several classes of
difference equations possessing the NRO-property.

Consider again Eqs. (1) and (2).
Suppose that y(i) > 0 on i � i0 is a solution of Eq. (2). Denote ψ(n) :=

y(n − 1)
y(n)

. Then y(n) =
∏n

j=1 ψ
−1(j) and

b̃(n) � [1 − ψ(n − k)]
n∏

l=n−k+1

ψ(l). (18)

From Th. D ′ it follows:

THEOREM 3.1. Let {ψ(n)}∞1 , 0 < ψ(n) � 1 , be an arbitrary sequence and

b(n) �
n∏

n−k+1

ψ(l)· [1 − ψ(n − k)], n � n0. (19)

Then Eq. (1) possesses the NRO-property.

Compare the conditions (13) and (10) in Ths 3.1 and 2.1. The following Lemma
shows that they are equivalent.
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LEMMA 3.2. Let {γ (n)}∞−k be an arbitrary sequence with 0 < γ (n) � 1 and

C(n) := [1 − γ (n + k)]·
n+k−1∏

n

γ (j), n � −k. (20)

Then there exists a sequence {ψ(n)}, 0 < ψ(n) � 1 , such that {C(n)} can be
represented in the form

C(n) = [1 − ψ(n − k)]·
n∏

n−k+1

ψ(j) (21)

as well and vice versa.

Proof. Consider a set S of double-sided sequences:

S := {(. . . ,ψ(−1),ψ(0),ψ(1), . . .), 0 < ψ(n) � 1,−∞ < n < ∞}

with the following identification:

u, v,∈ S : u ≡ v ⇐⇒ ∃m0 ∈ Z such that u(n) = v(n + m0), −∞ < n < ∞.

Denote by R the following “turn-over”-operator on S:

ũ = Ru , ũ(n) = u(−n) , −∞ < n < ∞

and define two operators T and T∗ on S as follows:

g(n) = (Tψ)(n) := ψ(n) . . .ψ(n + k − 1)· [1 − ψ(n + k)]

h(n) = (T∗ψ)(n) := [1 − ψ(n − k)]·ψ(n − k + 1) . . .ψ(n), n ∈ 〈−∞, +∞〉 .

It is obvious, that operators T and T∗ are connected by the equalities T = T∗R and
T∗ = RT since R−1 = R .

Let us show that the ranges of the operators T and T∗ are the same, i.e. TS = T∗S .
Indeed, let g(0) ∈ TS =⇒ ∃ψ (0) ∈ S be such that g(0) = Tψ (0) . Then

g(0) = Tψ (0) = T∗Rψ (0) = T∗ψ̃ (0) ∈ T∗S.

The inverse inclusion will be proved analogously. So, the sets TS and T∗S are
identical, and the equation T∗ψ = Tγ will be solvable with respect to ψ , if γ is given
and vice versa. �

From the recent Lemma the following important statement holds:
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THEOREM 3.3. Eq. (1) has at least one non-oscillatory solution if and only if
there is no regular oscillatory solution of this equation.

REMARK. The analogous statement for the second order differential equation is
well known more than 100 years. But for a difference equation it is established here by
the first time. However, this fact is not universal at all. In many cases (for example,
for the four-term difference equation) such statement may be not true. There exists a
suitable counterexample.

Now we define a sequence {d0(n)} by

d0(n) :=
1

z(n)
·

n+k∏
l=n

( l+k∑
l

z(j)b0(j)
)
·
[

n+k∏
l=n+1

( l+k∑
l+1

z(j)b0(j)
)]−1

, n � n0 , (22)

inwhich z(n) will be an arbitrary positive sequence and b0(n) be such that is formulated
as below in Th. 3.4.

Note the following important fact: the last expression and the formula (4) for
d0(n) are identical (with changing b0(n) to b0(n) , of course).

THEOREM 3.4. Let b0(n) � b(n) � 0, n � n0, {z(n)} be an arbitrary positive
sequence and

d0(i) � 1, ∀i . (23)

Then Eq. (1) possesses ENO- and NRO-properties.

Proof. Since b0(n) � b(n) , from (22) follows

b(n) � z0(n)b0(n)·
n+k∏
n+1

( l+k∑
l+1

z(j)b0(j)
)
·
[

n+1∏
n

( l+k∑
l+1

z(j)b0(j)
)]−1

, n � n0. (24)

One can check that (24) turns to the inequality (13) with

ψ(n) :=
n+2k∑

n+k+1

z(j)b0(j)·
(

n+2k∑
n+k

z(j)b0(j)

)−1

, (25)

and so, the condition (23) implies the ENO- and NRO-properties. �

It’s useful to formulate the following statement as well:

THEOREM 3.5. Let {z(n)} will be an arbitrary sequence and {d(n)} defined by

d(n) :=
1

z(n)
·

n+k∏
n

( l+k∑
l

z(j)b(j)
)
·
[

n+k∏
n+1

( l+k∑
l+1

z(j)b(j)
)]−1

. (26)

Then two following statements are true:
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a) If

lim inf
n→∞ d(n) > 1, (27)

then Eq. (1) possesses AOS-property;
b) If

d(n) � 1 for n � n0, (28)

then Eq. (1) possesses ENO- and NRO-properties.

Proof. Proof follows from Ths. 2.1 and 3.4. �
Let us expose some observations related to statements a), b) in Th. 3.5.
Conditions (27) and (28) do not exhaust, of course, all arising possibilities. In

other words, there exist sequences {b(n)} for which neither (27) nor (28) are satisfied.
Therefore (27) is a sufficient condition for Eq. (1) only to have the AOS-property.
However, if it is possible to choose a sequence {z(n)} that the corresponding sequence
{d(n)} will be constant [d(n) ≡ d, ∀n] , then two sets of equations of type (1) for
which, respectively, conditions (27) and (28) are satisfied, are exact complement to
each other. In other words, the following statement is true:

THEOREM 3.6. Let {z(n)} be a positive sequence such that d(n) ≡ d = const ∀n ,
in which d(n) is defined by (26). Then Eq. (1) possesses AOS-property if and only if
d > 1 . Otherwise, if d � 1 , then Eq. (1) possesses ENO- and NRO-properties.

Unfortunately, Th. 3.6 stated in the above form is as much elegant as absolutely
non-effective. It looks that for the general case it is impossible to state the condition
{d > 1} in terms of coefficients b(n) , since the corresponding sequence {z(n)} must
be expressed explicitly via {b(n)} . Definitely it is not sufficient to prove that such a
sequence does exist.

In the next paragraph we construct directly a sequence {z(n)} from Th. 3.6 in the
following important special cases:

1 ◦ The sequence {b(n)} has a r -periodic positive minorant {a(n)} ,
a(n + r) = a(n), ∀n

2 ◦ The sequence {b(n)} has a r -periodic positive majorant {a(n)} ,
a(n + r) = a(n), ∀n .

REMARK. Consider Eq. (1) for, in particular, k = 1 :

x(n + 1) − x(n) + b(n)x(n − 1) = 0, b(n) � 0, n � n0. (29)

Let 〈 p, p + 1〉 will be a half-cycle of a non-trivial solution {x(n)} of Eq. (29).
Then

x(p) � 0, x(p + 1) > 0, x(p + 2) � 0.

But this is impossible, because x(p + 2)− x(p + 1) + b(n)x(p) = 0 . And so, Eq. (29)
has no quick oscillatory solution. Therefore, for the case k = 1 all statements “Eq. (1)
possesses ENO- and NRO-properties” must be replaced by the statements “Eq. (28)
possesses ANO-property”.
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4. Oscillation properties of delay-difference equation
with periodic coefficients

In this paragraph we consider DΔE

x(n + 1) − x(n) + p(n)x(n − k) = 0 , n � n0 (30)

where a non-negative sequence {p(n)} is r -periodic.
Oscillation properties for such DΔE some times can be investigated directly.

Indeed, consider the most simplest case {k = 1, r = 2} :

x(n + 1) − x(n) + p(n)x(n − 1) = 0 , n � n0 (31)

with

p(n) :=
{

a , n = 2m
b , n = 2m + 1

, a � 0 , b � 0.

Rewrite this equation in the following equivalent form:{
x(2m + 2) − (1 − a − b)x(2m) + abx(2m− 2) = 0,
x(2m + 1) = x(2m + 2) + bx(2m).

Oscillation properties of Eq. (31), it is clear, depends on the roots of its character-
istic equation

λ 2 − (1 − a − b)λ + ab = 0 . (32)

All solutions of (31) are oscillatory if and only if Eq. (32) has no positive root:{
(1 − a − b)2 − 4ab < 0
a + b � 1

⇐⇒ 1−a−b < 2
√

a
√

b ⇐⇒ √
a+

√
b > 1. (33)

However, if we consider on this way the more complicated cases than the such
simplest case, this will bring us to very intricated algebraic problems. Therefore, we
offer below another method which is based on the Sturmian Comparison Method, as
stated above.

Here we are discussing the principles of the choozing the {z(n)} -sequences in
Ths. B, 3.4 and 3.5.

Such choosing will be as better as Conditions (27) and (28) of AOS-property and
ENO-property correspondingly, will be close one to other.

The best choozing of the sequence {z(n)} will be such (if it is possible, of course)
that the corresponding sequence {d(n)} will be constant. Then the each of two classes
of Eqs.(1) with (27) and (28) will be the exact complement of the other. Such best
choozing of the {z(n)} -sequence is possible sometimes for the periodic case.

Let {b0(n)} in Th. B will be r -periodic: b0(n + r) = b0(n) ∀n with 0 �
b0(n) � b(n) ∀n and

∑m
j=1 b0(n + j) > 0 , m = min{r; k} . We chooze {z(n)}∞1

as a r -periodic positive solution of the system d0(1) = d0(2) = . . . = d0(r) (then the
sequence {d0(n)} will be r -periodic as well).
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If {z(n)} is a solution of this system then the sequence {cz(n)} will be its solution
as well. Therefore we can normalize the solution {z(n)} , for example, by the equality

z(1)b0(1) + . . . + z(r)b0(r) = 1

and find the r -periodic positive solution of the following system⎧⎨
⎩

d0(1) = . . . = d0(r),
z(n + r) = z(n) ∀n,
z(1)b0(1) + . . . + z(r)b0(r) = 1.

(34)

The existence problem of the such solution for a general case is an independent
and, may be, a very difficult. We will solve it directly for some particular cases in the
next points.

Let {z(n)} be a r -periodic positive solution of the system (34). Then Cond.(27)
is equivalent to the following:

Φ[z, b0] :=
r∑

n=1

⎧⎨
⎩b0(n) ·

n+k∏
l=n

(
l+k∑
l

z(j)b0(n)

)
·
[

n+k∏
l=n+1

(
l+k∑
l+1

z(j)b0(j)

)]−1
⎫⎬
⎭ > 1.

(35)
Indeed,

lim infn→∞ d0(n) > 1 ⇐⇒ do(n) > 1 ∀n = 1, r ⇐⇒
⇐⇒ ∏n+k

n

(∑l+k
l z(j)b0(j)

)
·
[∏n+k

n+1

(∑l+k
l+1 z(j)b0(j)

)]−1
> z(n) ∀n = 1, r ⇐⇒

⇐⇒ Φ[z, b0] > 1.

Analogiously, Cond. (28) may be formulated as

Φ[z, b0] � 1 . (36)

Thus, Ths. B, 3.4 and 3.5 are implying three following statements:

THEOREM 4.1. Let {b(n)} in Eq. (1) has a r -periodic minorant {b0(n)} :

0 � b0(n) � b(n) , b0(n + r) = b0(n) ,
m∑

j=n+1

b0(n + j) > 0 , m = min{r, k}

for which the system (34) has a positive solution {z(n)} .
If Cond. (35) holds then Eq. (1) possesses AOS-property.

THEOREM 4.2. Let {b(n)} has a r -periodic majorant {b0(n)} :

0 � b(n) � b0(n) , b0(n + r) = b0(n) ∀n ,

for which the system ⎧⎨
⎩

d0(1) = . . . = d0(r)
z(n + r) = z(n) ∀n
z(1)b0(1) + . . . + z(r)b0(r) = 1

(37)

has a positive solution {z(n)} .
If Cond. (36) holds then Eq. (1) possesses ENO- and NRO-properties.



DELAY-DIFFERENCE EQUATIONS WITH PERIODIC COEFFICIENTS . . . 413

THEOREM 4.3. Let {b(n)} in Eq. (1) be a r -periodic non-negative sequence
with∑m

j=1 b(n + j) > 0 , and the system{
d(1) = · · · = d(r)
z(1)b(1) + · · · + z(r)b(r) = 1

(38)

has a r -periodic positive solution {z(n)} . Then Eq. (1) possesses ASO-property if
and only if

Φ[z, b] > 1 . (39)

Otherwise (Φ[z, b] � 1) , Eq. (1) possesses ENO- and NRO-properties.

5. Some particular cases

In this item a direct immediate solving of the system (38) will be executed for some
particular cases and the conditions (35) or (36) will be written in terms of coefficients
b(n) .

A: r = k + 1 .
We denote here z(n) := zn , p(n) := pn , pn+k+1 = pn , p(n) � 0 ∀n :

{d(1) = · · · = d(r)} ⇔ 1−z1p1

z1
= · · · =

1 − zk+1pk+1

zk+1
:= t ⇐⇒

zj = 1
t+pj

, j = 1, k + 1; {z1p1 + · · · + zk+1pk+1 = 1} ↔ Fk+1(t) = 0,
(40)

where Fk+1(t) :=
p1

t + p1
+ · · · + pk+1

t + pk+1
− 1 . It is clear, Fk+1(0) = k > 0 , Fk(t)

is continuous for t > 0 , limt→∞ Fk+1(t) = −1 and F′(t) < 0 for t > 0 . Therefore,
Eq. (40) has unique positive root t0 .

Condition (39) is equivalent to

Hk+1(t0) :=
k+1∏
j=1

(t0 + pj) − tk0 > 0. (41)

Thus, the following statements are true:

COROLLARY 5.1. Let the sequence {b(n)} has a (k + 1) -periodic minorant
{b0(n)} :

∀n : 0 � b0(n) � b(n) , b0(n + k + 1) = b0(n) ,

k∑
j=0

b0(j + n) > 0

and t0 be a (unique) positive root of the equation

Fk+1(t) :=
k+1∑
j=1

b0(j)
t + b0(j)

− 1 = 0. (42)
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If

Hk+1(t0) :=
k+1∏
j=1

[t0 + b0(j)] − tk0 > 0, (43)

then the statement of Th. 4.1 is true.

COROLLARY 5.2. Let the non-negative sequence {b(n)} has a (k + 1) -periodic
majorant {b0(n)} :

b0(n) � b(n) � 0, b0(n + k + 1) = b0(n), ∀n

and t0 is a (unique) positive root of Eq. (42) (by changing b0 to b0 ). If the condition
Hk+1(t0) � 0 (with the changing b0 to b0 ) holds then the statement of Th. 4.2 is true.

COROLLARY 5.3. Let the sequence {b(n)} in Eq. (1) be (k + 1) -periodic. Then
the condition (43) will be sufficiently and necessary for AOS-property of Eq. (1) . If
Hk+1(t0) � 0 then Eq. (1) possesses ENO- and NRO-property.

A1: k = 1, r = 2 .
Consider, in particular, the second order DΔE

x(n + 1) − x(n) + b(n)x(n − 1) = 0 , b(n) > 0 . (44)

Then

F2(t) :=
λ

t + λ
+

μ
t + μ

− 1 ; t0 =
√
λμ , λ ,μ � 0

H2(t0) > 0 ⇐⇒
√
λ +

√
μ > 1. (45)

(Compare with (33)!).
Cors. 5.1, 5.2, 5.3 and Remark 3. are implying the following statement:

THEOREM 5.4. Let p(n) := {λ ,μ, λ ,μ, . . .} , λ ,μ � 0, λ + μ > 0 .
a) If b(n) � p(n) ∀n and

√
λ +

√μ > 1 then all solutions of Eq. (44) are
oscillatory;

b) If b(n) � p(n) ∀n and
√
λ +

√μ � 1 then all solutions of Eq. (44) are
non-oscillatory;

c) Either all solutions of the 2-periodic equation

y(n + 1) − y(n) + p(n)y(n − 1) = 0 , n � 0

are oscillatory (in the case
√
λ +

√μ > 1 ) or are non-oscillatory (in the case√
λ +

√μ � 1 ).

B: r = k ;

d(n) =
1 + znpn

zn

k∏
j=1

(1 + zjpj).
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So, {d(1) = . . . = d(r)} ⇐⇒ 1 + z1p1

z1
= · · · =

1 + zkpk

zk
:= s ⇐⇒ zj =

1
s − pj

,

j = 1, k and the system (34) turns to the following:⎧⎨
⎩

1 + z1p1

z1
= · · · =

1 + zkpk

zk
(:= s > 0)

z1p1 + . . . + zkpk = 1.
(46)

Substitute zj =
1

s − pj
to (46). We obtain

Gk(s) :=
p1

s − p1
+ . . . +

pk

s − pk
− 1 = 0 , s > 0. (47)

It is clear, the function Gk(s) is not continuous in the points s = pj . But it is continuous
for s > max1�j�k pj := p̄ . Since G′

k(s) < 0 for s > p̄ , lims→+∞ Gk(s) = −1 and
lims→p̄+0 Gk(s) = +∞ , it follows that there exists a (unique) root s0 > p̄ of the
equation (47). The condition (35) turns to

Γk(s0) := sk+1
0 −

k∏
j=1

(s0 − pj) > 0 (48)

and the condition (36) turns to Γk(s0) � 0 . Thus, the following statements hold:

COROLLARY 5.5. Let the sequence {b(n)} has a k -periodic minorant {b0(n)} :

∀n : 0 � b0(n) � b(n) , b0(n + k) = b0(n) ,

k∑
j=1

b0(j + n) > 0

and s0 be a (unique) root on {s > max1�j�kb0(j)} of the equation (47) .
If the condition (48) holds then the statement of Th. 4.1 will be true.

COROLLARY 5.6. Let the sequence {b(n)} has a k -periodic majorant {b0(n)} :

b0(n) � b(n) � 0 , b0(n + k) = b0(n) ∀n

and s0 be as stated above.
If Γk(s0) � 0 , then the statement of Th. 4.2 will be true.

COROLLARY 5.7. Let the non-negative sequence {b(n)} in Eq. (1) will be
k -periodic. Then the condition (48) will be sufficiently and necessary for the AOS-
property of Eq. (1) . Otherwise, if Γk(s0) � 0 then Eq. (1) possesses ENO- and
NRO-properties.

B1: r = k = 2 .
Consider, in particular, DΔE

x(n + 1) − x(n) + b(n)x(n − 2) = 0 , n � n0 (49)
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p(n) := {λ ,μ, λ ,μ, . . .} , λ ,μ � 0 , λ + μ > 0 (50)

G2(s) :=
λ

s − λ
+

μ
s − μ

− 1 = 0 =⇒ s0 = λ + μ +
√
λ 2 − λμ + μ2,

Γ2(s0) := h(λ ,μ) =
(
λ + μ +

√
λ 2 − λμ + μ2

)3

−
(
λ +
√
λ 2 − λμ + μ2

)(
μ +
√
λ 2 − λμ + μ2

)
. (51)

Cors 5.5, 5.6, 5.7 imply the following statements:

THEOREM 5.8. Let {p(n)} be defined by (50) .
a) If b(n) � p(n) ∀n and h(λ ,μ) > 0 , then all solutions of Eq. (49) are

oscillatory.
b) If b(n) � p(n) ∀n and h(λ ,μ) � 0 , then Eq. (49) has no regularly oscillatory

solution and at least one from its solutions will be non-oscillatory.
c) All solutions of the 2-periodic equation

y(n + 1) − y(n) + p(n)y(n − 2) = 0 , n � n0 (52)

are oscillatory if and only if h(λ ,μ) > 0 . If h(λ ,μ) � 0 then there is no regularly
oscillatory solution of Eq. (52) and at least one its solution will be non-oscillatory.

REMARK. Note that the statement c) of Th. 5.8 was proved in [6] for λμ < 0.
And so, it is true for every 2−periodic sequence {p(n)} without any limitation on
the sign of λ ,μ. To all appearence, the statements a) and b) will be true for the case
λμ < 0 as well. But of course, this problem requires an additional investigation.

C: k = 1, r = 3 or 4 . These cases are not particular cases of A or B and must be
considered independently.

C1: k = 1, r = 3 .

p(n) := {λ ,μ, , ν, λ ,μ, ν, . . .} , λ ,μ, ν > 0. (53)

Denoting y1 := λ z1, y2 := μz2, y3 := νz3 , we obtain

d1 = λ
(y1 + y2)(y2 + y3)

y1y3
; d2 = μ

(y2 + y3)(y3 + y1)
y1y2

; d2 = ν
(y3 + y1)(y1 + y2)

y3y2
.

(54)
The system (34) will be turning to{

d1 = d2 = d3

y1 + y2 + y3 = 1.
(55)

Define a new variable p by the following equality: d1 = d2 = d3 := λμν · p−2 .
Then we obtain

p3 ·
√

d1d2d3 = (λμν)
2
3 ⇐⇒ p3(y1 + y2)(y2 + y3)(y3 + y1) = λμν · y1y2y3 (56)
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Therefore the system (56) is equivalent to the following “linear homogenious” system⎧⎪⎨
⎪⎩

y1 − λ
p y2 + y3 = 0

y1 + y2 − μ
p y3 = 0

− ν
p y1 + y2 + y3 = 0.

(57)

This system has a non-trivial solution if and only if∣∣∣∣∣∣∣
1 − λ

p 1
1 1 − μ

p

− ν
p 1 1

∣∣∣∣∣∣∣ = 0 ⇐⇒ g(p) := 2p3 + (λ + μ + ν)p2 − λμν = 0. (58)

The equation (58) has (unique) positive root p0 > 0 because g(0) < 0 , g′(p) > 0 on
p > 0 . The condition (35) in terms of p0 will be following: p0 <

√
λμν . Indeed,

{d1 = d2 = d3 > 1} ⇐⇒
√

d1d2d3 > 1 ⇐⇒ (λμν)
3
2 > p3

0 ⇐⇒ p0 <
√
λμν.

Since g(0) = −λμν < 0 and g′(0) = 0 ; g′′(0) = 0 we obtain

p0 <
√
λμν ⇐⇒ g

(√
λμν
)

> 0 ⇐⇒ f 3(λ ,μ, ν) := λ +μ + ν+ 2
√
λμν− 1 > 0.

Of course, the condition (36) holds if and only if f 3(λ ,μ, ν) � 0 .
So, the following statement is true:

THEOREM 5.9. Let p(n) = {λ ,μ, ν, λ ,μ, ν . . .}, λ ,μ, ν > 0 ,
a) If b(n) � p(n) ∀n and f 3(λ ,μ, ν) > 0 then all solutions of Eq. (44) are

oscillatory.
b) If b(n) � p(n) ∀n and f 3(λ ,μ, ν) � 0 then all solutions of Eq. (44) are

non-oscillatory.
c) Either all solutions of the 3-periodic equation

y(n + 1) − y(n) + p(n)y(n − 1) = 0 , n � n0

are oscillatory (in the case f 3(λ ,μ, ν) > 0 ) or are non-oscillatory (in the case
f 3(λ ,μ, ν) � 0 ).

C2: k = 1, r = 4 .

p(n) := {p, q, r, s, p, q, r, s, . . .}, p, q, r, s > 0. (59)

By denoting yj := zjaj, j = 1, 4 we obtain

d1 = p
(y1 + y2)(y2 + y3)

y1y3
, d2 = q

(y2 + y3)(y3 + y4)
y2y4

,

d3 = r
(y3 + y4)(y4 + y1)

y1y3
, d4 = s

(y4 + y1)(y1 + y2)
y2y4



418 Y. DOMSHLAK

yn+4 = yn, dn+4 = dn ∀n.

The system (34) will be turning to{
d1 = d2 = d3 = d4

y1 + y2 + y3 + y4 = 1,
(60)

Cond. (39) turns to

p
(y1 + y2)(y2 + y3)

y3
+ q

(y2 + y3)(y3 + y4)
y4

+ r
(y3 + y4)(y4 + y1)

y1

+ s
(y4 + y1)(y1 + y2)

y2
> 1. (61)

The system (60):

⎧⎪⎪⎨
⎪⎪⎩

d1 = d2

d2 = d3

d3 = d4

y1 + y2 + y3 + y4 = 1

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1y3 = y2y4

√
pr
qs

y1 + y2 =
√

qr√
qr +

√
sp

y2 + y3 =
√

sr√
rs +

√
pq

y3 + y4 =
√

sp√
sp +

√
qr

(62)

From (62) we obtain:

Cond. (61) ⇐⇒ (
1
y1

+
1
y3

)
√

pr+(
1
y2

+
1
y4

)
√

qs >
(
√

qr+
√

sp)(
√

rs+
√

pq)√
pqrs

. (63)

Futher, from (62) it follows

qrs

(
1
y2

)2

− [(p + q − r + s)
√

pqrs + 2qrs] · 1
y2

− (
√

sp +
√

qr)(
√

rs +
√

pq)(
√

pr −√
qs) = 0 =⇒

1
y2

= 1 +
p + q − r + s√

pqrs
· p +

p
2
√

pqrs
·
√

M(p, q, r, s), (64)

in which
M(p, q, r, s) := (p + q + r + s)2 − 4(

√
pr −√

qs)2.

Analogously,

1
y4

= 1 +
r + s − p + q√

pqrs
· r +

r
2
√

pqrs
·
√

M(p, q, r, s),
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1
y2

+
1
y4

= 2 +
(q + s)(p + r) + (p − r)2

2
√

pqrs
+

p + r
2
√

pqrs
·
√

M(p, q, r, s),

1
y3

+
1
y1

= 2 +
(q + s)(p + r) + (q − s)2

2
√

pqrs
+

q + s
2
√

pqrs
·
√

M(p, q, r, s).

Substituting to (63) we obtain:

Cond. (61) ⇐⇒
√

M(p, q, r, s) > 2 − p − q − r − s ⇐⇒
√

M(p, q, r, s) > [2 − p − q − r − s]2
∨

p + q + r + s > 2 ⇐⇒

f 4(p, q, r, s) := p + q + r + s − min{2; 1 + (
√

pr −√
qs)2} > 0. (65)

So, the following statement is true:

THEOREM 5.10. Let { a(n)} be defined by (59) .
a) If b(n) � a(n) ∀n and f 4(p, q, r, s) > 0 , then all solutions of Eq. (44) are

oscillatory.
b) If b(n) � a(n) ∀n and f 4(p, q, r, s) � 0 , then all solutions of Eq. (44) are

non-oscillatory.
c) Either all solutions of the 4-periodic equation

y(n + 1) − y(n) + a(n)y(n − 1) = 0, n � n0

are oscillatory (if f 4(p, q, r, s) > 0 ) or are non-oscillatory (if f 4(p, q, r, s) � 0 ).

REMARK. If, in particular, p = r and q = s , the 4-periodic case turns to
2-periodic case and Cond. (65) turns to

√
p +

√
q > 1 :

Cond. (65) ⇐⇒ 2p + 2q > min{2; 1 + (p − q)2} ⇐⇒{
1 + p2 + q2 − 2pq − 2p − 2q < 0
p + q � 1

∨
{p + q � 1} ⇐⇒

{0 � 1 − p − q < 4pq}∀{p + q � 1} ⇐⇒ √
p +

√
q > 1

D: r = 2 .

xn+1 − xn + pnxn−k = 0 , n > n0 , k ∈ N
pn = {a, b, a, b, . . .}, a, b � 0 , a �= b , a + b > 0 .

(66)

The system (39) turns to the system{
d1 = d2

z1a + z2b = 1 .
(67)

The cases k = 2m and k = 2m − 1 , m � 1 will be considering separately.
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D1: r = 2 , k = 2m − 1 , m � 1 .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1 =
1
z1

· [mz1a + mz2b]2m

[(m − 1)z1a + mz2b]m · [mz1a + (m − 1)z2b]m−1

d2 =
1
z2

· [mz1a + mz2b]2m

[(m − 1)z1a + mz2b]m · [mz1a + (m − 1)z2b]m−1

From (67) we obtain {d1 = d2} ⇐⇒ 1
z1(m − z2b)

=
1

z2(m − z1a)
⇐⇒ z1

m − z1a
=

z2

m − z2b
:=

1
t

> 0 , z1 =
m

t + a
, z2 =

m
t + b

and

z1a + z2b = 1 ⇐⇒ Fm(t) :=
ma

t + a
+

mb
t + b

− 1 = 0 (68)

It is clear, Eq. (68) has a (unique) positive root t0 > 0 defined by

t0 =
√

ab for m = 1 (see above the case {r = 2, k = 1} ),

t0 =
m − 1

2

[
a + b +

√
(a + b)2 +

4(2m− 1)
(m − 1)2

ab

]
for m � 2 .

⎫⎪⎬
⎪⎭ (69)

Therefore, the condition {d1 = d2 > 1} turns to

1
z1z2

· m4m

(m − z1a)2m−1 · (m − z2b)2m−1 > 1 ⇐⇒

⇐⇒ t
2− 1

m
0 < (t0 + a)(t0 + b) ⇐⇒ t

1
m
0 >

t20
(t0 + a)(t0 + b)

.

One can check that the following equality is true:

t20
(t0 + a)(t0 + b)

=
m − 1

m
+

ab
m [t0(a + b) + 2ab]

.

So, Cond. (64) is equivalent to

A(t0) := t
1
m
0 − m − 1

m
− ab

m [t0(a + b) + 2ab]
> 0

and the following statement holds:

COROLLARY 5.11. Let k = 2m− 1, m � 1 , and t0 is defined by (69) . Then the
following statements hold:

1◦ If A(t0) > 0 then all solutions of Eq. (66) are oscillatory.
2◦ If A(t0) � 0 then there exists at least one non-oscillatory solution of Eq. (66)

and this equation has no regularly oscillatory solution.
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D2: r = 2, k = 2m

⎧⎪⎪⎨
⎪⎪⎩

d1 =
1
z1

· [(m + 1)z1a + mz2b]m+1 · [mz1a + (m + 1)z2b]m

(mz1a + mz2b)2m

d2 =
1
z2

· [(m + 1)z1a + mz2b]m · [mz1a + (m + 1)z2b]m+1

(mz1a + mz2b)2m

Analoguously to the previous point, {d1 = d2} ⇐⇒ z1a+m
z1

=
z2a+m

z2
:= s>0 ,

z1 =
m

s − a
, z2 =

m
s − b

, and

z1a + z2b = 1 ⇐⇒ G(s) :=
am

s − a
+

bm
s − b

− 1 = 0 (70)

The equation (70) has (unique) positive root s0 on (max{a; b}, +∞) which is defined
by

s0 =
m + 1

2

[
a + b +

√
(a + b)2 − 4(2m + 1)

(m + 1)2
ab

]
. (71)

Further,

{d1=d2>1} ⇐⇒ (m+z1a)2m+1 · (m+z2b)2m+1

z1z2 · m4m
> 1 ⇐⇒ s

1
m
0 >

(s0−a)(s0−b)
s2
0

(72)

One can check that

(s0 − a)(s0 − b)
s2
0

=
m

m + 1

[
1 +

ab
(m + 1)(a + b)s0 − (2m + 1)ab

]
.

Thus the condition (71) is equivalent to

B(s0) := s
1
m
0 − m

m + 1

[
1 +

ab
(m + 1)(a + b)s0 − (2m + 1)ab

]
> 0 (73)

and therefore the following statement holds:

COROLLARY 5.12. Let k = 2m, m � 1 and s0 be defined by (71) . Then the
following statements are true:

1◦ If B(s0) > 0 then all solutions of Eq. (66) are oscillatory.
2◦ If B(s0) � 0 then there exists at least one non-oscillatory solution of Eq. (66)

and this equation has no regularly oscillatory solution.

REMARK. The statement of Cor. 5.11 for k is odd (and not Cor. 5.12 for k is
even!) was proved in [6].
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