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MIXED MEANS AND HARDY’S INEQUALITY

A. ČIŽMEŠIJA AND J. PEČARIĆ

(communicated by B. Mond)

Abstract. Integral means of arbitrary order, with power weights, and their companion means
are introduced and related mixed-means inequalities are derived. These results are then used
in proving inequalities of Hardy and Levin-Cochran-Lee type. Also, new proofs of Hardy and
Carleman inequality for finite and infinite series are given by using discrete mixed-means.

1. Introduction

We start with the mixed arithmetic–geometric mean inequality:

THEOREM 1. Let a1, a2, . . . , an be positive real numbers. The arithmetic mean
of the numbers

a1,
√

a1a2, 3√a1a2a3, . . . , n
√

a1a2 . . . an

does not exceed the geometric mean of the numbers

a1,
a1 + a2

2
,
a1 + a2 + a3

3
, . . . ,

a1 + a2 + a3 + · · · + an

n
.

There is equality if and only if a1 = a2 = · · · = an .

This result was first given by F. Holland in [7] in the form of a conjecture and then
independently proved by K. Kedlaya in [8] and T. Matsuda in [12]. Kedlaya’s proof
was strictly combinatorial, while Matsuda proposed an inductive proof that uses a little
analysis.

In their paper [14] B. Mond and J. Pečarić gave a generalization of Theorem 1,
involving two arbitrary power means. Let a = (a1, a2, . . . , an) be a positive real
n –tuple and r ∈ R . We denote the non-weighted mean of order r by

M[r]
n (a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1
n

n∑
i=1

ar
i

) 1
r

, r �= 0

(
n∏

i=1

ai

) 1
n

, r = 0 .
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In fact, the mean of order 1 is the arithmetic mean of numbers a1, . . . , an , i.e. An(a) =
M[1]

n (a) , and the mean of order 0 is the geometric mean of these numbers, i.e. Gn(a) =
M[0]

n (a) .
So, in [14] Mond and Pečarić proved the following

THEOREM 2. Let a = (a1, a2, . . . , an) be a positive real n –tuple and let r < s .
The mean of order s of

a1, M
[r]
2 (a), . . . , M[r]

n (a)

does not exceed the mean of order r of

a1, M
[s]
2 (a), . . . , M[s]

n (a) .

Equality holds if and only if a1 = a2 = . . . = an .

The remarkable idea of generalizing Theorem 1 as in Theorem 2 was due to T.
S. Nanjundiah, [17], but unfortunately he never published his proof, as it was noticed
in the paper [3] of P. S. Bullen. In that paper the statement of Theorem 2 was called
Nanjundiah’s inequality and it was proven for the case n = 2 and 0 < r < s . Moreover,
Nanjundiah’s proof of Theorem 1 will be published in [4].

Theorem 1 has some further generalizations on matrices and positive operators.
In [15] Mond and Pečarić gave an analogous mixed arithmetic–mean, harmonic–mean
inequality for Hermitian matrices and the mixed arithmetic–geometric mean inequality
for noncommutative positive definite matrices. In [16] they extended these results to
positive linear operators.

The aim of this paper is to generalize these results to integrals. We introduce
integral power means and give relations between two means of different order, i.e.
mixed (r, s)–means inequality. Also, we give companion results of these inequalities
and demonstrate how powerful mixedmeans are by showing how the well-known Hardy
and Cochran–Lee inequalities in their discrete and integral versions can be obtained as
limit cases of given results.

The analysis used in proofs is based on Minkowski’s integral inequality (see [6],
Theorem 202), properties of the means and on some basic theorems of real analysis.

In what follows, without further mention, we assume that all integrals exist on the
respective domains of their definitions.

2. Mixed (r, s)–means inequalities

All results are based on

LEMMA 1. Let a, b ∈ R , a < b , and let f be non-negative function integrable
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on [a, b] . Suppose r, s ∈ R , r < s , r, s �= 0 , and α, γ ∈ R . Then

{
1

(b − a)α

∫ b

a
(x − a)α−1

[
1

(x − a)γ

∫ x

a
(t − a)γ−1f s(t)dt

] r
s

dx

} 1
r

�
{

1
(b − a)γ

∫ b

a
(x − a)γ−1

[
1

(x − a)α

∫ x

a
(t − a)α−1f r(t)dt

] s
r

dx

} 1
s

. (1)

Proof. Using the change t = a+ u(x− a) of the independent variable in the inner
integral, the left side of (1) becomes

⎧⎨
⎩ 1

(b − a)α

∫ b

a
(x − a)α−1

[∫ 1

0
uγ−1f s(a + u(x − a))du

] r
s

dx

⎫⎬
⎭

1
r

�

⎧⎨
⎩
∫ 1

0
uγ−1

[
1

(b − a)α

∫ b

a
(x − a)α−1f r(a + u(x − a))dx

] s
r

du

⎫⎬
⎭

1
s

. (2)

The second row in (2) is obtained by an application of the integral version of Min-
kowski’s inequality. Substituting back a + u(x − a) = t and considering the notation
ũ = a + u(b − a) , the right side of (2) is equal to

{∫ 1

0
uγ−1

[
1

uα(b − a)α

∫ ũ

a
(t − a)α−1f r(t)dt

] s
r

du

} 1
s

=

{
1

(b − a)γ

∫ b

a
(x − a)γ−1

[
1

(x − a)α

∫ x

a
(t − a)α−1f r(t)dt

] s
r

dx

} 1
s

.

The last equality is due to the substitution x = a + u(b − a) , that completes the proof.
�

Using appropriate changes of independent variables, we can easily obtain the
companion result of Lemma 1:

LEMMA 2. Let b ∈ R , b > 0 , and let f be non-negative function integrable on
[b,∞〉 . If r, s ∈ R are such that r < s , r, s �= 0 , and α, γ ∈ R , then inequality

{
1
bα

∫ ∞

b
xα−1

[
1
xγ

∫ ∞

x
tγ−1f s(t)dt

] r
s

dx

} 1
r

�
{

1
bγ

∫ ∞

b
xγ−1

[
1
xα

∫ ∞

x
tα−1f r(t)dt

] s
r

dx

} 1
s

(3)

holds.
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Proof. Define function g by g(x) = f
(

1
x

)
, for x ∈ 〈 0, 1

b

]
. Then, for function

g , using scalars 0, 1
b ,−α,−γ instead of a, b,α, γ respectively, inequality (1) can be

written in the form⎧⎨
⎩ 1

bα

∫ 1
b

0

(
1
u

)α+1
[
uγ
∫ u

0

(
1
v

)γ+1

gs(v)dv

] r
s

du

⎫⎬
⎭

1
r

�

⎧⎨
⎩ 1

bγ

∫ 1
b

0

(
1
u

)γ+1
[
uα
∫ u

0

(
1
v

)α+1

gr(v)dv

] s
r

du

⎫⎬
⎭

1
s

. (4)

Let us transform correspondingly the inner integrals at both sides of (4) by the transfor-
mation t = 1

v , hence⎧⎨
⎩ 1

bα

∫ 1
b

0

(
1
u

)α+1
[
uγ
∫ ∞

1
u

tγ−1f s(t)dt

] r
s

du

⎫⎬
⎭

1
r

�

⎧⎨
⎩ 1

bγ

∫ 1
b

0

(
1
u

)γ+1
[
uα
∫ ∞

1
u

tα−1f r(t)dt

] s
r

du

⎫⎬
⎭

1
s

. (5)

Inequality (3) is obtained by putting x = 1
u in first integrals at both sides of (5). �

Now we introduce integral power means. Let c, d ∈ R , c < d , and let f be a
non-negative function integrable on [c, d] . For α > 0 and r ∈ R , r �= 0 , as in [6], we
define the mean of order r , M[r](f ; c, d,α) , of f by

M[r](f ; c, d,α) =

[
α

(d − c)α

∫ d

c
(x − c)α−1f r(x)dx

] 1
r

. (6)

If f is positive, we can also define the geometric mean of f as

G(f ; c, d,α) = M[0](f ; c, d,α)

= exp

(
α

(d − c)α

∫ d

c
(x − c)α−1 ln f (x)dx

)
. (7)

On the other hand, for c,α, r ∈ R , c > 0,α < 0, r �= 0 , and non-negative function f
integrable on [c,∞〉 let M[r]

∗ (f ; c,α) denote the companion power mean of order r of
f ,

M[r]
∗ (f ; c,α) =

[−α
cα

∫ ∞

c
xα−1f r(x)dx

] 1
r

. (8)

If f > 0 , let

G∗(f ; c,α) = M[0]
∗ (f ; c,α) = exp

(−α
cα

∫ ∞

c
xα−1 ln f (x)dx

)
(9)
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be the companion geometric mean of f .
Since ∫ d

c
(x − c)α−1dx =

(d − c)α

α
, if α > 0,

and ∫ ∞

c
xα−1dx =

cα

−α , if α < 0,

one can see that relations (6)–(9) really represent the means. Those means have further
properties:

M[r](f ; c, d,α) � M[s](f ; c, d,α), (10)

M[r]
∗ (f ; c,α) � M[s]

∗ (f ; c,α), (11)

for r < s , and

lim
r→0

M[r](f ; c, d,α) = G(f ; c, d,α), (12)

lim
r→0

M[r]
∗ (f ; c,α) = G(f ; c,α). (13)

A very important consequence of Lemma 1 is

THEOREM 3. If a, b ∈ R , a < b , f is a non-negative function integrable on [a, b] ,
and r, s,α, γ ∈ R such that r < s , r, s �= 0 , and α, γ > 0 , then{

α
(b − a)α

∫ b

a
(x − a)α−1

[
γ

(x − a)γ

∫ x

a
(t − a)γ−1f s(t)dt

] r
s

dx

} 1
r

�
{

γ
(b − a)γ

∫ b

a
(x − a)γ−1

[
α

(x − a)α

∫ x

a
(t − a)α−1f r(t)dt

] s
r

dx

} 1
s

,

i.e. M[r](M[s](f ; a, x, γ ); a, b,α) � M[s](M[r](f ; a, x,α); a, b, γ ) .

Proof. Directly from Lemma 1, replacing f by α 1
r γ 1

s f . �
This is the integral mixed (r, s)–means inequality. The companion result is given

by

THEOREM 4. If the conditions of Lemma 2 are satisfied with α, γ < 0 , then{
−α
bα

∫ ∞

b
xα−1

[−γ
xγ

∫ ∞

x
tγ−1f s(t)dt

] r
s

dx

} 1
r

�
{
−γ
bγ

∫ ∞

b
xγ−1

[−α
xα

∫ ∞

x
tα−1f r(t)dt

] s
r

dx

} 1
s

,

i.e. M[r]
∗ (M[s]

∗ (f ; x, γ ); b,α) � M[s]
∗ (M[r]

∗ (f ; x,α); b, γ ) .
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Proof. Applying Lemma 2 to the function (−α)
1
r (−γ )

1
s f instead of f . �

The next two lemmas describe the case r = 0 , i.e. the case involving the geomet-
rical mean.

LEMMA 3. Suppose a, b ∈ R , a < b . If f is a positive function integrable on
[a, b] , α, γ ∈ R such that α > 0 , and s ∈ R , s > 0 , then

{
1

(b − a)γ

∫ b

a
(x − a)γ−1

[
exp

(
α

(x − a)α

∫ x

a
(t − a)α−1 ln f (t)dt

)]s

dx

} 1
s

� exp

{
α

(b − a)α

∫ b

a
(x − a)α−1 ln

[
1

(x − a)γ

∫ x

a
(t − a)γ−1f s(t)dt

] 1
s

dx

}
.

(14)

Proof. Writing the result of Lemma 1 for the function α 1
r f , instead of (1) we

have {
α

(b − a)α

∫ b

a
(x − a)α−1

[
1

(x − a)γ

∫ x

a
(t − a)γ−1f s(t)dt

] r
s

dx

} 1
r

�
{

1
(b − a)γ

∫ b

a
(x − a)γ−1

[
α

(x − a)α

∫ x

a
(t − a)α−1f r(t)dt

] s
r

dx

} 1
s

.

(15)

For x ∈ [a, b] define

h(x) =
[

1
(x − a)γ

∫ x

a
(t − a)γ−1f s(t)dt

] 1
s

.

The left side of (15) is then equal to M[r](h; a, b,α) and by (12) we obtain that
limr→0 M[r](h; a, b,α) = G(h; a, b,α) , i.e. the right side of (14). The right side of (15)
can be written as

R(r) =

{
1

(b − a)γ

∫ b

a
(x − a)γ−1

[
M[r](f ; a, x,α)

]s
dx

} 1
s

. (16)

Since M[r](f ; a, x,α) � 0 , combining (10) and (12), the monotone convergence of
M[r](f ; a, x,α) to G(f ; a, x,α) as r decreases to 0 is obvious. Using Lebesgue’s
monotone convergence theorem, equality

lim
r↘0

R(r) =

{
1

(b − a)γ

∫ b

a
(x − a)γ−1[G(f ; a, x,α)]sdx

} 1
s
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holds, i.e. the left side of (14). Consequently, (14) follows from (15) by taking limr↘0 .
�

LEMMA 4. Let b ∈ R , b > 0 , and f be a positive function integrable on [b,∞〉 .
If s,α, γ ∈ R are such that s > 0 , α < 0 , then

{
1
bγ

∫ ∞

b
xγ−1

[
exp

(−α
xα

∫ ∞

x
tα−1 ln f (t)dt

)]s

dx

} 1
s

� exp

{
−α
bα

∫ ∞

b
xα−1 ln

[
1
xγ

∫ ∞

x
tγ−1f s(t)dt

] 1
s

dx

}
. (17)

Proof. From Lemma 2, applied to the function (−α)
1
r f , by using (11), (13) and

the monotone convergence theorem. �
Lemma 1 and Lemma 2 also imply

THEOREM 5. If conditions of Lemma 3 hold true with γ > 0 , then
(i) M[s](G(f ; a, x,α); a, b, γ ) � G(M[s](f ; a, x, γ ); a, b,α) , for s > 0 ,
(ii) M[s](G(f ; a, x,α); a, b, γ ) � G(M[s](f ; a, x, γ ); a, b,α) , for s < 0 .

Proof. From Lemma 1, by the same tools as in the proof of Lemma 3. �

THEOREM 6. Under conditions of Lemma 4 with γ < 0 , inequalities

(i) M[s]
∗ (G(f ; x,α); b, γ ) � G(M[s]

∗ (f ; x, γ ); b,α) , for s > 0 ,

(ii) M[s]
∗ (G(f ; x,α); b, γ ) � G(M[s]

∗ (f ; x, γ ); b,α) , for s < 0 ,
hold.

Proof. Directly from Lemma 2, as in the proofs of Lemma 3 and Lemma 4. �

3. Hardy type inequalities

The results given in the previous section can be used in proving some well-known
inequalities. Here we give new proofs of these inequalities and improve one result
related to finite sums.

The discrete version of the famous Hardy inequality (see [6], Theorem 327 and
[13], Chapter IV, Theorem 1) is contained in

THEOREM 7. If p > 1 , an � 0 , and An = a1 + a2 + · · · + an , then

∞∑
n=1

(
An

n

)p

<

(
p

p − 1

)p ∞∑
n=1

ap
n, (18)

unless all the an are zero. The constant
(

p
p−1

)p
is the best possible.
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Proof. By Theorem 2, for r = 1 , s = p and k ∈ N

[
1
k

k∑
n=1

(
An

n

)p
] 1

p

� 1
k

k∑
n=1

(
1
n

n∑
l=1

ap
l

) 1
p

and then
k∑

n=1

(
An

n

)p

� k1−p

⎡
⎣ k∑

n=1

(
1
n

n∑
l=1

ap
l

) 1
p
⎤
⎦

p

. (19)

Since
∑n

l=1 ap
l �

∑k
l=1 ap

l = Sk , for all n ∈ N , n � k , the right side of (19) is less
than or equal to

k1−pSk

[
k∑

n=1

(
1
n

) 1
p
]p

� k1−pSk

(
k1− 1

p

1 − 1
p

)p

=
(

p
p − 1

)p

Sk. (20)

The inequality in (20) is a consequence of the integrability of the function f (x) = x−
1
p

in 〈 0, k〉 , since the sum
∑k

n=1 n−
1
p is the lower Darboux sum of f . So,

k∑
n=1

(
An

n

)p

<

(
p

p − 1

)p k∑
n=1

ap
n (21)

and inequality (18) holds by taking limit as k → ∞ . �

Inequality (21) describes what happens if both series in (18) are restricted to a
finite number of terms. The constant that appeared in this situation is the same as in
(18). But, if we look at the proof of Theorem 7 carefully, it is obvious that relations
(19) and (20) give us an inequality with a smaller constant, since

k1−p

(
k∑

n=1

n−
1
p

)p

<

(
p

p − 1

)p

.

So, the best possible constant in the infinite case is not the best possible for the finite
series. We just proved

THEOREM 8. If p > 1 , an � 0 , and An = a1 + a2 + · · · + an , then

k∑
n=1

(
An

n

)p

< k1−p

(
k∑

n=1

n−
1
p

)p k∑
n=1

ap
n,

for all k ∈ N , unless all the an are zero.
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REMARK 1. Our result gives a smaller explicit bound for the best possible constant
λk for the relation

k∑
n=1

(
An

n

)p

< λk

k∑
n=1

ap
n

and our constant depends on the number of terms in the sums. The best possible constant
for the finite section of the discrete Hardy inequality was investigated by H. S. Wilf in
[20], but only for the case p = 2 . He established only the asymptotic behavior of λk

as k → ∞ and showed that

λk = 4 − 16π2

(ln k)2
+ O

(
ln ln k
(ln k)3

)
.

For further details, see [13], Chapter IV.

The corresponding theorem of Theorem 7 for integrals is (see [6], Theorem 326 or
[13], Chapter IV, Theorem 2)

THEOREM 9. If p > 1 , f (x) � 0 , and F(x) =
∫ x

0 f (t)dt , then

∫ ∞

0

(
F
x

)p

dx <

(
p

p − 1

)p ∫ ∞

0
f pdx,

unless f ≡ 0 . The constant is the best possible.

In this paper we shall prove Hardy’s generalization of Theorem 9, stated in [6],
Theorem 330, and [13], Chapter IV, p. 145:

THEOREM 10. If f is a non-negative function integrable on [0,∞〉 and real
numbers p, r,α are such that p, r > 1 , then∫ ∞

0
x−r

[∫ x

0
tα−1f (t)dt

]p

dx �
(

p
r − 1

)p ∫ ∞

0
t−r [tα f (t)]p dt. (22)

Proof. Relation (22) is obtained as the limit of (1) as b → ∞ . Let 0 < r < s ,
a = 0 and γ = αp − r + 1 . In this case we have s

r > 1 and αp − γ > 0 , so (1) can
be written as {∫ b

0
xγ−1

[
1
xα

∫ x

0
tα−1f r(t)dt

] s
r

dx

} 1
s

� b
γ
s −α

r

{∫ b

0
xα−1

[
1
xγ

∫ x

0
tγ−1f s(t)dt

] r
s

dx

} 1
r

=

{
bγ

r
s−α

∫ b

0
xα−1−γ r

s

[∫ x

0
tγ−1f s(t)dt

] r
s

dx

} 1
r

. (23)
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Denote

Ib =
∫ b

0
tγ−1f s(t)dt.

Since
∫ x

0 tγ−1f s(t)dt � Ib , 0 � x � b , the last row of (23) is less than or equal to

{
bγ

r
s−α · I r

s
b ·
∫ b

0
xα−1−γ r

s dx

} 1
r

=

{
bγ

r
s−α · bα−γ r

s

α − γ r
s

· I r
s
b

} 1
r

=

(
I

r
s
b

α − γ r
s

) 1
r

=
( s

r

α s
r − γ

) 1
r

I
1
s
b .

By raising to the s -th power we have

∫ b

0
xγ−1

[
1
xα

∫ x

0
tα−1f r(t)dt

] s
r

dx �
( s

r

α s
r − γ

) s
r

Ib. (24)

Putting p = s
r and f r instead of f in (24) one obtains

∫ b

0
xγ−αp−1

[∫ x

0
tα−1f (t)dt

]p

dx �
(

p
αp − γ

)p ∫ b

0
tγ−1f p(t)dt,

or, in the original notation,∫ b

0
x−r

[∫ x

0
tα−1f (t)dt

]p

dx �
(

p
r − 1

)p ∫ b

0
t−r [tα f (t)]p dt.

Inequality (22) holds by taking limb→∞ . �

The companion inequality of (22) (see [6], Theorem 330, and [13], Chapter IV, p.
145) is given by

THEOREM 11. Let f be non-negative function integrable on [0,∞〉 and real
numbers p, r,α such that p > 1 and r < 1 . Then∫ ∞

0
x−r

[∫ ∞

x
tα−1f (t)dt

]p

dx �
(

p
1 − r

)p ∫ ∞

0
t−r [tα f (t)]p dt. (25)

Proof. Recall Lemma 2 for r = 1 , s = p > 1 and parameters α and γ =
αp − r + 1 . By raising to the p –th power inequality (3) becomes

1
bγ

∫ ∞

b
xγ−1

[
1
xα

∫ ∞

x
tα−1f (t)dt

]p

dx

�
{

1
bα

∫ ∞

b
xα−1

[
1
xγ

∫ ∞

x
tγ−1f p(t)dt

] 1
p

dx

}p

,
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or ∫ ∞

b
xγ−αp−1

[∫ ∞

x
tα−1f (t)dt

]p

dx

�
{

b
γ
p−α

∫ ∞

b
xα−

γ
p −1

[∫ ∞

x
tγ−1f p(t)dt

] 1
p

dx

}p

. (26)

Let

Jb =
∫ ∞

b
tγ−1f p(t)dt.

Since
∫∞

x tγ−1f p(t)dt � Jb , x � b , and αp − γ < 0 , an upper bound for the right
side of (26) is {

b
γ
p −αJ

1
p
b

∫ ∞

b
xα−

γ
p −1dx

}p

=

(
− 1

α − γ
p

)p

Jb =
(

p
γ − αp

)p ∫ ∞

b
tγ−1f p(t)dt.

Finally, ∫ ∞

b
xγ−αp−1

[∫ ∞

x
tα−1f (t)dt

]p

dx �
(

p
γ − αp

)p ∫ ∞

b
tγ−1f p(t)dt

or, considering the notation from the begining of the proof,∫ ∞

b
x−r

[∫ ∞

x
tα−1f (t)dt

]p

dx �
(

p
1 − r

)p ∫ ∞

b
t−r [tα f (t)]p dt,

and we reach (25) by taking limb→0 . �

REMARK 2. Theorem 11 can also be proved directly from Theorem 10, using the
method described in the proof of Lemma 2.

REMARK 3. The inequality that occurs in [6], Theorem 330, is in fact∫ ∞

0
x−rFpdx <

(
p

|r − 1|
)p ∫ ∞

0
t−r(tf )pdt, (27)

where

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ x

0
f (t)dt , r > 1∫ ∞

x
f (t)dt , r < 1

and p > 1 , that differs a little bit from our Theorem 10 and Theorem 11. But, (27)
is easily obtained from these results by writing (22) and (25) for the function tα−1f
instead of f .
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4. Carleman’s inequality and inequalities of Levin–Cochran–Lee type

The well–known Carleman inequality (see [6], Theorem 334, or [13], Chapter IV,
Theorem 3) is the subject of

THEOREM 12. ∞∑
n=1

(a1a2 · · · an)
1
n < e

∞∑
n=1

an, (28)

unless (an) is null. The constant e is the best possible.

Inequality (28) can be proved by using Nanjundiah’s idea, i.e. by applying the
mixed arithmetic–geometricmean inequality, as it is shown in [3] and [4]. Bullen derived
(28) by taking the limit as k → ∞ of

k∑
n=1

(a1a2 · · · an)
1
n < e

k∑
n=1

an. (29)

Using the same method, but more carefully, here we improve (29) by

THEOREM 13. Let an � 0 . Then

k∑
n=1

(a1a2 · · · an)
1
n <

k
k√k!

k∑
n=1

an, (30)

for all k ∈ N , unless (an) is null.

Proof. By Theorem 1 we have

1
k

k∑
n=1

(a1a2 · · · an)
1
n �

[
k∏

i=1

(
1
i

i∑
n=1

an

)] 1
k

. (31)

Since
∑i

n=1 an <
∑k

n=1 an = Ak , for all 1 � i � k , unless all an are zero, the right

side of (31) is less than k
√∏k

i=1
Ak
i = Ak

k√k!
. Hence,

1
k

k∑
n=1

(a1a2 · · · an)
1
n <

1
k√k!

k∑
n=1

an

and (30) follows by multiplying by k . �
This result is really an improvement, since our constant satisfies

k
k√k!

< e1− 1
k < e,

that was proved by A. Lupaş in [11]. Moreover, Carleman’s inequality follows from
(30) by taking limk→∞ , since limk→∞ k

k√k!
= e .
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REMARK 4. The constant e is the best possible for the infinite series, although
there is no convergent series for which equality in (28) holds. If, however, the series
in (28) are restricted to a finite number of terms, we obtained an inequality with the
smaller constant, k

k√k!
, dependent on the number of terms in the sum in (30), and given

explicitly. The best possible constant for

k∑
n=1

(a1a2 · · · an)
1
n < μk

k∑
n=1

an

was given by N. G. De Bruijn in [2] (see also [13], Chapter IV) only by its asymptotic
behavior as k → ∞ . He established that

μk = e − 2π2e
(ln k)2

+ O

(
1

(ln k)3

)
.

J. A. Cochran and C.–S. Lee in [5] proved the following result:

THEOREM 14. Let α and γ be real numbers with α > 0 , f (t) a positive function
such that tα−1 ln f (t) is locally integrable in [0,∞〉 . Then∫ ∞

0
xγ−1 exp

{
α
xα

∫ x

0
tα−1 ln f (t)dt

}
dx � e

γ
α

∫ ∞

0
xγ−1f (x)dx. (32)

The constant e
γ
α is the best possible.

Originally, inequality (32) was discovered by V. Levin in [9] and rediscovered by
Cochran and Lee, as it is mentioned by M. Alić and J. Pečarić in [1]. So, (32) will
be called the Levin–Cochran–Lee inequality. Here we give a new approach to this
inequality. It holds as the limiting case of Lemma 3.

Proof. In (14), let s = 1 and a = 0 . Then

1
bγ

∫ b

0
xγ−1 exp

(
α
xα

∫ x

0
tα−1 ln f (t)dt

)
dx

� exp

{
α
bα

∫ b

0
xα−1 ln

[
1
xγ

∫ x

0
tγ−1f (t)dt

]
dx

}
,

or ∫ b

0
xγ−1 exp

(
α
xα

∫ x

0
tα−1 ln f (t)dt

)
dx

� eγ ln b exp

{
α
bα

∫ b

0
xα−1 ln

[
1
xγ

∫ x

0
tγ−1f (t)dt

]
dx

}
. (33)
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Denote

I∗b =
∫ b

0
tγ−1f (t)dt.

It is obvious that
∫ x

0 tγ−1f (t)dt � I∗b holds for x ∈ [0, b] , and hence the right side of
(33) is not greater than

eγ ln b exp

{
α
bα

∫ b

0
xα−1 ln

(
I∗b
xγ

)
dx

}

= exp

{
γ ln b +

α
bα

[
ln(I∗b )

∫ b

0
xα−1dx −

∫ b

0
xα−1 ln(xγ )dx

]}

= exp

{
γ ln b + ln(I∗b ) − α

bα
γ
∫ b

0
xα−1 ln xdx

}
. (34)

Since ∫ b

0
xα−1 ln xdx =

bα

α

(
ln b − 1

α

)
,

the last row in (34) is equal to

exp

{
γ ln b + ln(I∗b ) − γ

(
ln b − 1

α

)}
= e

γ
α I∗b .

Hence, ∫ b

0
xγ−1 exp

(
α
xα

∫ x

0
tα−1 ln f (t)dt

)
dx � e

γ
α

∫ b

0
tγ−1f (t)dt

and inequality (32) follows by taking limb→∞ . �

The companion result of Cochran–Lee’s is due to E. R. Love, given in [10]:

THEOREM 15. If α and γ are real constants with α < 0 and f (x) is a
measurable and non-negative function on 〈 0,∞〉 , then∫ ∞

0
xγ−1 exp

{−α
xα

∫ ∞

x
tα−1 ln f (t)dt

}
dx � e

γ
α

∫ ∞

0
xγ−1f (x)dx. (35)

Our proof is direct consequence of Lemma 4.

Proof. Put s = 1 in (17). Then

1
bγ

∫ ∞

b
xγ−1 exp

(−α
xα

∫ ∞

x
tα−1 ln f (t)dt

)
dx

� exp

{−α
bα

∫ ∞

b
xα−1 ln

[
1
xγ

∫ ∞

x
tγ−1f (t)dt

]
dx

}
,
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or equivalently,∫ ∞

b
xγ−1 exp

(−α
xα

∫ ∞

x
tα−1 ln f (t)dt

)
dx

� eγ ln b exp

{−α
bα

∫ ∞

b
xα−1 ln

[
1
xγ

∫ ∞

x
tγ−1f (t)dt

]
dx

}
. (36)

Since

J∗b =
∫ ∞

b
tγ−1f (t)dt �

∫ ∞

x
tγ−1f (t)dt,

for all x � b , the right side of (36) is not greater than

eγ ln b exp

{−α
bα

∫ ∞

b
xα−1 ln

(
J∗b
xγ

)
dx

}

= exp

{
γ ln b +

α
bα

[∫ ∞

b
xα−1 ln(xγ )dx − ln(J∗b )

∫ ∞

b
xα−1dx

]}

= exp

{
γ ln b +

α
bα

γ
∫ ∞

b
xα−1 ln xdx + ln(J∗b )

}
. (37)

Elementary calculus gives∫ ∞

b
xα−1 ln xdx =

bα

α

(
1
α

− ln b

)
.

Hence, the last equality in (37) is equal to

exp

{
γ ln b + γ

(
1
α

− ln b

)
+ ln(J∗b )

}
= e

γ
α J∗b

and, finally, we have∫ ∞

b
xγ−1 exp

{−α
xα

∫ ∞

x
tα−1 ln f (t)dt

}
dx � e

γ
α

∫ ∞

b
xγ−1f (x)dx.

So, (35) holds by taking limb→0 . �
Note that the most recent proof of Theorem 15 is given by G.–S. Yang and Y.–J.

Lin in [19].

REMARK 5. Inequality (35) can also be derived directly from Theorem 14 using
the same sequence of substitutions mentioned in the proof of Lemma 2.
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