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AN ENERGY––TYPE INEQUALITY

BIJAN Z. ZANGENEH

Abstract. In this paper we will prove an Energy-Type inequality for the mild solution of the
linear evolution equation. And for showing the strength and power of this inequality we will use
this inequality to show continuity of the solution with respect to a parameter of the semilinear
evolution equation with monotone nonlinearity.

1. Introduction

Let H be a real separable Hilbert space with norm ‖ ‖ and inner product 〈 , 〉 .
Let T > 0 and let S = [0, T] . suppose f be an H –valued uniformly bounded function
on S define ‖f ‖∞ = supt∈S‖f (t)‖ . Consider on H the linear evolution equation
formally written as {

Ẋ(t) = A(t)X(t) + a(t)
X(0) = X0,

(1)

where {A(t), t ∈ S} is a family of closed linear operators on H whose domain D
is independent of t ∈ S and is dense in H .

Suppose that {A(t) : t ∈ S} generates a unique evolution operator {U(t, s) :
0 � s � t � T} , i.e, the U(t, s) are bounded linear operators on H such that

U(t, t) = I, U(t, s) U(s, r) = U(t, r) for 0 � r � s � t � T,

and (t, s) → U(t, s) is strongly continuous for 0 � s � t � T , and certain relationships
between A and U hold, which we will introduce later on.

DEFINITION 1. An H -valued process X is a mild solution of (1) if and only if
(i) X. ∈ L1(S, H) ;
(ii) X(t) = U(t, 0)X(0) +

∫ t
0 U(t, s)a(s)ds for each t ∈ S .

In this paper we will prove an Energy Inequality for the mild solution of (1). And
for showing the strength and power of this inequality we will use this inequality to
show continuity of the solution with respect to a parameter of the semilinear evolution
equation with monotone nonlinearity.
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DEFINITION 2. We say the evolution operator U(t, s) is an almost strong evolution
operator with generator A(t) if it satisfies the following:

(a) For almost all s � t and for each x ∈ D

U(t, s)x − x =
∫ t

s
U(t, r)A(r)xdr. (2)

(b) Let x ∈ D and s ∈ S . For almost all t > s

U(t, s)D ⊆ D; (3)

∫ t

s
A(r)U(r, s)xdr = (U(t, s) − I)x. (4)

If U and A satisfy (2), (3), and (4) for every s ∈ S , u is called a strong evolution
operator.

REMARK 1. (i) If {A(t) : t ∈ S} is the generator of an almost strong evolution
operator U(t, s) , then (1) (with a = 0 and X0 ∈ D ) has a unique solution X(t) =
U(t, 0)X0 which is differentiable almost everywhere.

(ii) For a.e. 0 � s � t � T and each x ∈ D we have

∂

∂t
U(t, s)x = A(t)U(t, s)x, (5)

∂

∂s
U(t, s)x = −U(t, s)A(s)x. (6)

We say U(t, s) is an exponentially bounded with parameter λ on S if there is
λ ∈ R such that

‖U(t, s)‖L � eλ (t−s) for a.e. 0 � s � t � T. (7)

Note that if an almost strong evolution operator U(t, s) is exponentially bounded
on S with parameter λ , we have

〈A(t)x, x〉 � λ‖x‖2, ∀ x ∈ D. (8)

This can be seen because if x ∈ D and t > s ,

‖U(t, s)x‖2 − ‖x‖2

t − s
� (e2λ (t−s) − 1)‖x‖2

t − s

or

limt → s+
‖U(t, s)x‖2 − ‖x‖2

t − s
� limt → s+

(e2λ (t−s) − 1)‖x‖2

t − s
= 2λ‖x‖2;

but

limt → s
‖U(t, s)x‖2 − ‖x‖2

t − s
=

d
dt+

‖U(t, s)x‖2|t=s = 2〈A(s)x, x〉 a.e..
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The following are the relevant hypotheses concerning A and U :

HYPOTHESIS 1. (a) The domain D(A(t)) : = D is independent of t for t ∈ S
and is dense in H ;

(b) {A(t) : t ∈ S} generates a unique almost strong evolution operator U(t, s) ;
(c) U(t, s) is exponentially bounded on S with parameter λ ;

We refer to Pazy [6] and Tanabe [9] for sufficient conditions for the existence of an
evolution operator with the properties 1(a)–(c).

These conditions apply to a large class of delay equations, and to parabolic and
hyperbolic equations [see for example [2]].

Let A be an unbounded operator on H with dense domain D . Let ‖ ‖D be the
norm defined on D by

‖x‖2
D = ‖Ax‖2 + ‖x‖2, x ∈ D.

This norm is called the graph norm on D . Note that it generated by the inner product

〈 x, y〉 D = 〈Ax, Ay〉 + 〈 x, y〉
REMARK 2. (i) An operator A is closed if and only if its domain D is complete

under the graph norm [see [7],problem 15(a), p314.]
(ii) Suppose A is a closed linear operator with dense domain D . Then D is a

Hilbert space with graph norm ‖ ‖D .

2. An Energy–type Inequality

THEOREM 1. (Energy’s inequality) Let a(.) be an H -valued integrable function
on S . Suppose U and A satisfy Hypothesis 1(a)–(c). If

X(t) = U(t, 0)X0 +
∫ t

0
U(t, s)a(s)ds, (9)

then

‖X(t)‖2 � e2 λ t‖X0‖2 + 2
∫ t

0
e2 λ (t−s)〈X(s), a(s)ds 〉 , t ∈ S. (10)

Before proving Theorem 1 we are going to prove two lemmas. Suppose U(t, s)
satisfies Hypothesis 1c for some λ ∈ R . Define

U1(t, s) = e− λ (t−s)U(t, s), A1(t) = A(t) − λ I, and a1(t) = e− λ ta(t).

and X1(t) = e− λ tXt .

LEMMA 1. If U and A satisfy Hypothesis 1, then U1 and A1 satisfy Hypothesis
1 with λ ≡ 0 . Moreover, X(t) satisfies (9) if and only if X1(t) satisfies

X1(t) = U1(t, 0)X0 +
∫ t

0
U1(t, s)a1(s)ds. (11)
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Proof. ‖U1(t, s)‖L = e− λ (t−s)‖U(t, s)‖L � 1 a.e. By the definition of U1 we
can rewrite (9) as X(t) = eλ tU1(t, 0)X0 + eλ t

∫ t
0 e−λ sU1(t, s)a1(s)ds .

Using the definition of X1
t and a1(t) we can rewrite the above as (11). �

LEMMA 2. If a(.) is an H -valued integrable function on S and if X(t) : =
X0 +

∫ t
0 a(s)ds , then

‖X(t)‖2 = ‖X0‖2 + 2
∫ t

0
〈X(s), a(s)〉 ds.

Proof. Since a(s) is integrable, then X(t) is absolutely continuous and X′(t) =
a(t) a.e. on S . Then ‖X(t)‖ is also absolutely continuous and

d
dt
‖X(t)‖2 = 2 〈 dX(t)

dt
, X(t)〉 = 2 〈 a(t), X(t)〉 a.e.

so that ∫ t

0

d
ds

‖X(s)‖2ds = ‖X(t)‖2 − ‖X0‖2.

Thus

‖X(t)‖2 − ‖X0‖2 = 2
∫ t

0
〈X(s), a(s)〉 ds.

�

Proof of Theorem 1. By Lemma 1 we can assume λ = 0 in Hypothesis 1c. Then
for all x ∈ D , 〈A(t)x, x 〉 � 0 for a.e. t .

Define a map Rn(t) : H → D by Rn(t) = n(nI−A(t))−1 . Then Rn(t) is defined
on all of H . Since 〈A(t)x, x 〉 � 0 for a.e. t , then 〈 1

n (nI − A(t))x, x 〉 � ‖x‖2 for
a.e. t ∈ S , ∀ x ∈ D . By the Schwarz inequality we have for all x ∈ D that

‖1
n
(nI − A(t))x‖ � ‖x‖,

so ‖Rn(t)‖L � 1 for a.e. t .
We approximate Xt by Yosida’s method. Define an(t) by an(t) : = Rn(s)a(s)
Note that since Rn(t) : H → D ,then an(t) ∈ D . Let {Xn

0} be a sequence in D
which converges to X0 such that ‖Xn

0‖ � ‖X0‖ for all n .
Define

Xn(t) : = U(t, 0)Xn
0 +

∫ t

0
U(t, s)an(s)ds. (12)

We are going to prove that ‖Xn − X‖∞ → 0 .
Since

‖U(., 0)(X(n)
0 − X0)‖∞ � ‖Xn

0 − X0‖ → 0 boundedly,
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it is enough to show that

sup0�t�T‖
∫ t

0
U(t, s)(an(s) − a(s))ds‖ → 0. (13)

Now ‖U(t, s)‖L � 1 so we have

‖
∫ .

0
U(., s)(an(s) − a(s))ds‖∞ �

∫ T

0
‖(Rn(s) − I)a(s)‖ds. (14)

Since Rn(s) → I strongly then ‖(Rn(s) − I)a(s)‖ → 0 for a.e. s ∈ S , and since
‖Rn(s) − I‖L � 2 then the integrand is � 2 a.e. Then by the dominated convergence
theorem, the right hand side of (14) approaches zero so we get (13 ).

Hence ‖Xn − X‖∞ → 0 .
Let us first prove Energy’s inequality (10) for

X̄t = U(t, 0)X̄0 +
∫ t

0
U(t, s)ā(s)ds, (15)

where ā satisfies the following.

HYPOTHESIS 2. (a) ā is a D -valued integrable function
(b) X̄0 is a D -valued

LEMMA 3. If X̄0 and ā satisfy Hypothesis 2 and if X̄ is a solution of (15), then

‖X̄t‖2 � ‖X̄0‖2 +
∫ t

0
〈 X̄(s), ā(s)〉 ds. (16)

Proof. Since ā and X̄0 satisfy Hypothesis 2, so by [Theorem 2.38, page 45 [2]],
X̄t satisfies

X̄(t) = X̄0 +
∫ t

0
A(s)X̄(s)ds +

∫ t

0
ā(s) ds. (17)

Since A(.)X̄k(.) ∈ L1(S, H) , we can apply Lemma 2 to see that

‖X̄(t)‖2 = ‖X̄0‖2 + 2
∫ t

0
〈A(s)X̄(s), X̄(s)〉 ds

+ 2
∫ t

0
〈 X̄(s), ā(s)〉 ds. (18)

But 〈A(s)X̄k(s), X̄k(s)〉 � 0 . a.e., so (18) implies that

‖X̄(t)‖2 � ‖X̄0‖2 + 2
∫ t

0
〈 X̄(s), dā(s) 〉 ds. (19)

This proves the Lemma.
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To complete the proof of the theorem, we only need to show that
∫ t

0
〈Xn(s), an(s)〉 ds →

∫ t

0
〈X(s), a(s)〉 ds . (20)

Now

|
∫ t

0
〈Xn(s), an(s)〉 ds −

∫ t

0
〈X(s), a(s)〉 ds|

� |
∫ t

0
〈Xn(s) − X(s), an(s)〉 ds| + |

∫ t

0
〈X(s), (a(s) − an(s))〉 ds|

:= |I1
n(t)| + |I2

n(t)|.
• Since an(s) = Rn(s) a(s) for a.e. s and ‖Rn(s) a(s)‖ � 1 for a.e. s , then

sup0�t�T |I1
n(t)| � ‖Xn − X‖∞

∫ T

0
‖a(s)‖ds.

Since ‖Xn − X‖∞ → 0 , sup0�t�T |I1
n(t)| → 0 .

• Since (a(s) − an(s)) = (I − Rn(s))a(s) a.e. s , then

sup0�t�T |I2
n(t)| � ‖X‖∞

∫ T

0
‖(An(s) − I)a(s)‖ds.

But (An(s) − I)a(s) converges to zero a.e. and its norm is bounded by 2, so by the
bounded convergence theorem sup0�t�T |I2

n(t)| tends to zero. �

3. Application

Let g be an H -valued function defined on a set D(G) ⊂ H . Recall that g is
monotone if for each pair x, y ∈ D(g) ,

〈 g(x) − g(y), x − y〉 � 0,

and g is semi-monotone with parameter M if, for each pair x, y ∈ D(g),

〈 g(x) − g(y), x − y〉 � −M‖x − y‖2.

We say g is bounded if there exists an increasing continuous function ψ on [0,∞)
such that ‖g(x)‖ � ψ(‖x‖), ∀x ∈ D(g) . g is demi-continuous if, whenever (xn) is a
sequence in D(g) which converges strongly to a point x ∈ D(g) , then g(xn) converges
weakly to g(x) .

Consider the integral equation

X(t) = U(t, 0)X0 +
∫ t

0
U(t, s)f (s, X(s))ds + V(t), t ∈ S. (21)
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When A and U satisfy Hypothesis 1 , f and V satisfy the following

HYPOTHESIS 3. For each x ∈ H t → f (t, x) is continuous. For each t ∈ S ,
x → f (t, x) is demicontinuous and uniformly bounded in t. (That is, there is a function
ϕ = ϕ(x) on R+ which is continuous and increasing in x and such that for all t ∈ S ,
x ∈ H , ‖f (t, x)‖ � ϕ(‖x‖) .)
(d) There exists a non-negative number M such that for each t ∈ S , x → −f (t, x) is
semimonotone with parameter M .
(e) t → V(t) is cadlag.

Faris and Jona-Lasinio (1982) have proved that the solution X of (21) is a
continuous function of V in the special case when the generator of U is d2

dx2 and
f (x) = −λx3 − μx . Da Prato and Zabczyk (1988) generalized this result to the case
where U is a general analytic semigroup and f is a locally Lipschitz function on a
Banach space.

As an application of the Energy-Type Inequality we will prove a generalization of
Faris and Jona-Lasino’s theorem for monotone −f and more general U ; this was open
after Faris and Jona-Lasinio (1982) [see for example Smolenski et al (1986), page 230].

The existence and uniqueness of the above integral equation is a well-known
theorem of Browder(1964) and Kato(1964). That is

PROPOSITION 1. Suppose that X0 , f and V satisfy Hypothesis 3. Suppose A
and U satisfy Hypothesis 1. Then (21) has a unique cadlag (continuous, if Vt is
continuous) solution. Furthermore

‖X‖∞ � ‖X0‖ + ‖V‖∞ + CTϕ(‖X0‖ + ‖V‖∞), (22)

where

CT =
{

1
M+λ e(M+λ )T if M + λ �= 0
1 otherwise.

Proof. See [1] or [5].

In [10], the measurability of the solution of (21) is proved. In [12], the measurability
of the solution of (21) is used to prove the existence of the solution of the stochastic
semilinear integral equation

Xt = U(t, 0)X0 +
∫ t

0
U(t, s)f s(Xs)ds +

∫ t

0
U(t, s)gs(X)dWs + Vt,

where
• gs(.) is a uniformly-Lipschitz predictable functional with values in the space of
Hilbert-Schmidt operators on H ;
• {Wt, t∈R} is an H -valued cylindricalBrownianmotionwith respect to (Ω, F , Ft, P) .
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THEOREM 2. Let f , V1 and V2 satisfy Hypothesis 3. Suppose A and U satisfy
Hypotheses 1. Let Xi(t), i = 1, 2 be solutions of the integral equations:

Xi(t) =
∫ t

0
U(t, s)f (s, Xi(s))ds + Vi(t). (23)

Then there is a constant C such that

‖X2 − X1‖∞ � C‖V2 − V1‖ 1
2∞ (24)

Proof. Define Yi(t) = Xi(t)−Vi(t), i = 1, 2 . Then we can write (23) in the form

Yi(t) =
∫ t

0
U(t, s)f (s, Xi(s))ds, i = 1, 2,

so that

Y2(t) − Y1(t) =
∫ t

0
U(t, s)[f (s, X2(s)) − f (s, X1(s))]ds.

Since U satisfies Hypothesis 1(a)–(c), then by Theorem 1 we have

‖Y2(t) − Y1(t)‖2 � 2
∫ t

0
e2λ (t−s)〈Y2(s) − Y1(s), f (X2(s)) − f (X1(s))〉 ds. (25)

Note that because Yi and Xi are cadlag and the f i are bounded by ϕi , then the
integrands are dominated by cadlag functions and hence are integrable. Since Yi =
Xi − Vi and −f 2 is monotone. By the Schwartz inequality this is

� 2
∫ t

0
e2λ s‖V2(s) − V1(s)‖ ‖f (X2(s)) − f (X1(s))‖ds

Since X1 and X2 are bounded and f is bounded then there is a constant K such that

‖Y2 − Y1‖∞ � K‖V2 − V1‖ 1
2∞ (26)

since Yi = Xi − Vi the proof of theorem is complete. �

REMARK 3. Let D(S, H) be the set of H -valued cadlag functions on S with norm

‖f ‖∞ = supt∈S‖f (t)‖.
By Theorem 2 there is a continuous mapping ψ : S×D(S, H) → D(S, H) such that if
X(t) is a solution of

X(t) =
∫ t

0
U(t, s)f (X(s))ds + V(t),

then X(t) = ψ(t, V)(t) . Moreover there is a constant C such that

‖ψ(., V2) − ψ(., V1)‖∞ � C‖V2 − V1‖ 1
2∞,

so ψ is Hölder continuous with exponent 1/2 .



AN ENERGY–TYPE INEQUALITY 461

RE F ER EN C ES

[1] F. E. BROWDER, Non-linear equations of evolution, Ann. of Math., 80 (1964), 485–523.
[2] R. F. CURTAIN AND A. J. PRITCHARD, Infinite dimensional linear system theory, LN in control and

information sciences, 8 (1978), Springer-Verlag, Berlin-Heidelberg, New York.
[3] G. DA PRATO AND J. ZABCZYK, A note on semilinear stochastic equations, Differential and Integral

Equations, 1 (2) (1988), 1–13.
[4] W. G. FARIS AND G. JONA-LASINIO, Large fluctuations for a non-linear heat equation with noise, J. Phys

A: Math. Gen., 15 (1982), 3025–3055.
[5] T. KATO, Nonlinear evolution equations in Banach spaces, Proc. Symp. Appl. Math., 17 (1964), 50–67.
[6] A. PAZY, Semigroups of linear operators and applications to partial differential equations, Applied

Mathematical Sciences, 44 (1983), Springer-Verlag, Berlin.
[7] M. REED, AND B. SIMON, Methods of modern mathematical physics I: Functional analysis, New York,

London: Academic Press 1972.
[8] W. SMOLENSKI, R. SZTENCEL, AND ZABCZYK,. Large deviations estimates for semilinear stochastic

equations, Proceeding of the 5th IFIP Conference on Stochastic Differential Systems, Eisenach, 1986.
[9] H. TANABE,. Equations of evolution. Pitman, London 1979.

[10] B. Z. ZANGENEH, Measurability of the Solution of a Semilinear Evolution Equation, Seminar on
Stochastic Processes, Birkhãuser, Boston, 1990.
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