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ON THE EXISTENCE OF PERIODIC SOLUTIONS

OF A CERTAIN CLASS OF SECOND ORDER

NONLINEAR DIFFERENTIAL EQUATION

B. MEHRI AND D. SHADMAN

Abstract. A second order nonlinear differential equation is considered. Leray-Schauder principle
is used to show the existence of periodic solutions. The results obtained are then applied to a
specific example, where a computer program based on the fourth order Runge-Kutta method and
Newton-Raphson algorithm is used to compute the periodic solutions.

Introduction. One of the powerful methods of proving the existence of periodic
solutions of nonlinear nonoutonomous ordinary differential equations is the use of
Green’s function (see, for example [IV.] and [VII.]). In the case Green’s function can
not be contructed explicitly, or that, there is no need for an explicit expression of the
Green’s function, some theoretical tools are used to prove its existence (see for example
[V.], [VI.] and [VIII]).

In this paper we consider a second order nonlinear differential equation. First we
shall prove the existence of Green’s function. Then with the aid of the Green’s function,
we construct an integral equation. To show the existence of periodic solutions of the
differential equation, one can then prove the existence of the solution of the integral
equation.

We consider the nonlinear differential equation

x′′ + c(t)x′ + f (t, x) = e(t) . (1)

Where c(t) and e(t) are continues functions for t ∈ [0,ω ] and f (t, x) is continuous
on [0,ω ] × R . In addition we assume all initial value problems corresponding to Eq.
(1) can be extended to [0,ω ] .

THEOREM 1. Assume
i) |f (t, x)| � γ |x| + β , t ∈ [0,ω ], |x| < ∞

γ , and β are non-negative constants.
ii) γ (ωπ )2 + γ1(ωπ ) < 1 ,

γ1 = max |c(t)|
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Then Eq. (1) possesses a solution satisfying

x(i)(0) + x(i)(ω) = 0, i = 1, 2. (2)

Proof. First we give an estimate on the magnitude of the solutions of the problem

x′′ + c(t)x′ = μ[e(t) − f (t, s)], μ ∈ [0, 1],
x(i)(0) + x(i)(ω) = 0 i = 0, 1.

(3)

Here we make use of Wirtinger’s inequalities in the following form: If x(t) is a function
of class Cn−1[0,ω ] , such that x(t + ω) + x(t) = 0 , for all t , then

||x(i−1)(t)||2 � (ωπ )n−i+1||x(n)(t)||2, i = 1, 2, . . . , n,

|| . ||2 = [
∫ ω

0
| . |2dt]1/2.

(4)

Now suppose x(t) is a solution of the problem (3), then

|x′′(t)| � γ1|x′(t)| + μ{|e(t)| + γ |x(t)| + β}.
Using Minkowski’s inequality

||x′′(t)||2 � γ1||x′(t)||2 + μ{||e(t)||2 + γ ||x(t)||2 + β
√
ω} ,

it follows from Wirtinger’s inequality

||x′′(t)||2 � γ1(
ω
π

)||x′′(t)||2 + μ{||e(t)||2 + γ (
ω
π

)2||x′′(t)||2 + β
√
ω} ,

where
[1 − γ1

ω
π

− μγ (
ω
π

)2]||x′′(t)||2 � μ{||e(t)||2 + β
√
ω}.

By assumption (ii) of Theorem 1 and noting that 0 � μ � 1 , we get

||x′′(t)||2 � ||e(t)||2 + β
√
ω

1 − γ1(ωπ ) − γ (ωπ )2
. (5)

Next we write

x(i−1)(t) = x(i−1)(0) +
∫ t

0
x(i)(τ)dτ i = 1, 2.

For t = ω
x(i−1)(ω) = x(i−1)(0) +

∫ ω

0
x(i)(τ)dτ i = 1, 2.

Making use of Eq. (2) we have

x(i−1)(0) = −x(i−1)(ω) =
1
2

∫ ω

0
x(i)(τ)dτ.

Finally we obtain

x(i−1)(t) = −1
2

∫ t

0
x(i)(τ)dτ − 1

2

∫ ω

0
x(i)(τ)dτ = −1

2

∫ ω

0
x(i)(τ)dτ ,
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which gives us

|x(i−1)(t)| � 1
2

∫ ω

0
|x(i)(τ)|dτ.

Now we have the estimate.

|x(i−1)(t)| � 1
2

√
ω ||x(i)(t)||2, i = 1, 2

Combining Wirtinger’s inequality and (5)

|x(i−1)(t)| � 1
2

√
ω(

ω
π

)3−iμ
||e(t)2|| + β

√
ω

1 − γ1(ωπ ) − γ (ωπ )2
.

For μ = 0 we obtain

x(i−1)(t) = 0 t ∈ [0,ω ], i = 1, 2.

It follows that the homogeneous equation

x′′(t) + c(t)x′(t) = 0

has only a trivial solution which satisfies conditions (2). This proves the existence of
Greens function g(t, s) for problem (3).

Clearly the auxiliary problem (3) is equivalent to

x(t) = μ
∫ ω

0
g(t, s)[e(s) − f (s, x(s))]ds. (6)

Next we consider the space C2[0,ω ] normed by

||x||c2 = max |x(i−1)(t)|, t ∈ [0,ω ], i = 1, 2.

Let Bρ be the space
Bρ = {x(t) ∈ C2[a, b] : ||x||c2 � ρ}

where

ρ = max{1
2

√
ω(

ω
π

)3−i ||e(t)|| + β
√
ω

1 − γ1(ωπ ) − γ (ωπ )2
}, i = 1, 2.

Considering the space

SR = {x(t) ∈ c2[0,ω ] : ||x||c2 = R},
it follows that for R > ρ , arbitrary, Eq. (6) has no solution on SR . Hence by Leray-
Schauder principle and the complete continuity of the operator

(Lx)(t) = μ
∫ ω

0
g(t, s)[e(s) − f (s, x(s))]ds, (7)

Eq. (6) has at least a solution in the open sphere {x; ||x||c2 < R} , and as a result, there
exists a solution in Bρ . Therefore, it is shown that problem (3) has, at least, a solution
for μ = 1 .
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COROLLARY 1. Under the hypotheses of Theorem 1, and
iii) ci(t) is an ω -periodic function
iv) e(t) is 2ω -periodic, i.e.,

e(t + 2ω) ≡ e(t) , and e(t + ω) = −e(t)
v) f (t + ω) ≡ f (t, x) , and also, f (t,−x) = f (t, x) ,

it can be shown that Eq. (1) has a 2ω -periodic solution

Proof. Let x̄(t) be a 2ω -periodic extension of x(t) defined by

x̄(t) =
{

x(t), 0 � t � ω ,
−x(t + ω), −ω � t � 0.

It is easily verified that x̄(t) ∈ C2[−ω ,ω ] . In addition, using the assumptions (iii) and
(iv) , one can show x̄(t) is a solution of Eq. (1) which satisfies the boundary conditions

x̄(i)(ω) = x̄(i)(−ω) i = 0, 1.

In addition we note ∫ 2ω

o
x̄(t)at =

∫ ω

0
x̄(t)dt +

∫ 2ω

ω
x̄(t)dt ,

which gives us
∫ 2ω

o
x̄(t)at =

∫ ω

0
x̄(t)dt +

∫ ω

0
x̄(t + ω)dt = 0.

That is, the solution x̄(t) has a zero mean value.
Using Theorem 1 and Corollary 1, one can easily obtain similar results for the

equation
x′′(t) + ϕ(x, x′)x′ + f (t, x) = e(t). (8)

THEOREM 2. If in addition to the hypotheses (i), (ii), (iv) and (v) of Theorem 1 and
Corollary 1, one assumes 0 � |ϕ(x, x′)| � M1 and

γ (
ω
π

)2 + M1(
ω
π

) < 1 ,

Then Eq. (8) has a 2ω -periodic solution with zero mean value, i.e.,
∫ 2ω

0
x(t)dt = 0 .

Numerical Analysis. The differential equation (1) can be written in the general
form

x′′(k) + k(t, x, x′) = e(t). (9)

Now we apply Runge-Kutta method to Eq. (9) using an arbitrary set of initial conditions
(x(0), x′(0)) = (α0, β0) . To obtain the desired initial values (α, β) , for which a
periodic solution is constructed, we proceed as follows. We consider the equations

F(α, β) = x(2ω ,α, β) − α = 0,
G(α, β) = x′(2ω ,α, β) − β = 0.
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If (α0, β0) satisfy these equations then we have the desired initial condition. If not, we
write

F(α1, β1) = x(2ω ,α0, β0) − α0,
G(α1, β1) = x′(2ω ,α0, β0) − β0.

(10)

Using Taylor series expansion for F and G and discarding second and higher order
terms we obtain

F(α1, β1) ∼= F(α0, β0) +
∂F
∂α

�α1 +
∂F
∂β

�β1,

G(α1, β1) ∼= G(α0, β0) +
∂F
∂α

�α1 +
∂F
∂β

�β1,
(11)

where all the derivatives of F and G are evaluated at (α0, β0) . Now we can solve the
above equations for �α1 and �β1 .

Next we choose
α1 = α0 + �α1,
β1 = β0 + �β1

and substitute these values in Eq. (10) and proceed as before. We continue this process
until, say, at the k -th step

|F(αk, βk)| + |G(αk, βk)| < ε,

where ε is a pressigned tolerance.
To obtain the partial derivatives of F and G in Eq. (11), we note

∂F
∂α

=
∂x
∂α

− 1,
∂F
∂β

=
∂x
∂β

,

∂G
∂α

=
∂x′

∂α
,

∂G
∂β

=
∂x′

∂β
− 1.

Next we use central difference formulas to evaluate the derivatives of x and x′ with
respect to α and β .

EXAMPLE. We apply the above method of computation to equation

x′′ +
1
5

sin(2πt)x′ +
1
10

sin(2πx) = sinπt. (12)

Here c(t) = 1
5 sin(2πt) , f (t, x) = 1

10 sin 2πx and e(t) = sin πt . We note ω = 1 , c(t)
is ω -periodic, and e(t) is 2ω -periodic. It is easily shown that Eq. (9) satisfies all the
requirements of Theorem 1 and Corollary 1. Therefore Eq. (12) has a periodic solution
of period 2.

A computer program based on the above numerical analysis was written. The
suitable initial conditions to give a periodic solution was found to be

x(0) = 2.000000 x′(0) = −0.3542160

for which
x(2) = 2.000000 x′(2) = −0.3542161.
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