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MULTI–DIMENSIONAL INTEGRAL

INEQUALITIES OF THE WIRTINGER–TYPE

WING-SUM CHEUNG AND JOSIP PEČARIĆ

(communicated by B. G. Pachpatte)

Abstract. In this paper some new Wirtinger-type integral inequalities involving many functions
of many variables are established. These on the one hand improve existing results in the subject
concerned and on the other hand can serve as generators of other integral inequalities of such
type.

1. Introduction

Wirtinger’s inequality is one of the most inspiring and fundamental integral in-
equalities in the analysis of finite elements and the study of qualitative as well as
quantitative properties of solutions of differential and integral equations. It states that if
ϕ : R → R is periodic with period 2π , ϕ′ ∈ L2[0, 2π] , and if

∫ 2π
0 ϕ(x)dx = 0 , then

∫ 2π

0
ϕ(x)2dx �

∫ 2π

0
ϕ′(x)2dx (1)

with equality holds if and only if ϕ(x) = A cos x + B sin x for some A, B ∈ R . As
pointed out byMitrinović [15], (1) was first provedbyBlaschke [8] in 1916 but a stronger
version had already been established well before that. In fact, back in 1905 Almansi
[3] showed that under the weaker conditions that ϕ , ϕ′ ∈ C(a, b) , ϕ(a) = ϕ(b) , and∫ b

a ϕ(x)dx = 0 , the inequality

∫ b

a
ϕ(x)2dx �

(b − a
2π

)2
∫ b

a
ϕ′(x)2dx (2)

holds. Since (1) and (2) together with many of their variations have proved to be
extremely useful in the study of differential and integral equations, a vast stock of
important generalizations of them have been established. These include the works
of Beesack [5, 6], Bellman [7], Opial [17], Schmidt [23], Sz.-Nagy [16], and recently
Agarwal-Pang [1], Agarwal-Pečarić-Brnetić [2], Agarwal-Sheng [3], Cheung [9, 10, 11,
12], Milovanović-Mitrinović-Rassias [14], Pachpatte [18, 19, 20], and Rassias [21, 22].
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It is the purpose of this paper to establish some generalizations of Wirtinger’s inequality
(1), (2) to the case of several independent variables, which improve existing results in
[1, 3]. A noteworthy point is that in contrast to the usual techniques of using divergence
theorems and considering certain eigenvalue problems, the methods used in this paper
are rather elementary. More importantly, the methods used here are kind of systematic
and furthermore, the same techniques can be used to establish other types of integral
inequalities in a rather efficient and easy way.

Throughout this paper, m, n � 1 will always denote two fixed integers. For
uniformity, let α, β , . . . be indices running from 1 to m , and i, j, . . . from 1 to n . Let

Ω =
n∏

i=1
[ai, bi] ⊂ R

n be a fixed rectangular region. As usual, a general point in R
n will

be denoted by x = (x1, . . . , xn) and the volume form of R
n by dx = dx1 · · · dxn . If

x = (x1, . . . , xn) ∈ Ω , we shall write Ωx :=
n∏

i=1
[ai, xi] and V(Ωx) := the volume of

Ωx . For the sake of simplicity we write V = V(Ωb) = V(Ω) . Let C(Ω) be, as usual,
the set of all continuous functions on Ω . If f ∈ C(Ω) , the partial derivatives of f will
be denoted by f i , f ij , etc. The function f 1···n will be abbreviated by

.
f .

Since all summations and products appearing in this paper have clear terminals, for
the sake of simplicity we shall drop the references to these and simply use the symbols∑
α

,
∏
i

etc. without terminals.

The following elementary inequality will be needed in the sequel.

LEMMA 0. For any pα , qα , cα > 0 with
∑

qα/pα = 1 ,

∏
cqα
α �

∑ qα
pα

cpα
α ,

where the equality holds if and only if c1 = · · · = cm .

The proof of Lemma 0 depends on the arithmetic-geometric mean inequality and
is rather elementary, so it is not included here. Interested readers may consult, e.g., [13,
15].

2. Main Results

Let

F = {f ∈ C(Ω) : f 1, f 12, . . . , f 1···n exist and are continuous on Ω
such that f (a1, x2, . . . , xn) = f 1(x1, a2, x3, . . . , xn) = · · ·
= f 1···n−1(x1, . . . , xn−1, an) = 0 for all x ∈ Ω} ,

G = {f ∈ F : f (b1, x2, . . . , xn) = f 2(x1, b2, x3, . . . , xn) = · · ·
= f 1···n−1(x1, . . . , xn−1, bn) = 0 for all x ∈ Ω} .
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THEOREM 1. For any f α ∈ F and any real numbers pα � 1 , qα > 0 with∑
α

qα/pα = 1 , if we write q :=
∑
α

qα , then

∫
Ω

w
∏
α

|f α |qα � 1
Cq

K(w, q)
∑
α

qα
pα

Cpα

∫
Ω
| .f α |pα , (3)

where w(t) is any non-negative continuous weight function on Ω , C > 0 is any
constant, and

K(w, q) :=
∫
Ω

w(t)V(Ωt)q−1dt .

In particular, if w(t) ≡ 1 , we have∫
Ω

∏
α

|f α |qα � 1
qn

(V
C

)q ∑
α

qα
pα

Cpα

∫
Ω
| .f α |pα . (4)

To prove Theorem 1 we need the following lemma.

LEMMA 1. For any f ∈ F , f (t) =
∫
Ωt

.
f (u)du for all t ∈ Ω .

Proof. Since f ∈ F , f (t) =
∫ t1

a1
f 1(u1, t2, . . . , tn)du1 , and so the lemma follows

by induction. �
Proof of Theorem 1. By Lemma 1 and Hölder’s inequality, we have

|f α(t)| �
∫
Ωt

| .f α(u)|du

� V(Ωt)(pα−1)/pα
[ ∫

Ω
| .f α(u)|pα du

]1/pα

and so ∏
α

|f α(t)|qα � V(Ωt)q−1
∏
α

[ ∫
Ω
| .f α(u)|pα du

]qα/pα
.

Therefore,∫
Ω

w(t)
∏
α

|f α(t)|qα dt �
∫
Ω

w(t)V(Ωt)q−1dt ·
∏
α

[ ∫
Ω
| .f α(u)|pα du

]qα/pα

=
1
Cq

K(w, q)
∏
α

[
Cpα

∫
Ω
| .f α(u)|pαdu

]qα/pα

� 1
Cq

K(w, q)
∑
α

qα
pα

Cpα

∫
Ω
| .f α(u)|pαdu

by Lemma 0. Finally, if w(t) ≡ 1 , then

K(w, q) =
∫
Ω

V(Ωt)q−1dt

=
Vq

qn

and so (4) follows immediately from (3). �
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COROLLARY 1. Under the hypotheses of Theorem 1, we have
∫
Ω

∏
α

|f α |qα � 1
qn

· min
{

Vq
∑
α

qα
pα

∫
Ω
| .f α |pα ,

∑
α

qα
pα

Vpα

∫
Ω
| .f α |pα

}
. (5)

In particular,
∫
Ω

∏
α

|f α | � 1
mn

· min
{

Vm
∑
α

1
pα

∫
Ω
| .f α |pα ,

∑
α

1
pα

Vpα

∫
Ω
| .f α |pα

}
(6)

for all pα � 1 with
∑
α

1/pα = 1 .

Proof. (5) is immediate by putting C = 1 and C = V respectively in (4), and (6)
follows from (5) by letting qα = 1 for all α . �

REMARK 1. Instead of requiring f α ∈ F for all α , a set of seemingly more
“natural” conditions on the f α ’s would be

f α
∣∣∣
xi=ai

= 0 for all α, i.

Observe that these are stronger than f α ∈ F and so Theorem 1 and hence Corollary 1
are automatically true under such conditions.

For any t ∈ Ω , let Ωk
t , k = 1, . . . , 2n , be the sub-regions of Ω determined by the

hyperplanes xi = ti , i = 1, . . . , n . Let

Φ(t) :=
∏

i

[(ti − ai)(bi − ti)] .

THEOREM 2. For any f α ∈ G and any real numbers pα � 1 , qα > 0 with∑
α

qα/pα = 1 , if we write q :=
∑
α

qα , then

∫
Ω

w
∏
α

|f α |qα � 1
Cq

L(w, q)
∑
α

qα
pα

Cpα

∫
Ω
| .f α |pα , (7)

where w(t) is any non-negative continuous weight function on Ω , C > 0 is any
constant, and

L(w, q) :=
1
2n

∫
Ω

w(t)Φ(t)(q−1)/2dt .

In particular, if w(t) ≡ 1 , we have
∫
Ω

∏
α

|f α |qα �
[1
2
B
(q + 1

2
,
q + 1

2

)]n(V
C

)q ∑
α

qα
pα

Cpα

∫
Ω
| .f α |pα , (8)

where B is the Beta function.

To prove Theorem 2 we need a couple of lemmas.
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LEMMA 2. For any t ∈ Ω ,

2n∏
k=1

V(Ωk
t ) = Φ(t)2n−1

.

Proof. Observe that
∏
k

V(Ωk
t ) is a product of powers of (ti − ai) and (bi − ti) ,

i = 1, . . . , n . Now for each i , the hyperplane xi = ti seperates Ω into two components
each of which consists of exactly 2n−1 sub-regions Ωk

t ’s. Note that each Ωk in one
of these two components has a side of length ti − ai , while none of the Ωk ’s in the
other component has such. Thus (ti − ai) appears exactly 2n−1 times in

∏
k

V(Ωk
t ) .

Similarly, (bi − ti) appears exactly 2n−1 times in
∏
k

V(Ωk
t ) . Hence the lemma. �

LEMMA 3. For any f ∈ G and any constant p � 1 ,

|f (t)|p � 1
2n
Φ(t)(p−1)/2

∫
Ω
| .f |p.

Proof. Observe that one of the Ωk
t ’s, say Ω1

t , equals Ωt . Thus by Lemma 1,

f (t) =
∫
Ω1

t

.
f (u)du.

Since f ∈ G , by similar arguments we have

f (t) = ±
∫
Ωk

t

.
f (u)du , k = 1, . . . , 2n,

and so by Hölder’s inequality,

|f (t)| �
∫
Ωk

t

| .f (u)|du � V(Ωk
t )

(p−1)/p
( ∫

Ωk
t

| .f (u)|pdu
)1/p

, k = 1, . . . , 2n.

Multiplying these 2n inequalities together and using Lemma 2, we have

|f (t)|2n �
[∏

k

V(Ωk
t )

](p−1)/p[∏
k

∫
Ωk

t

| .f |p
]1/p

= Φ(t)(2n−1)(p−1)/p
[∏

k

∫
Ωk

t

| .f |p
]1/p

,

thus

|f (t)| �
{
Φ(t)(p−1)/2

[∏
k

∫
Ωk

t

| .f |p
]1/2n}1/p

and so by the arithmetic-geometric mean inequality,

|f (t)| �
{
Φ(t)(p−1)/2 · 1

2n

∑
k

∫
Ωk

t

| .f |p
}1/p

=
{ 1

2n
Φ(t)(p−1)/2

∫
Ω
| .f |p

}1/p
.

�
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Proof of Theorem 2. By Lemma 3, we have, for each α ,

|f α(t)|qα �
[ 1
2n
Φ(t)(pα−1)/2

∫
Ω
| .f α |pα

]qα/pα
.

Thus
∏
α

|f α(t)|qα �
∏
α

[ 1
2n
Φ(t)(pα−1)/2

]qα/pα ∏
α

[ ∫
Ω
| .f α |pα

]qα/pα

=
1
2n
Φ(t)(q−1)/2

∏
α

[ ∫
Ω
| .f α |pα

]qα/pα

and so∫
Ω

w(t)
∏
α

|f α(t)|qα dt � 1
2n

∫
Ω

w(t)Φ(t)(q−1)/2dt ·
∏
α

[ ∫
Ω
| .f α |pα

]qα/pα

= L(w, q) · 1
Cq

·
∏
α

[
Cpα

∫
Ω
| .f α |pα

]qα/pα

� 1
Cq

L(w, q)
∑
α

qα
pα

Cpα

∫
Ω
| .f α |pα

by Lemma 0. Finally, if w(t) ≡ 1 , then

L(w, q) =
1
2n

∫
Ω
Φ(t)(q−1)/2dt

=
1
2n

∫
Ω

∏
i

[(ti − ai)(bi − ti)](q−1)/2dt

=
1
2n

∏
i

[
(bi − ai)qB

(q + 1
2

,
q + 1

2

)]

=
[1
2
B
(q + 1

2
,
q + 1

2

)]n
Vq ,

where

B(r, s) :=
∫ 1

0
ur−1(1 − u)s−1du , r > 0 , s > 0 ,

is the Beta function. Thus we have∫ ∏
α

|f α |qα �
[1
2
B
(q + 1

2
,
q + 1

2

)]n(V
C

)q ∑
α

qα
pα

Cpα

∫
Ω
| .f α |pα .

�
COROLLARY 2. Under the hypotheses of Theorem 2, we have∫

Ω

∏
α

|f α |qα �
[1
2
B
(q + 1

2
,
q + 1

2

)]n
·

min
{

Vq
∑
α

qα
pα

∫
Ω
| .f α |pα ,

∑
α

qα
pα

Vpα

∫
Ω
| .f α |pα

}
. (9)
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In particular,
∫
Ω

∏
α

|f α | �
[1
2
B
(m + 1

2
,
m + 1

2

)]n
·

min
{

Vm
∑
α

1
pα

∫
Ω
| .f α |pα ,

∑
α

1
pα

Vpα

∫
Ω
| .f α |pα

}
(10)

for all pα � 1 with
∑
α

1/pα = 1 .

Proof. (9) is immediate by putting C = 1 and C = V respectively in (8), and
(10) follows from (9) by letting qα = 1 for all α . �

REMARK 2. Similar to Remark 1, instead of requiring f α ∈ G for all α , a set of
seemingly more “natural” conditions on the f α ’s are that they vanish on the boundary
of Ω , that is,

f α
∣∣∣
xi=ai

= f α
∣∣∣
xi=bi

= 0 for all α , i .

Again since these are indeed stronger than f α ∈ G , Theorem 2 and hence Corollary 2
are automatically true under such stronger conditions.

REMARK 3. Theorem 2 is a significant improvement of the results of Agarwal
and Sheng in [3] in two senses. Firstly, putting C = 1 in inequalities (7) and (8)
respectively gives

∫
Ω

w
∏
α

|f α |qα � L(w, q)
∑
α

qα
pα

∫
Ω
| .f α |pα

and ∫
Ω

∏
α

|f α |qα �
[1
2
B
(q + 1

2
,
q + 1

2

)]n
Vq

∑
α

qα
pα

∫
Ω
| .f α |pα ,

which are precisely those obtained in [3]. Secondly, and perhaps more importantly, the
basic conditions imposed on the f α ’s in [3] are

f α
∣∣∣
xi=ai

= f α
∣∣∣
xi=bi

= 0 , for all α, i ,

which are, as discussed in REMARK 2 above, significantly stronger than our basic
assumptions that f α ∈ G for all α .

3. The Case m = 1 (the case of 1 function in many variables)

The most frequently encountered situation among all is clearly the case where
m = 1 , that is, the case where there is only one dependent function. Obviously in
this case the following are immediate from Corollaries 1 and 2 by setting m = 1 and
p = q = k � 1 :
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COROLLARY 3. For any f ∈ F ,
∫
Ω
|f |k � Vk

kn

∫
Ω
| .f |k for all real k � 1 .

COROLLARY 4. For any f ∈ G ,∫
Ω
|f |k �

[1
2
B
(k + 1

2
,
k + 1

2

)]n
Vk

∫
Ω
| .f |k for all real k � 1 .

More importantly, the general results obtained in §2 by no means exhaust their
power of generating new Wirtinger-type inequalities involving one dependent function
of several variables in these corollaries. For instance, by choosing any integer N > 1
and letting f 1 = · · · = f N = f , we may obtain, for different combinations of pα ’s
and qα ’s, new Wirtinger-type inequalities involving one dependent function of several
variables from the general results in §2 .

4. Remark

The method used in §2 and §3 above in establishing new multi-dimensional
integral inequalities of the Wirtinger-type is, comparing to the usual techniques of
considering certain eigenvalue problems, rather elementary and easy to apply. More
importantly, this method does not exhaust itself in establishing integral inequalities of
such type, in fact, the same techniques can also be used to arrive at other types of integral
inequalities in several independent variables. These include the Poincaŕe-type [10], the
Opial-type [12], the Sobolev-type [9], the Gronwall-Wendroff type [11], etc. Although
this method is not as sophisticated, in many cases the results obtained are better than
those found by using other more complicated techniques with heavy machinery. It
is believed that many more important multi-dimensional integral inequalities for our
disposal in the study of both qualitative and quantitative properties of solutions of
differential and integral equations can be established by using the techniques used here.
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[16] B. SZ.-NAGY, Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung, Acta Sci.

Math. (Szeged) 10 (1941), 67–74.
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Faculty of Textile Technology

University of Zagreb
Croatia

e-mail: pecaric@hazu.hr

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


