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SOME DIFFERENCE INEQUALITIES

WITH WEIGHTS AND INTERPOLATION

LARS-ERIK PERSSON AND ALOIS KUFNER

Abstract. The well-known Grisvard-Jakovlev inequality (see Theorems 1 and 1′ ) can be in-
terpreted as a fractional order Hardy inequality or as a weighted difference inequality. Some
inequalities of this type have been recently proved and discussed by the authors and H. Heinig,
and this paper coincides mostly with a lecture held by the first author at the International work-
shop on difference and differential inequalities (July 3 – 7, 1996, Marmara Research Center,
Turkey) where some historical remarks, ideas and results from the papers of the authors and H.
Heinig have been presented. Additionally we present and prove some new difference inequalities
with weights. Mostly, we omit the proofs which can be found in the papers mentioned and in the
references there, and for simplicity, we consider functions on the interval (0,∞) .

1. A remarkable inequality and its extensions

THEOREM 1. (Grisvard 1963) If 1 < p < ∞, 0 < λ < 1, λ �= 1/p and
u ∈ C∞

0 (0,∞) , then∫ ∞

0
|u(x)|px−λpdx � Cp

∫ ∞

0

∫ ∞

0

|u(x) − u(y)|p
|x − y|1+λp

dxdy (*)

with C > 0 independent of u .

THEOREM 1’. (Jakovlev 1961) If 1 < p < ∞, 0 < λ < 1, λ �= 1/p and
u ∈ Wλ ,p(0,∞) , then∫ ∞

0
|u(x) − u(0)|px−λpdx � Cp

∫ ∞

0

∫ ∞

0

|u(x) − u(y)|p
|x − y|1+λp

dxdy (**)

with C > 0 independent of u .

REMARK 1. The additional term u(0) at the left hand side of (∗∗) is essential for
the case λ > 1/p .

Inequalities (∗) and (∗∗) can be treated as difference inequalities and we are
concerned with the following problems:

PROBLEM 1. Find weighted difference inequalities of the form∫ ∞

0
|u(x)|pw0(x)dx � Cp

∫ ∞

0

∫ ∞

0

|u(x) − u(y)|p
|x − y|1+λp

w(x, y)dxdy (1)
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with w0(x) and w(x, y) weight functions, i.e., functions measurable and positive a.e.
in (0,∞) and in (0,∞) × (0,∞) , respectively.

PROBLEM 2. Find weighted mixed norm difference inequalities of the following
form (with p �= q ):(∫ ∞

0
|u(x)|qw0(x)dx

)1/q
� C

(∫ ∞

0

( ∫ ∞

0

|u(x) − u(y)|p
|x − y|1+λp

w(x, y)dx
)q/p

dy
)1/p

. (2)

The inequalities (1) and (2) can be also treated as fractional order Hardy inequali-
ties since the double integrals at the right hand sides are in fact a part of a weighted norm
of the ,,derivative of order λ ”, 0 < λ < 1 , i.e., a part of the norm in the fractional
order weighted Sobolev space Wλ ,p(w) and Wλ ,(p,q)(w) , respectively.

If we denote by ‖u‖p
p,w0 the left hand side in (1) (i.e., the p -th power of the norm

in the weighted Lebesgue space Lp(w0 )) and by Jλ ,p,w(u) the right hand side in (1),
then we can rewrite (1) as

‖u‖p,w0 � C[Jλ ,p,w(u)]1/p. (1′)

Besides this inequality, we will deal in Section 5 with the inequality

[Jλ ,p,w(u)]1/p � C‖u′‖r,w1 (3)

where u′ is the derivative of u . Let us mention that from (1′) and (3) we obtain the
Hardy inequality

‖u‖p,w0 � C‖u′‖r,w1 (4)

which is dealt with in detail in [4]. Thus, the simultaneous validity of (1′) and (3) can
be treated as a certain refinement of the Hardy inequality (4).

2. Inequalities and interpolation

One way how to derive (weighted) difference inequalities is offered by the theory
of interpolation of Banach spaces. Let us shortly describe the idea.

Let (A0, A1) and (B0, B1) be compatible Banach couples. The real (Lions-Peetre)
interpolation method states that a bounded linear operator T mapping Ai into Bi with
norm Mi(i = 0, 1) maps also the interpolation space (A0, A1)θ,q (0 < θ < 1, 0 < q �
∞) into the interpolation space (B0, B1)θ,q with norm Mθ � M1−θ

0 Mθ
1 .

In terms of inequalities, this result can be formulated as follows: If

‖Tf ‖B0 � M0‖f ‖A0 and ‖Tf ‖B1 � M1‖f ‖A1 , (5)

then
‖Tf ‖(B0,B1)θ,q

� Mθ‖f ‖(A0,A1)θ,q
. (6)

Let us describe how this general result can be used. For this purpose, we need the
following assertion:
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THEOREM 2. (Hardy’s inequality) Let 1 < r � p < ∞ and let u be a differen-
tiable function on (0,∞) such that u(0) = 0 . Then inequality (4) holds if and only
if

C1 := sup
x∈(0,∞)

(∫ ∞

x
w0(t)dt

)1/p( ∫ x

0
w1−r′

1 (t)dt
)1/r′

< ∞ (7)

with r′ = r
r−1 .

If we denote by Ẇ1,r(w1) the (homogeneous) weighted Sobolev space of differ-
entiable functions u satisfying u(0) = 0 and such that the norm ‖u′‖r,w1 is finite, then
inequality (4) is in fact the second inequality in (5) with A1 = Ẇ1,r(w1) , B1 = Lp(w0)
and T the identity operator. Using the trivial continuous imbedding Lr(w1) ⊂→ Lr(w1)
as the first inequality in (5) [with A0 = B0 = Lr(w1) ], we obtain as the result of (6) the
following fractional order Hardy inequality:

‖u‖(Lr(w1),Lp(w0))θ,q
� Mθ‖u‖(Lr(w1),Ẇ1

p(w1))θ,q
. (8)

The problem which remains is to describe appropriately the interpolation spaces
appearing in (8). This problem is in general very complicated but for some particular
cases, these interpolation spaces can be described even in terms of classical function
spaces. E.g., the following theorem holds:

THEOREM 3. Let 1 < r � p < ∞, 0 < λ < 1 , and denote 1
p(λ ) = 1−λ

r + λ
p . Let

u be a differentiable function on (0,∞) such that u(0) = 0 . If

C1 := sup
x∈(0,∞)

(∫ ∞

x
w0(t)dt

)1/p
x1/r′ < ∞, (9)

then, for any δ > 0 ,

∫ ∞

0
|u(x)|p(λ )wλp(λ )/p

0 (x)dx � C
∫ δ

0
t−λp(λ )−1

( ∫ ∞

−t
|u(x + t) − u(x)|rdx

)p(λ )/r
dt.

(10)

REMARK 2. (i) Inequality (10) is in fact inequality (8) for the special choice
θ = λ , q = r and w1(x) ≡ 1 . Notice that condition (9) is nothing else than condition
(7).

(ii) The proof of Theorem 3 as well as its analogue for more general cases can be
found in [3].

(iii) Inequality (10) contains on its right hand side a mixed norm (for p(λ ) �= r ),
and consequently we have an inequality of the form (2) (of course, with w(x, y) ≡ 1 ).
For p = r , it is p(λ ) = p , and thus, we obtain an inequality of the type (1), i.e., (1′) .
Let us mention that in [3], also inequalities of the type (3) are dealt with via interpolation
theory.

EXAMPLE 1. If r = p, δ = ∞ and w0(x) = x−p then inequality (10) essentially
coincides with the Jakovlev-Grisvard inequality (∗) .
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3. Some further results connected with inequality (1)

The approach via interpolation theory is rather complicated and still not satisfactory.
Therefore, let us mention some results where inequalities of the type (1) have been
derived directly. The first result is due to V. Burenkov and W. D. Evans (see [1]), the
other one can be found in [2] - [3].

THEOREM 4. Let 0 < p < ∞ , let v be a weight function on (0,∞) and define

(11) w0(x) :=
∫ ∞

x
v(t)dt.

Moreover, suppose that there is a constant c ∈ (1, 2) such that w0(t) � cw0(2t) for
every t > 0 . Then for all u ∈ Lp ,∫ ∞

0
|u(x)|pw0(x)dx � Cp

∫ ∞

0

∫ ∞

0
|u(x) − u(y)|pv(|x − y|)dxdy (12)

with C > 0 independent of u .

THEOREM 5. Let 1 < p < ∞ and λ � −1/p . Let w0(x), w1(x) be weight
functions on (0,∞) and let

B := sup
x∈(0,∞)

( ∫ x

0
w0(t)dt

)( ∫ ∞

x
w1−p′

1 (t)dt
)p−1

< ∞.

Moreover, assume that limx→∞ 1
x

∫ x
0 u(t)dt = 0 . Then, for every β � 0 ,∫ ∞

0
|u(x)|pw0(x)dx � Cp

∫ ∞

0

∫ x

0

|u(x) − u(y)|p
|x − y|β W(x)dydx (13)

where W(x) = xβ−1(w0(x) + x−pw1(x)) and Cp = 2p−1 max(1, Cp) with Cp �
Bpp(p − 1)1−p .

Taking in Theorem 5 w0(x) = xα−λp and w1(x) = xα−λp+p we obtain the
following

COROLLARY 1. Let 1 < p < ∞, β � 0, λ � −1/p and α > λp − 1 . If
limx→∞ 1

x

∫ x
0 u(t)dt = 0 , then∫ ∞

0
|u(x)|pxα−λpdx � Cp

∫ ∞

0

∫ x

0

|u(x) − u(y)|p
|x − y|β xβ−1−λp+αdydx. (14)

EXAMPLE 2. For β = 1 + λp , (14) reads∫ ∞

0
|u(x)|pxα−λpdx � Cp

∫ ∞

0

∫ x

0

|u(x) − u(y)|p
|x − y|1+λp

xαdydx,

and for α = 0 , again inequality (∗) follows.
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EXAMPLE 3. Since x−1−λp+α � |x − y|−1−λp+α provided 0 < y � x and α <
1 + λp , inequality (14) implies for β = 0 that∫ ∞

0
|u(x)|pxα−λpdx � Cp

∫ ∞

0

∫ ∞

0

|u(x) − u(y)|p
|x − y|1+λp

|x − y|αdydx.

Notice that the same result can be obtained also by applying Theorem 4 with v(t) =
tα−λp−1 , but only for α < λp , since for α � λp , we have w0(x) ≡ ∞ (see formula
(11)!).

REMARK 3. In the foregoing results concerning inequality (1), we dealt with
special weight functions w(x, y) , namely, of the form w(x, y) = v(|x − y|) or w(x, y)
depending only on x . Results concerning more general weights can be found in [2].

4. The mixed norm case

First, let us introduce some notation: For weight functions v(x) and w(x) on
(0,∞) , denote

V(y) :=
∫ y

0
v(x)dx,

w0(y) :=
(1

y

∫ y

0
vp′(x)w1−p′(x)dx

)−q/p′(1
y

∫ y

0
v(x)dx

)q
v(y)y−λq.

Some results concerning the general mixed norm case (see (2)) have been proved and
discussed in [2]. Here, we only present the following result:

THEOREM 6. Let 1 < p � q < ∞, λ � −1/p and

Cp,q := sup
r∈(0,∞)

(∫ ∞

r
w0(x)V−q(x)dx

)1/q( ∫ r

0
(w0(x)v−q(x))1−q′dx

)1/q′
< ∞.

Then(∫ ∞

0
|u(x)|qw0(x)dx

)1/q
� 1

1 − K

(∫ ∞

0

( ∫ ∞

0

|u(x) − u(y)|p
|x − y|1+λp

w(x)dx
)q/p

v(y)dy
)1/q

provided

K =
Cp,qq

(q − 1)1/q′ < 1.

EXAMPLE 4. By applying Theorem 6 with w(x) ≡ 1, v(y) ≡ 1, p = q and with
u(x) replaced by u(x) − u(0) , we obtain, for λ > 1/p , the Jakovlev inequality (∗∗)
with C = (λp + p − 1)/(λp − 1) .

REMARK 4. (i) The assumption p � q was essential; thus, the problem of mixed
norm inequalities of the form (2) for p > q remains still open.

(ii) The conditions of the validity of the inequalities derived in the foregoing
sections have been only sufficient. Consequently, we have the following open prob-
lem: Find necessary and sufficient conditions for the validity of each of the weighted
difference inequalities derived in Sections 1 – 4.
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5. Concerning inequality (3)

In this section we will prove the following new result:

THEOREM 7. Let 1 < r � p < ∞ . Let w(x, y) and W(x, y) be weight functions
on (0,∞) × (0,∞) and denote w̃(x, y) = w(x, y) + w(y, x) . Suppose that for a.e.
x ∈ (0,∞) ,

B(x) := sup
t∈(0,x)

(∫ t

0
w̃(x, y)dy

)1/p(∫ x

t
W1−r′(x, y)dy

)1/r′
< ∞ (15)

and denote

w1(y) =
(∫ ∞

y
Bp(x)Wp/r(x, y)dx

)r/p
. (16)

Then the following inequality holds:( ∫ ∞

0

∫ ∞

0
|u(x) − u(y)|pw(x, y)dydx

)1/p
� C

( ∫ ∞

0
|u′(y)|rw1(y)dy

)1/r
(17)

with C > 0 independent of u .

REMARK 5. Replacing w(x, y) by w(x, y)|x−y|−1−λp in (17) we obtain inequality
(3), of course, for r � p .

Choosing in Theorem 7 r = p , w(x, y) = |x − y|−1−λp with 0 < λ < 1 , and
W(x, y) = |x − y|−1−λp+p , we can verify that (15) is satisfied (with B(x) a constant)
and that w1(y) = const y(1−λ )p . Thus we have the following

COROLLARY 2. If 1 < p < ∞ and 0 < λ < 1 , then∫ ∞

0

∫ ∞

0

|u(x) − u(y)|p
|x − y|1+λp

dydx � Cp
∫ ∞

0
|u′(x)|px(1−λ )pdx (18)

with Cp = 2λ−p

(1−λ )p .

Inequality (15) can be considered as a counterpart of inequality (∗) . It is inequality
(3) for r = p, w(x, y) ≡ 1 and w1(x) = x(1−λ )p .

Proof of Theorem 7. Using Fubini’s theorem, we have that

J =
∫ ∞

0

∫ ∞

0
|u(x) − u(y)|pw(x, y)dydx (19)

=
∫ ∞

0

∫ x

0
. . . dydx +

∫ ∞

0

∫ ∞

x
. . . dydx

=
∫ ∞

0

∫ x

0
. . . dydx +

∫ ∞

0

∫ y

0
. . . dxdy

=
∫ ∞

0

∫ x

0
|u(x) − u(y)|pw̃(x, y)dydx

=
∫ ∞

0

[ ∫ x

0

∣∣∣ ∫ x

y
u′(t)dt

∣∣∣pw̃(x, y)dy
]
dx.



SOME DIFFERENCE INEQUALITIES WITH WEIGHTS AND INTERPOLATION 443

For an arbitrary x ∈ (0,∞) , the Hardy inequality, used for the interval [0, x] , yields in
view of (16) that

(∫ x

0

∣∣∣ ∫ x

y
u′(t)dt

∣∣∣pw̃(x, y)dy
)1/p

� const B(x)
( ∫ x

0
|u′(y)|rW(x, y)dy

)1/r
. (20)

Using this estimate in (19), the Minkowski integral inequality together with (16) yields

J � const
∫ ∞

0
Bp(x)

( ∫ x

0
|u′(y)|rW(x, y)dy

)p/r
dx

� const
(∫ ∞

0
|u′(y)|r

( ∫ ∞

y
Bp(x)Wp/r(x, y)dx

)r/p
dy

)p/r

= const
(∫ ∞

0
|u′(y)|rw1(y)dy

)p/r
.

Thus, the theorem is proved.

EXAMPLE 5. In Theorem 7, taking the weight functions w(x, y) and W(x, y) in
the special form w(|x − y|) and W(|x − y|) , we obtain for r = p the inequality∫ ∞

0

∫ ∞

0
|u(x) − u(y)|pw(|x − y|)dydx � Cp

∫ ∞

0
|u′(y)|pw1(y)dy (21)

where w1(y) =
∫ ∞

y Bp(x)W(|x − y|)dx provided

Bp(x) := sup
t∈(0,x)

( ∫ x

x−t
w(s)ds

)(∫ x−t

0
W1−p′(s)ds

)p−1
< ∞.

Inequality (21) is a counterpart of the Burenkov-Evans inequality (12).

REMARK 6. Inequality (17) holds also for r > p , but in this case, we have to
replace condition (15) by

B′(x) :=
(∫ x

0

( ∫ t

0
w̃(x, y)dy

)s/r( ∫ x

t
W1−r′(x, y)dy

)s/r′
W1−r′(x, t)dt

)1/s
< ∞

(15’)
for a.e. x ∈ (0,∞) with 1

s = 1
p − 1

r [this is the necessary and sufficient condition for
the validity of the Hardy inequality (20) if r > p ] and we need the additional condition

C0 :=
(∫ ∞

0
B′s(x)dx

)1/s
< ∞.

In this case, we have, instead of (16),

w1(y) =
∫ ∞

y
W(x, y)dx. (16’)

Finally, we will derive another sufficient condition for the validity of inequality
(18), which does not depend on the mutual position of the parameters p and r .



444 L. E. PERSSON AND A. KUFNER

THEOREM 8. Let 1 < p, r < ∞ . Let w(x, y) and w1(x) be weight functions on
(0,∞) × (0,∞) and (0,∞) , respectively. Denote

V(x) =
∫ x

0
w1−r′

1 dt

and suppose that

B :=
∫ ∞

0

∫ ∞

0
|V(x) − V(y)|p/r′w(x, y)dxdy < ∞.

Then the inequality (17) holds with C = B1/p .

Proof. The Hölder inequality yields∫ ∞

0

∫ ∞

0
|u(x) − u(y)|pw(x, y)dxdy =

∫ ∞

0

∫ ∞

0

∣∣∣ ∫ y

x
u′(t)dt

∣∣∣pw(x, y)dxdy

=
∫ ∞

0

∫ ∞

0

∣∣∣ ∫ y

x
u′(t)w1/r

1 (t)w−1/r
1 (t)dt

∣∣∣pw(x, y)dxdy

�
∫ ∞

0

∫ ∞

0

∣∣∣ ∫ y

x
|u′(t)|rw1(t)dt

∣∣∣p/r ∣∣∣ ∫ y

x
w1−r′

1 (t)dt
∣∣∣p/r′

w(x, y)dxdy

�
∫ ∞

0

∫ ∞

0
|V(x) − V(y)|p/r′w(x, y)

∣∣∣ ∫ ∞

0
|u′(t)|rw1(t)dt

∣∣∣p/r
dxdy

= B(
∫ ∞

0
|u′(t)|rw1(t)dt

)p/r
.
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