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MIXED MEANS AND HARDY’S INEQUALITY

A. ČIŽMEŠIJA AND J. PEČARIĆ

Abstract. Integral means of arbitrary order, with power weights, and their companion means
are introduced and related mixed-means inequalities are derived. These results are then used
in proving inequalities of Hardy and Levin-Cochran-Lee type. Also, new proofs of Hardy and
Carleman inequality for finite and infinite series are given by using discrete mixed-means.
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