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HARDY-BENNETT-TYPE THEOREMS
L. LEINDLER

(communicated by J. Pecaric)

Abstract. The factorization of inequalities, introduced and treated systematically by G. Bennett,
is a new and very effective method providing the best possible version of several classical and
recent inequalities. Here we moderately improve two factorization-theorems proved by us.

1. Introduction

The problem of factorization of inequalities was raised and treated systematically
by G. Bennett [2]. For precise definition and explanation of the great advantage of the
factorization we refer to this basic monograph of G. Bennett.

Recently in the papers [3], [4] we also studied some problems of factorization.

In the present paper we shall generalize two theorems of [4] which themselves,
disregarding two tolerable assumptions and the best possible constants, are certain
factorized extensions of two theorems of G. Bennett [1].

In order to recall these results and to formulate our new results we have to present
some notions and notations.

Let x := {x,} denote an arbitrary sequence of real (or complex) numbers. Let
A = {A,} be a sequence of positive numbers. We shall use the following notations:

H, = Z?Lk and A, = Z?Lk, (A < o0);
k=1 k=n
furthermore, for ¢ > 0,

Al = Z/lkAk_" and R := Z/lka_".
k=n k=n

We also define, for p > 0 and ¢ > 0, the following sets:
[ee] n P
Alp,c) = X:Z/lnAn_” Z|xk\ < o0
n=1 k=1
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and

A(p,C) = {X N Z ‘xk|p = O(ASII_P>(1_L'))} :
k=1

furthermoreif p > 1, 0 < ¢ < 1 and A; < oo the norms:

112 p.0) {ZM\ ( ka>}

and
|[%]Ap) sup (A(I’ 1)(1—c Zmp)
If ¢ = 0 we shall simply write A(p) := A(p,0) and A(p) : ,0).
Moreover denote
P
Ap,c,H) { P (Z xk|> < oo},
k=1
A(p,c,H) { Z|xk|p = = L))},
" ,
(X[ [2.p.c.e1) == {ZAH (ZM) }
and -

1
P
X[ agp.er) = sup (H(p D= Z|xkp> :

k=1

A sequence y := {y,} of positive terms will be called f -power-monotone de-

creasing if
Py, < mPy,
holds for any n > m and for all m.

It will be convenient to lay down here that henceforth a summation sign " in
which the limits of the summation are omitted will denote summation from 1 to co.
We shall use K to denote a positive constant. Not necessarily the same on any two
occurrences. If we wish to express the dependence explicitly, we write K in the form
K(a,...).

Now we establish two interesting theorems of G. Bennett [1], and their fractional
extansions proved in [4].

THEOREM A. If p > 1 and 0 < c < 1, then

n p
S (0] < (122 S
k=1

The constant is best possible.
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THEOREM B. If 1 < ¢ < p, then

n p
S haH (Z ak> < (cf—1>p S A PHL . (1.1)
k=1

The constant is best possible.

THEOREM C. Let p > 1, 0 < ¢ < 1 andlet A := {A,} be a given sequence of
positive terms.
(i) If a sequence x belongs to A(p,c) then it admits a factorization

X=y-z (X =Ynln) (1.2)
with
ye®¥ and z€Alp*,c), p*:= %; (1.3)
moreover i
(1.4) Xpae <X
where

X! ac = inf[[yl|p][2]| A=),
the infimum being extended over all factorization (1.2) with (1.3).
(if) Conversely, if the sequence A satisfies the additional condition

nA, < KA, n=12,..., (L.5)

furthermore the sequence {A,(f>} is B -power-monotone decreasing with some positive
B and the sequence x admits a factorization (1.2) with (1.3), then x belongs to
A(p,c); moreover

HXH)L(p,C) < K(A’7p>c)!X!p,A,c~ (16)

THEOREM D. Let 1 < ¢ < p andlet A be a given sequence of positive terms.
(i) If a sequence x belongsto A(p,c,H) then it admits a factorization (1.2) with

yer and z€ Ap*,c,H); (L.7)

moreover
X! te < X3, (1.3)
where
X! pe = inf ||y ||| |2l | A= c.or
the infimum is being extended over all factorization (1.2) with (1.7).
(ii) Conversely, if the sequence A satisfies the additional conditions: Y A, = 0o

and
nA, <KH,, n=1,2,..., (1.9)

furthermore the sequence {Rs,d is B -power-monotone decreasing with some positive
B and the sequence x admits a factorization (1.2) with (1.7), then x belongs to
A(p,c,H); moreover

[IXl[ap.c.on < K(A;p, €)Xy - (1.10)
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Perhaps it is not superfluous to show that Theorem C contains Theorem A, and
Theorem D includes Theorem B, under the assumptions on A and disregarding the best
constants. E.g. we demonstrate that Theorem D contains Theorem B. Let us suppose
that the right-hand side of (1.1) is finite. Then we can factorize x := a as follows:

—p

1 p—1 c
5 1

a, and z,:=A," HY .

T

Vn = A‘i Htii
The finiteness of the right-hand side of (1.1) implies that y € ¢ and by Lemma 4
(see below) z € A(p*, ¢, H) also holds, i.e. a is factorizable as in (1.2) with (1.7), so
the inequality (1.10) of Theorem D implies the inequality (1.1) disregarding the best
constant (c’%l)p , as stated.

We also emphasize, that the finiteness of the right-hand side of (1.1) always,
without any additional assumption on A , implies that a has a factorization (1.2) with
(1.7). Namely then, by Theorem B, a belongs to A(p,c,H) and by the part (i) of
Theorem D this fact implies the required factorization of the sequence a.

We also note that in [4] our Theorems C and D were formulated not in the present
form. By reformulating we intend to emphasize that the additional assumptions on A
are required only to the proof of the assertions x € A(p,c) and x € A(p,c, H).

According to my conjecture these assertions also follow from the factorization of
X =y - z without any additional condition on A, but, unfortunately, I am not able to
prove this. It is proposed to the reader.

Thus our modest aim is to weaken the conditions (1.5) and (1.9) moderately.

2. Theorems

Now we formulate our results.

THEOREM 1. Let p > 1,0 < ¢ < 1 and let A := {A,} be a given sequence of
positive terms.

(i) If a sequence a belongs to A(p,c) then it admits a factorization (1.2) with
(1.3); furthermore (1.4) also holds.

(ii) Conversely, if the sequence A satisfies the additional conditions:

" D
S ZElk<Kkn, n=12..., (2.1)
= M

furthermore the sequence {AE,C>} is f -power-monotone decreasing with some positive
B, and the sequence x admits a factorization (1.2) with (1.3), then x belongs to
A(p,c) and (1.6) also holds.

THEOREM 2. Let 1 < ¢ < p and let A be a given sequence as in the part (i) of
Theorem 1.

(i) If a sequence x belongsto A(p,c,H) then it admits a factorization (1.2) with
(1.7) ; furthermore (1.8) also holds.
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(ii) Conversely, if the sequence A satisfies the additional conditions: > A, = 00,

n

A
S EEk<Kn, n=12,..., (2.2)
= He

and the sequence {RS,C)} is B -power-monotone decreasing with some positive 3, and
the sequence x admits a factorization (1.2) with (1.7), then x belongs to A(p,c,H)
and (1.10) also holds.

It is easy to show that the assumptions (1.5) and (1.9) in Theorems C and D
imply the conditions (2.1) and (2.2) in Theorems 1 and 2, respectively, but the converse
assertions are not true. See e.g. the case

Loif n=2m,
M_{ﬁ .
3, if n#2M
Then (2.1) holds, but (1.5) is not satisfied for n = 2" . Similarly (2.2) holds and (1.9)

does not stay if
if n=2"
A{n = n7 i n )
1, if n#2™

3. Lemmas

To prove our theorems we need the following lemmas.

LEMMA 1. Let u, v, W be sequences with non-negative terms and suppose that wy,
decreases with k. If

iuk < ’Zlvk (n=1,2,...),
k=1 k=1

then

n n
Zukwk < kawk (n=1,2,...).
k=1

k=1

This lemma is known, see e.g. Lemma 3.6 in [2].
The proof of the following three lemmas can be found in [4].

LEMMA 2. If 0 < ¢ < 1, A is a sequence of positive terms A, and Yy A, < 00,
then

ATESY AL S K (AT
k=n

hold for all n.
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LEMMA 3. If 1 < ¢, A is a sequence of positive terms such that Y A, = co, then
o0
> AH ¢ < K(c)H) ™
k=n

holds for all n.

LEMMA 4. If 1 < ¢ < p, A is a sequence of positive terms such that > A, = 00,
then

c—1

n cp =1
> MH]T < K(c,p)HY
k=1

holds for all n.
Finally we prove one more lemma.

LEMMA 5. If 1 < ¢, A is a sequence of positive terms such that Y A, = oo and
(2.2) stays, then

Hy ™ <K(c) Y AH* (3.1)
k=n

holds for all n.

Proof. For any n let N(n) denote the only natural number satisfying the inequal-
ities

N(n) N(n)+1
Zkk <H, < Z M. (32)
k=n k=n
Hence we get that
also holds.
It is also clear that (2.2) implies the inequality
A’}H’l g KH}‘H
whence
Hn+1 < Kle
and thus
H' <KH (3.4)
follows.

Combining the inequalities (3.2), (3.3) and (3.4) yields the following

o N(n)+1 N(n)+1
> MH > MHC 2 Hyly o Y d> KHY ™
k=n k=n k=n

and this plainly proves (3.1).
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4. Proofs

Proof of Theorem 1. First we prove the special case ¢ = 0.

The part (i) of Theorem 1 was proved in [3], see the necessity part of the proof of
Theorem, namely the given proof does not use that all A, are positive.

Thus we can turn to the proof of (ii) assuming ¢ = 0. Then x admits a factorization
(1.2) with (1.3). For such a sequence z we have, by definition, that

1 « " L ;
Z IZ,\” \z”P A,;*P = HzH’;\(p*) Z (Ail P _Ail_f> 7
i=1
Where Ag := 0. This and Lemma 1 with the monotone decreasing sequence w; :=

A,” P=Ti€  where 0 < € < ﬁl,1mply

" [P * n 1 1 1
S lal” AT E < 2l Y (A,-"’ - A;f) AT
i=1

i=1
* . A'ifl .
< Il {1 RS f}. (4.1)

Next we show that (2.1) implies that

n

oue) ==Y %l < Knt. (4.2)

i=2 !

If € > 1 then the assertion is obvious.
If (0<)e <1,thenlet § =1—¢&. Assuming that 2¥=! < n <2V thenby (2.1)

N 2" 7L N
O-n Z Z 1 §/hi—1 Kzz md 2m<K2N£

m=1 j=pm—141 m=1

whence (4.2) follows plainly.
Thus, (4.1) and (4.2) imply that

n e .
Z |Zi‘P*Aip71l~g < KHZHf\(,,*)nE
i=1

Using this and Holder’s inequality, we have

<Z|> (Zm»f L*|zk|>p

i 2
(Z yelPw, ” ) KleHf\(p*)ngp* . (4.3)
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_1
Since L =p — 1 and wy = A", thus (4.3) conveys that

n p n ( _
S (S <wiat, SaS o ()
k=1 k=1

= KHZHI/’\(p*) Z \yklpAk_lkE(l_”) Zlnne(p—l)_
k=1 n=k

1)

(4.4)

Now utilizing the assumptions A,n? | and £(p — 1) < B, we get that

ZlnnE(P—l) (A, — AnH)nE(P—l)
n=k

M

Il
~

n

< AkkE(P—l) + KZAnnE(P—l)—l
n=k

AP+ KNP S "0t 00710 R Ak,
n=k

This and (4.4) yield

n p
S, (Z xk|> < K[zl Y115
k=1

This inequality plainly proves that x belongs to A (p) and that (1.6) also holds.
Herewith we have proved Theorem 1 in the special case ¢ = 0.

The case ¢ > 0 of Theorem 1 can be proved by its special case ¢ = 0.

Let us define a new sequence 4 := {A,} as follows:

Ap = A\ €

First we show that this new sequence A also satisfies the same conditions as A

does in the special case ¢ = 0. It is clear that A, > 0. Since
Kn = sz = ZA}CAEC = A}(lc)7

thus, by the assumption on {A,(f)}, the sequence {A,} is also f3-power-monotone
decreasing.
Using Lemma 2, the monotonicity of {A;} and (2.1) we get that

that is, the sequence A4 also satisfies the condition (2.1).
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Summing up we see that A satisfies all of the assumptions of Theorem 1 with
c=0.

Moreoverlet A (p) and A(p) denote the spaces defined with this sequence A . By
Lemma 2 it is clear that

A(p) = Alp,c) and Alp) = Ap, ¢).

Thus Theorem 1 with 4 and ¢ = 0 conveys the statements of Theorem 1 with the
given positive ¢, herewith Theorem 1 is verified.

Proof of Theorem 2. Conceptually the proof of Theorem 2 follows the line of
Theorem 1 with ¢ > 0, but now we define the sequence A := {A,} as follows

A 1= AnH, €

Then

A=Y "Je=> MH =RV,
k=n k=n
thus, by the assumption on {Rf,c>}, the sequence {A,} is also B-power-monotone
decreasing.
Since > A, = oo we can apply both Lemma 3 and Lemma 5, thus there exist two
positive constants K; and K, such that

KH ™ <A, <KHC (4.5)

Hereupon we can easily verify that the sequence A satisfies the condition (2.1),
too.
Namely (2.2) implies that
H ' <KH ', (4.6)

n—

see (3.4). Thus, by (2.2), (4.5) and (4.6), an elementary consideration gives that

>kt < i’“k,;f";l LS

k=
1 Z o
+ g K3l’l,

i.e. the sequence A satisfies (2.1) indeed.
Now let A(p) and A(p) denote the spaces defined with the sequence A . Then,
y (4.5), it is plain that

Alp)=Alp,c,H) and  Alp) = A(p,c,H).

The final conclusion is self-evident: Theorem 1 with the sequence A and ¢ = 0
proves Theorem 2 for the sequence A .
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