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DECOMPOSITION OF HOMOGENEOUS MEANS

AND CONSTRUCTION OF SOME METRIC SPACES

P. KAHLIG AND J. MATKOWSKI

(communicated by Z. Páles)

Abstract. Any (positively) homogeneous mean on (0,∞)2 can be decomposed multiplicatively
into the arithmetic mean A and a one–place function, called A –index function. Index functions
characterize a homogeneous mean in many respects, and their graphs are suitable for geometrical
comparisons of several properties of homogeneous means. Moreover, index functions can
facilitate proofs of inequalities between different types of homogeneous means. With the aid of
A –index functions, some metrics are introduced in the set of homogeneous means.

0. Introduction

Let m : (0,∞)2 → (0,∞) be a fixed positively homogeneous mean. Then any
positively homogeneous mean defined on (0,∞)2 can be decomposed (multiplica-
tively) into m and a one–place function, called m -index function. In fact, there is a
one–to–one correspondence between the family of all homogeneous means and the set
of index functions. The main part of the paper is devoted to the case m = A , where A is
the arithmetic mean. The A–index function of a mean characterizes the mean in many
respects, e.g. symmetry of a mean is equivalent to the evenness of its A–index function,
and subadditivity of a mean is equivalent to the convexity of its A–index function.

Index functions can be useful tools in proving inequalities between different types
of positively homogeneous means (as an application, in section 5, we give the best
estimation of the contra–harmonic mean by power means). Graphs of index functions
are suitable for geometrical interpretations and visual comparisons of several properties
of positively homogeneous means. In section 6, we show that index functions allow
to introduce metrics in the set of positively homogeneous means. In section 7, the
M -convexity of power functions is treated via index functions.
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1. Preliminaries and motivation

Let I ⊂ R be an interval. By a mean we understand a two–place function
M : I2 → R such that

min(x, y) � M(x, y) � max(x, y), x, y ∈ I,

(in particular, we have M(x, x) = x for all x ∈ I ). A mean M is called strict if for all
x , y ∈ I , x �= y , these inequalities are sharp; and it is symmetric, if M(x, y) = M(y, x)
for all x , y ∈ I (for a more exhaustive theory of means cf. Bullen, Mitrinović and
Vasić [2], also Aczél and Dhombres [1]).

In the present paper we are mainly interested in positively homogeneous means.
Therefore the interval I has to be of one of the following forms: (0,∞) , [0,∞) ,
(−∞, 0) , (−∞, 0] and R . Since the cases (−∞, 0) and (−∞, 0] easily reduce to
(0,∞) , [0,∞) , respectively, we omit them. Recall that a function M : I2 → R is
positively homogeneous of order p (p ∈ R) , if

M(tx, ty) = tpM(x, y), t > 0, x, y ∈ I.

It is easy to see that if M in this homogeneity condition is a mean then p = 1 , i.e. M
is positively homogeneous (for short: M is homogeneous),

M(tx, ty) = tM(x, y), t > 0, x, y ∈ I.

To present a general concept of this paper let us fix a mean N : (0,∞)2 → (0,∞) .
Then for every mean M : (0,∞)2 → (0,∞) there is a trivial decomposition

M(x, y) = N(x, y)fM,N(x, y), x, y > 0,

where, of course, fM,N = M/N . For example, the exponential mean F on (0,∞) ,
F(x, y) = log ((exp(x) + exp(y)) /2) , “decomposed” by the arithmetic mean A (re-
stricted to (0,∞) ), A(x, y) = (x + y)/2 , gives, trivially, F = AfF,A where

f F,A(x, y) :=
2

x + y
log

(
exp(x) + exp(y)

2

)

has a rather complicated form (without the possibility of any simplifying reduction).
However, if N and M are homogeneous means, the two–place function fM,N can be
reduced to a one–place function, which is useful in representing every homogeneous
mean M nontrivially as a product NfM,N .

To characterize a positively homogeneous function M : (0,∞)2 → R by a one–
place function h : (0,∞) → (0,∞) , it is often useful to take

M(x, y) = xh(y/x), x, y > 0,

where h(s) := M(1, s) , s > 0 . When the mean M is symmetric, the corresponding
symmetry property of h (which reduces to the functional equation h(s) = sh

(
1
s

)
,
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s > 0 ) is not easily recognizable. However, an expedient symmetry may be achieved
by a transformation of the variable s ( s = y/x ) to a new variable t ; taking the
homographic involution s = 1−t

1+t (implying t = 1−s
1+s = x−y

x+y ), we obtain

M(x, y) = A(x, y)f
(

x − y
x + y

)
, x, y > 0,

where A stands for the arithmetic mean and f (t) = M(1 + t, 1 − t) , t ∈ (−1, 1) . In
the next section we discuss such a decomposition in more detail.

2. Decomposition by the arithmetic mean

Denote by A the arithmetic mean A(x, y) = x+y
2 , (x , y > 0 ).

DEFINITION 1. For an arbitrary homogeneous mean M : (0,∞)2 → (0,∞) the
function fM,A : (−1, 1) → R , given by

fM,A(t) := M(1 + t, 1 − t), t ∈ (−1, 1),

is called index function of M with respect to A (for short: A–index function of M ).
The following decomposition result justifies this definition.

THEOREM 1. If M : (0,∞)2 → (0,∞) is a homogeneous mean, then

M(x, y) = A(x, y)fM,A

(
x − y
x + y

)
, x, y > 0, (1)

and, moreover,
1◦ fM,A((−1, 1)) ⊆ (0, 2) ;
2◦ fM,A(0) = 1 ;
3◦ M is symmetric iff fM,A is even, i.e.

fM,A(−t) = fM,A(t), t ∈ (−1, 1);

4◦ for all t ∈ (−1, 1) ,
1− | t |� fM,A(t) � 1+ | t |;

5◦ for all t ∈ (−1, 1) ,
f A,A(t) = 1;

6◦ for the extremal means, min and max , we have, respectively,

fmin,A(t) = 1− | t |, fmax,A(t) = 1+ | t |, t ∈ (−1, 1);

7◦ if M is one of the projective means, i.e, if M = P1 or M = P2 , where

P1(x, y) := x, P2(x, y) := y,

then
fP1,A(t) = 1 + t, f P2,A(t) = 1 − t, t ∈ (−1, 1);
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8◦ for all homogeneous means M , N : (0,∞)2 → (0,∞) ,

M(x, y) � N(x, y), (x, y > 0) iff fM,A(t) � f N,A(t), t ∈ (−1, 1);

9◦ M is subadditive, i.e.

M (x1 + x2, y1 + y2) � M (x1, y1) + M (x2, y2) , x1, x2, y1, y2 > 0,

iff the function fM,A is convex.

Proof. Let M be a homogeneous mean on (0,∞)2 . Then, making use of the
definition of the A–index function of M , we have

M(x, y) =
x + y

2
2

x + y
M(x, y) =

x + y
2

M

(
2x

x + y
,

2y
x + y

)

=
x + y

2
M

(
1 +

x − y
x + y

, 1 − x − y
x + y

)
= A(x, y)fM,A

(
x − y
x + y

)

for all x , y > 0 , which proves the decomposition formula (1).
By the definition of a mean, we have

0 � min(1 + t, 1 − t) � M(1 + t, 1 − t) � max(1 + t, 1 − t),

for all t ∈ (−1, 1) . The definition of fM,A proves 1◦ . Setting t = 0 in the definition of
the A–index function gives fM,A(0) = M(1, 1) = 1 and proves 2◦ . If M is symmetric
then, for all t ∈ (−1, 1) ,

fM,A(−t) = M(1 − t, 1 + t) = M(1 + t, 1 − t) = fM,A(t).

Conversely, fM,A(−t) = fM,A(t) , for all t ∈ (−1, 1) , implies that

fM,A

(
x − y
x + y

)
= fM,A

(
y − x
x + y

)
, x, y > 0.

Now the symmetry of A and decomposition formula (1) imply that

M(x, y) = A(x, y)fM,A

(
x − y
x + y

)
= A(y, x)fM,A

(
y − x
x + y

)
= M(y, x)

for all x , y > 0 , which proves 3◦ . We omit easy proofs of properties 4◦ – 8◦ . It
is known that a positively homogeneous function M : (0,∞)2 → R is subadditive iff
the function φ : (0,∞) → R , φ(t) := M(t, 1) , t > 0 , is convex (cf. Matkowski [5]).
Thus to prove 9◦ it is enough to show that fM,A is convex iff the function φ is convex
(cf. also Remark 1). We have

fM,A(t) = M(1 + t, 1 − t) = (1 + t)M
(

1,
1 − t
1 + t

)
= (1 + t)φ

(
1 − t
1 + t

)

= 2
1 + t

2
φ
(

2
1 + t

− 1

)
= 2

1 + t
2

ψ
(

2
1 + t

)
,
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where ψ(u) := φ(u− 1) . But the function ψ is convex iff the function u → uψ(1/u)
is convex (cf. Matkowski [4]). This proves 9◦ , and the proof is completed.

REMARK 1. If fM,A is twice differentiable in (−1, 1) , the proof of 9◦ can be
simplified. Then, of course, φ is twice differentiable in (0,∞) and we get

f
′′
M,A(t) =

4
(1 + t)3

φ
′′
(

1 − t
1 + t

)
, t ∈ (−1, 1),

which shows that fM,A is convex iff φ is convex. – To give a complete argument for
9◦ , other than that presented above, it is enough to observe that every convex function
is a limit of a sequence of convex and twice differentiable functions.

It turns out that property 4◦ characterizes the family of all homogeneous means
on (0,∞) . In a sense, the following result is the converse of Theorem 1.4◦ .

THEOREM 2. For every function f : (−1, 1) → R such that

1− | t |� f (t) � 1+ | t |, t ∈ (−1, 1), (2)

the function M : (0,∞)2 → R defined by

M(x, y) := A(x, y)f
(

x − y
x + y

)
, x, y > 0, (3)

is a homogeneous mean such that f = fM,A .

Proof. Suppose that f satisfies condition (2) and let M be defined by (3). It is
obvious that M is homogeneous. Take arbitrary x , y > 0 , and assume, for simplicity
of notation, that x � y . Then, applying (2) and (3), gives

min(x, y) = x =
x + y

2

(
1 − y − x

x + y

)

=
x + y

2

(
1 −

∣∣∣∣x − y
x + y

∣∣∣∣
)

� x + y
2

f

(
x − y
x + y

)

= M(x, y) � x + y
2

(
1 +

∣∣∣∣x − y
x + y

∣∣∣∣
)

=
x + y

2

(
1 +

y − x
x + y

)
= y = max(x, y),

which shows that M is a mean. Setting x = 1 + t and y = 1− t for t ∈ (−1, 1) gives
M(1 + t, 1 − t) = f (t) , which means that f = fM,A , and the proof is completed.

REMARK 2. Theorems 1 and 2 establish a bijection of the class of all homogeneous
means M : (0,∞)2 → (0,∞) onto the class of all functions f : (−1, 1) → (0, 2)
satisfying condition (2). Formula (1) gives a general construction of homogeneous
means.
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REMARK 3. The set

Δ :=
{
(t, s) ∈ R2 : t ∈ (−1, 1); 1 − |t| � s � 1 + |t|}

is of butterfly shape. Theorem 2 can be interpreted geometrically in the following
way: every function f : (−1, 1) → R such that the graph of f is contained in Δ , is
an A–index function of a mean. Note that Δ is not a convex set. In this context it is
interesting that the set of all A–index functions is convex. Namely, for all homogeneous
means M , N and λ ∈ (0, 1) the function λ fM,A +(1−λ )f N,A is an A–index function
of a mean λM + (1 − λ )N .

This fact can be generalized. For homogeneousmeans V , M , N on (0,∞) define
their composition U : (0,∞)2 → (0,∞) by

U(x, y) := V (M(x, y), N(x, y)) , x, y > 0.

Then, of course, U is a homogeneous mean, and

f U,A(t) = V (fM,A(t), f N,A(t)) , t ∈ (−1, 1).

In particular, the graph of a homogeneous mean of any two A–index functions, the
graphs of which are of course in Δ , is also located in the region Δ .

Note also that the A–index functions fM,A of homogeneous means M need not
be continuous. To show this it is enough to apply Theorem 2 where f is an arbitrary
discontinuous function satisfying condition (2).

The next result gives conditions under which a homogeneous mean defined on
(0,∞)2 can be, in a natural way, extended to a homogeneous mean defined on the
closed quadrant [0,∞)2 .

THEOREM 3. Let M : (0,∞)2 → (0,∞) be a homogeneous mean. If the limits

fM,A(1−) := lim
t→1−

fM,A(t),

fM,A(−1+) := lim
t→−1+

fM,A(t),

exist, then they are finite, and M : [0,∞)2 → [0,∞) defined by

M(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M(x, y) x, y > 0,

A(x, 0)fM,A(1−) x > 0, y = 0,

A(0, y)fM,A(−1+) x = 0, y > 0,

0 x = y = 0.

is a homogeneous mean defined on [0,∞)2 .

Proof. In view of Theorem 1.1◦ the limit fM,A(1−) is finite and, making use of
(1), we infer that, for every x > 0 , the limit

M(x, 0+) := lim
y→0+

M(x, y) = lim
y→0+

A(x, y)fM,A

(
x − y
x + y

)
= A(x, 0)fM,A(1−)
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exists, and is finite. Similarly, the limit fM,A(−1+) is finite, and, for every y > 0 , the
limit

M(0+, y) := lim
x→0+

M(x, y) = lim
x→0+

A(x, y)fM,A

(
x − y
x + y

)
= A(0, y)fM,A(−1+)

exists, and it is finite. As the homogeneity of M is obvious the proof is completed.

REMARK 4. Applying this theorem, it is easy to verify that harmonic and loga-
rithmic means (whose natural domain is (0,∞)2) can be extended onto the closed
quadrant [0,∞)2 . Note also that for every homogeneous mean M defined on [0,∞)2

we can define the A–index function fM,A : [−1, 1] → [0, 2] , and that the counterparts
of Theorems 1 and 2 remain true.

Taking in Theorem 2 a function f : (−1, 1) → R satisfying condition (2) and such
that at least one of the limits f (1−) or f (−1+) does not exist,we obtain a homogeneous
mean defined on (0,∞)2 that is not extendable to a continuous homogeneous mean
defined on the closed quadrant [0,∞)2 .

EXAMPLE 1. (Decomposition of power mean M[p] by arithmetic mean A .) The
power means M[p] : (0,∞)2 → (0,∞) , p ∈ R , are defined by the formula

M[p](x, y) :=
(

xp + yp

2

)1/p

, p �= 0; M[0](x, y) := G(x, y), x, y > 0,

where G : (0,∞)2 → (0,∞) stands for the geometric mean. We have

fM[p],A(t) =
(

(1 + t)p + (1 − t)p

2

)1/p

, f G,A(t) =
(
1 − t2

)1/2
, t ∈ (−1, 1).

PARTICULAR CASES.
(i) p = −1 (decomposition of harmonic mean M[−1] = H by arithmetic mean):

H(x, y) = A(x, y)f H,A

(
x − y
x + y

)
, x, y > 0;

f H,A(t) = H(1 + t, 1 − t) = 1 − t2, t ∈ (−1, 1).

Note that here the limits f H,A(1−) , f H,A(−1+) exist and equal zero. Therefore, in
view of Theorem 3, the harmonic mean H can be (uniquely) extended onto the closed
quadrant [0,∞)2 , and H , the homogeneous extension of H , vanishes on the boundary
of its domain.

(ii) p = 2 (decomposition of RMS mean M[2] = R by arithmetic mean):

R(x, y) = A(x, y)f R,A

(
x − y
x + y

)
, x, y > 0;

f R,A(t) = R(1 + t, 1 − t) =
(
1 + t2

)1/2
, t ∈ (−1, 1).
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Let us note the following easy to verify

REMARK 5. For any mean M : (0,∞)2 → (0,∞) , the function M∗ : (0,∞)2 →
R defined by

M∗(x, y) := x + y − M(x, y), x, y > 0,

is a mean. In the sequel it is called the contra–mean of M . Note that (M∗)∗ = M .
Moreover,

A (M, M∗) = A and fM∗ ,A + fM,A = 2.

In connection with this remark let us note another property of A–index functions.

THEOREM 4. If M : (0,∞)2 → (0,∞) is a homogeneous mean and fM,A is its A
–index function, then the function

f := 2 − fM,A

is also an A–index function, namely of a mean which is the contra–mean of M .

Proof. In view of Theorem 1.4◦ ,

1− | t |� fM,A(t) � 1+ | t |, t ∈ (−1, 1).

Hence, by the definition of f , we get

1− | t |� f (t) � 1+ | t |, t ∈ (−1, 1),

and, according to Theorem 2, the function f is an A–index function of a certain
homogeneous mean m : (0,∞)2 → (0,∞) , and for all x , y > 0 ,

m(x, y) = A(x, y)f
(

x − y
x + y

)
= 2A(x, y) − A(x, y)fM,A

(
x − y
x + y

)
= x + y − M(x, y),

which completes the proof.

EXAMPLE 2. (Decomposition of contra–harmonic mean K = H∗ by arithmetic
mean):

K(x, y) =
x2 + y2

x + y
= A(x, y)f K,A

(
x − y
x + y

)
, x, y > 0;

f K,A(t) = K(1 + t, 1 − t) = 1 + t2, t ∈ (−1, 1).

EXAMPLE 3. (Decomposition of Heronic mean E by arithmetic mean):

E(x, y) =
1
3

(
x + y + (xy)1/2

)
= A(x, y)f E,A

(
x − y
x + y

)
, x, y > 0;

f E,A(t) = E(1 + t, 1 − t) =
1
3

(
2 + (1 − t2)1/2

)
, t ∈ (−1, 1).
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EXAMPLE 4. (Decomposition of logarithmic mean L by arithmetic mean):

L(x, y) =
x − y

log(x) − log(y)
= A(x, y)f L,A

(
x − y
x + y

)
, x, y > 0, x �= y;

f L,A(t) = L(1 + t, 1 − t) =
2t

log 1+t
1−t

, t ∈ (−1, 1).

Here f L,A(1−) , f L,A(−1+) exist and equal zero. In view of Theorem 3, the mean
L is extendable onto the quadrant [0,∞)2 . According to Theorem 3, the extension L
vanishes on the boundary of its domain.

3. Decomposition by any homogeneous mean

Here we show that upon replacing the arithmetic mean by another homogeneous
reference mean, the counterparts of Theorem 1.1◦ − 8◦ remain true.

DEFINITION 2. Let m : (0,∞)2 → (0,∞) be a fixed homogeneous mean. For an
arbitrary homogeneousmean M : (0,∞)2 → (0,∞) the function fM,m : (−1, 1) → R ,
given by

fM,m(t) :=
M(1 + t, 1 − t)
m(1 + t, 1 − t)

, t ∈ (−1, 1),

is said to be the index function of M with respect to m (for short: m–index function of
M ).

REMARK 6. Note that, under the assumption of the definition,

fM,m(t) :=
fM,A(t)
f m,A(t)

=
M(1 + t, 1 − t)

f m,A(t)
= M

(
1 + t
f m,A(t)

,
1 − t
f m,A(t)

)
, t ∈ (−1, 1).

THEOREM 5. Let m : (0,∞)2 → (0,∞) be a fixed homogeneous mean. If
M : (0,∞)2 → (0,∞) is a homogeneous mean, then

M(x, y) = m(x, y)fM,m

(
x − y
x + y

)
, x, y > 0,

and, moreover,

1◦ fM,m(−1, 1) ⊆ (0,α) , where α := sup
{

1+|t|
fm,A(t) : t ∈ (−1, 1)

}
;

2◦ f m,m(0) = 1 ;
3◦ if m is symmetric, then M is symmetric iff fM,m is even, i.e.

fM,m(−t) = fM,m(t), t ∈ (−1, 1);
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4◦ for every t ∈ (−1, 1) ,

1− | t |
f m,A(t)

� fM,m(t) � 1+ | t |
f m,A(t)

;

5◦ for all t ∈ (−1, 1) , f m,m(t) = 1 ;
6◦ for the extremal means, min and max , we have, respectively,

fmin,m(t) =
1− | t |
f m,A(t)

, fmax,m(t) =
1+ | t |
f m,A(t)

, t ∈ (−1, 1);

7◦ if M is one of the projective means, i.e. if M = P1 or M = P2 , where P1(x, y) :=
x , and P2(x, y) := y , then

fP1,m(t) =
1 + t
f m,A(t)

, f P2,A(t) =
1 − t
f m,A(t)

, t ∈ (−1, 1);

8◦ for all homogeneous means M , N : (0,∞)2 → (0,∞) ,

M(x, y) � N(x, y), (x, y > 0) iff fM,m(t) � f N,m(t), t ∈ (−1, 1).

We omit easy arguments (analogous to the suitable parts of Theorem 1).

REMARK 7. If m , M : (0,∞)2 → (0,∞) are homogeneous means then

fM,m(t) =
1

f m,M(t)
, t ∈ (−1, 1).

The next result, a counterpart of Theorem 2, is, in a sense, the converse of Theorem
5.4◦ . It gives a construction of a homogeneous mean from a given suitable function in
a single variable and a given homogeneous reference mean.

THEOREM 6. Let m : (0,∞)2 → (0,∞) be a homogeneous mean. For every
function f : (−1, 1) → R satisfying the condition

1− | t |
f m,A(t)

� f (t) � 1+ | t |
f m,A(t)

, t ∈ (−1, 1), (4)

the function M : (0,∞)2 → R defined by

M(x, y) := m(x, y)f
(

x − y
x + y

)
, x, y > 0,

is a homogeneous mean such that f = fM,m .

As the proof is similar to that of Theorem 2, we omit it.

EXAMPLE 5. (Decomposition of a powermean M[p] by another powermean M[q] .)
By the definition of power means (Example 1) we get the docomposition

M[p](x, y) = M[q](x, y)fM[p],M[q]

(
x − y
x + y

)
, p, q ∈ R, (x, y > 0);



DECOMPOSITION OF HOMOGENEOUS MEANS AND CONSTRUCTION OF SOME METRIC SPACES 473

fM[p],M[q] (t) =
M[p](1 + t, 1 − t)
M[q](1 + t, 1 − t)

, t ∈ (−1, 1).

PARTICULAR CASES.
(i) p = −1 , q = 0 (decomposition of harmonic mean M[−1] = H by geometric

mean M[0] = G) :

H(x, y) = G(x, y)f H,G

(
x − y
x + y

)
, f H,G(t) =

(
1 − t2

)1/2
, t ∈ (−1, 1).

(ii) p = 1 , q = 0 (decomposition of arithmetic mean M[1] = A by geometric
mean M[0] = G) :

A(x, y) = G(x, y)f A,G

(
x − y
x + y

)
, f A,G(t) = (1 − t2)−1/2, t ∈ (−1, 1),

conforming to f A,G(t) = 1/f G,A(t) for all t ∈ (−1, 1) (cf. Example 1) by Remark 7.

EXAMPLE 6. Choose for reference the harmonic mean, m = H , and consider
the function f : (−1, 1) → R , f (t) = 1 + t

2 . From the decomposition H = AfH,A

(cf. Example 1) we know f H,A(t) = 1 − t2 . The given f fulfills condition 4◦ of
Theorem 5, therefore, f is an H –index function for a certain homogeneous mean
M : (0,∞)2 → (0,∞) . By Theorem 6 this mean has the form

M(x, y) =
2xy

x + y
f

(
x − y
x + y

)
=

3x2y + xy2

(x + y)2
, x, y > 0.

Although the reference mean m = H is symmetric, the resulting mean M is not
symmetric since the function f is not even.

4. Graphs of index functions

Let m : (0,∞)2 → (0,∞) be a fixed homogeneous mean. Then the graphs of all
m–index functions fM,m , where M is a homogeneous mean on (0,∞) , are contained
in a butterfly–shaped region; they are suitable for geometrical interpretations and visual
comparisons of several properties of homogeneous means.

4.1. Graphs of index functions with respect to the arithmetic mean.

The A–index function fM,A is, according to Theorem 1.4◦ , bounded by the
functions

fmin,A(t) = 1− | t |, fmax,A(t) = 1+ | t |, t ∈ (−1, 1);

their graphs constitute a region of butterfly shape.
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EXAMPLE 7. The graphs of the A–index functions fM,A of some power means
(cf. Example 1) are given in Figure 1. The arithmetic mean A (as reference mean)
appears as a horizontal straight line; geometric mean G and harmonic mean H are
represented by a semicircle and a parabola, respectively. All graphs must pass through
the point (0, 1) (cf. Theorem 1.2◦) . The present means are symmetric, implying
that the graphs of the corresponding A–index functions are symmetric with respect to
the second coordinate axis. The well-known relation between harmonic, geometric,
logarithmic, arithmetic and root-mean-squaremean, expressed by the inequality min �
H � G � L � A � R � max, is mirrored in any graph of index functions (according
to Theorem 1.8◦ ).

�
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�
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�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

A

G
H

min

C
K

max

0-1 1

1

2

Fig. 1. Graphs of A –index functions.
The labels refer to the following means: A arithmetic mean, G geometric mean, H harmonic
mean, C contra-geometric mean, K contra-harmonic mean, max maximum, min minimum

EXAMPLE 8. The graphs of the A–index functions fM,A of some contra–means
(cf. Example 2) are also given in Figure 1. — The Heronic mean E from Example 3
can be written as a weighted arithmetic mean of A and G , namely

E =
1
3
(2A + G) = A

(
4
3
A,

2
3
G

)
,

which is mirrored in the corresponding A–index function as

f E,A =
1
3

(2 + f G,A) = A

(
4
3
,
2
3
f G,A

)
.

(It is easy to read off the inequality G � E � A from any graph of index functions.)

4.2. Graphs of index functions with respect to any homogeneous mean.

The index function fM,m (of a homogeneous mean M with respect to another
homogeneous mean m ) is, according to Theorem 5.4◦ , bounded by the functions



DECOMPOSITION OF HOMOGENEOUS MEANS AND CONSTRUCTION OF SOME METRIC SPACES 475

fmin,m(t) =
1− | t |
f m,A(t)

, fmax,m(t) =
1+ | t |
f m,A(t)

, t ∈ (−1, 1),

which form a region of butterfly shape in graphical representations.

EXAMPLE 9. The graphs of the G–index functions fM,G of some power means (cf.
Example 5) are given in Figure 2. The geometric mean G (as reference mean) appears
as a horizontal straight line; the harmonic mean H is now represented by a semicircle,
and (the graph of) the G–index function f A,G is not bounded above. Thus, in Theorem
5.1◦ , we have α = +∞ .

G
H

min

A

max

0-1 1

1

2

3

Fig. 2. Graphs of G –index functions.
The labels refer to the following means: A arithmetic mean, G geometric mean, H harmonic

mean, max maximum, min minimum

5. Use of A–index functions in proving inequalities

To get the best estimation of the contra–harmonic mean

K(x, y) =
x2 + y2

x + y
, x, y > 0,

by power means M[p] ,

M[p](x, y) :=
(

xp + yp

2

)1/p

, p �= 0; M[0](x, y) :=
√

xy; (x, y > 0),

we now apply Theorem 1.8◦ . (Cf. also Zs. Páles [7] where, by a different method, a
more general result is proved.)
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THEOREM 7. For every p ∈ R , M[p] � K iff p � 3 . Moreover, there is no
p ∈ R such that K � M[p] .

Proof. Suppose that M[p] � K for some p > 0 . By Theorem 1.80 this inequality
is equivalent to

fM[p],A(t) � f K,A(t), t ∈ (−1, 1).

Since

f K,A(t) = 1 + t2, fM[p],A(t) = 2−1/p [(1 + t)p + (1 − t)p]1/p , t ∈ (−1, 1),

we get
(1 + t)p + (1 − t)p � 2(1 + t2)p, t ∈ (−1, 1).

As, by Taylor’s theorem,

(1 + t)p + (1 − t)p = 2 +
(

p
2

)
t2 + o(t2), t ∈ (−1, 1),

2(1 + t2)p = 2 +
(

p
1

)
t2 + o(t2), t ∈ (−1, 1),

the last inequality implies that
(p

2

)
�
(p

1

)
, i.e. p � 3 .

Since, obviously,

fM[3],A(t) = (1 + 3t2)1/3 � 1 + t2 = f K,A(t), t ∈ (−1, 1),

Theorem 1.80 implies that M[3] � K . Since the function R 	 p → M[p] is increasing,
we infer that M[p] � K for all p � 3 .

Suppose now that there exists a p ∈ R such that

f K,A(t) � fM[p],A(t), t ∈ (−1, 1).

In view of the previous part of the proof we have p � 3 . Letting here t → 1 gives
2 � 2(p−1)/p , which is a contradiction, and the proof is completed.

REMARK 8. A similar reasoning allows to give a simple proof of the inequality of
Lin [3]:

G � L � M[1/3],

which is the best estimation of the logarithmic mean by power means.

6. Some metrics in the family of homogeneous means

We begin this section with the following
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THEOREM 8. Let M denote the set of all homogeneous means M : (0,∞)2 →
(0,∞) , and let dA : M 2 → R be defined by

dA(M, N) := sup {|fM,A(t) − f N,A(t)| : t ∈ (−1, 1)} .

Then (M , dA) is a bounded complete metric space. Moreover,
1◦ for every sequence Mk ∈ M , k ∈ N , and M ∈ M ,

lim
k→∞

dA(Mk, M) = 0

iff Mk → M uniformly on compact subsets of (0,∞)2 ;
2◦

sup {dA(M, N) : M, N ∈ M } = dA(min, max) = 2;

3◦ the set M is convex, i.e. for all M , N ∈ M and λ ∈ (0, 1) ,

W := λM + (1 − λ )N ∈ M ,

and the metric space (M , dA) is convex in the sense of Menger (it is metrically
convex), i.e.

dA(M, W) + dA(W, N) = dA(M, N).

Proof. From Theorem 1.4◦ we infer that

|fM,A(t) − f N,A(t)| � 2 | t |, t ∈ (−1, 1),

which shows that the function dA has finite values on M , and dA(M, N) � 2 . If
dA(M, N) = 0 then fM,A = f N,A , and by (1), we have M = N . Conversely, if M = N
for some M , N ∈ M then fM,A = f N,A and, consequently, dA(M, N) = 0 . Since the
symmetry and the triangle inequality are obvious, dA is a metric in M . Let (Mk)∞k=1
be a Cauchy sequence in the metric space (M , dA) and ε > 0 . Thus there is a k0 ∈ N
such that dA(Mk, Ml) � ε for all k , l � k0 , k , l ∈ N . By the definition of dA we
have ∣∣fMk ,A(t) − fMl ,A(t)

∣∣ � ε, k, l � 0, t ∈ (−1, 1). (5)

It follows that there exists an f : (−1, 1) → R such that for every t ∈ (−1, 1) ,

lim
k→∞

fMk ,A(t) = f (t).

Since, in view of Theorem 1.4◦ , we have 1− | t |� fMk ,A(t) � 1+ | t | , for all
t ∈ (−1, 1) , we hence get 1− | t |� f (t) � 1+ | t | for all t ∈ (−1, 1) . By Theorem
2 there exists an M ∈ M such that f = fM,A . Letting l → ∞ in (5) gives∣∣fMk ,A(t) − fM,A(t)

∣∣ � ε, k � 0, t ∈ (−1, 1),

i.e. dA(Mk, M) � ε for all k � k0 . Thus the sequence (Mk) converges to an element
of M in the sense of the metric dA , and the completeness of the metric space is proved.
Part 1◦ is an easy consequence of decomposition formula (1). Part 2◦ and 30 are
obvious.
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REMARK 9. Let M denote the set of all homogeneous means M : (0,∞)2 →
(0,∞) , and let ρA : M 2 → R be defined by

ρA(M, N) := sup

{ |fM,A(t) − f N,A(t)|
|t| : t ∈ (−1, 1)

}
.

Then, similarly as in Theorem 8, one can show that (M , ρA) is a bounded complete
metric space; the statements 20 – 30 remain valid. It is obvious that the metric ρA is
stronger than dA . To show that ρA is essentially stronger, consider the following

EXAMPLE 10. Let Mn ∈ M , n ∈ N , be a sequence of means such that

fMn ,A(t) =
{

1, |t| ∈ [1/n, 1];
|t|, |t| < 1/n.

Then dA(Mn, A) = 1
n , n ∈ N , and (Mn) converges to A , as n → ∞ , in the sense of

the metric dA . On the other hand, we have

ρA(Mn, A) = 1, n ∈ N;

obviously, the sequence (Mn) is not convergent in the sense of the metric ρA .
The metric in Remark 9 seems to be a most proper one, and the last example shows

that this (apparently most proper) metric is independently interesting.

Choosing special subsets of M one can define some other metric spaces; cf., for
instance, the following remarks.

REMARK 10. Let L be the set of all homogeneous means M : (0,∞)2 → (0,∞)
such that the A–index function fM,A is Lebesgue measurable, and let p � 1 be fixed.
Then, by Theorem 1.1◦ , for every M ∈ L , the function fM,A is Lebesgue integrable,
and lpA : L × L → R defined by

lpA(M, N) :=

(∫ 1

−1
|fM,A(t) − f N,A(t)|p dt

) 1
p

, M, N ∈ L ,

is a metric in L . Similarly as in Theorem 8, it can be shown that the metric space
(L , lpA) is complete, and metrically convex (and the set (L ) is convex, cf. Remark 3).

REMARK 11. Denote by Cn the set of all homogeneous means M : (0,∞)2 →
(0,∞) such that the A–index function fM,A is n times continuously differentiable.
Then �A : Cn × Cn → R defined by

�A(M, N) :=
n−1∑
k=1

∣∣∣f (k)
M,A(0) − f (k)

N,A(0)
∣∣∣+ sup

{∣∣∣f (n)
M,A(t) − f (n)

N,A(t)
∣∣∣ : |t| < 1

}

is a metric in Cn . The metric space (Cn, �A) is complete, and (metrically) convex.
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7. M –convexity of power functions

Let M : (0,∞)2 → (0,∞) be a homogeneous mean. A function φ : (0,∞) →
(0,∞) is called M –convex if, for all x , y > 0 ,

φ(M(x, y)) � M(φ(x), φ(y)).

For every p ∈ R define φp : (0,∞) → (0,∞) by φp(x) = xp (x > 0) . The
following criterion of M –convexity for the power functions is proved in [Matkowski
and Rätz, 6].

All functions φp , p > 1 , are M –convex iff the following function is increasing:

τM : (0,∞) → (0,∞), τM(x) := (M (ex, 1))1/x (x > 0).

REMARK 12. Due to the homogeneity of M , the test function τM can be written
in a more symmetric form,

τM(x) = c
(
M
(
ex/2, e−x/2

))1/x
(x > 0), where c := e1/2,

and we get the following:
1. Let r ∈ R , r �= 0 , be fixed. All functions φp , p > 1 , are M[r] –convex iff the

function

τM[r] (x) = c
(
cosh

(rx
2

))1/(rx)
(x > 0) is increasing.

2. All functions φp , p > 1 , are L –convex iff the function

τL(x) = c

(
sinh( x

2 )
x
2

)1/x

(x > 0) is increasing.

Let us note that, via the hyperbolic functions, there is a strict connection of the test
function τM with our index function. Namely, we have the following

REMARK 13. For every positively homogeneous mean M : (0,∞)2 → (0,∞) ,

τM(x) = c
[
cosh

( x
2

)
fM,A

(
tanh(

x
2
)
)]1/x

(x > 0), c = e1/2.
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[2] P. S. BULLEN, D. S. MITRINOVIĆ AND P. M. VASIĆ, Means and their inequalities, D. Reidel Publ. Comp.
Dordrecht, 1988.

[3] T. P. LIN, The power mean and the logarithmic mean, Amer. Math. Monthly 81 (1974), 879–883.
[4] J. MATKOWSKI, A functional inequality characterizing convex functions, conjugacy and a generalization
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