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HARDY–BENNETT–TYPE THEOREMS

L. LEINDLER

(communicated by J. Pečarić)

Abstract. The factorization of inequalities, introduced and treated systematically by G. Bennett,
is a new and very effective method providing the best possible version of several classical and
recent inequalities. Here we moderately improve two factorization-theorems proved by us.

1. Introduction

The problem of factorization of inequalities was raised and treated systematically
by G. Bennett [2]. For precise definition and explanation of the great advantage of the
factorization we refer to this basic monograph of G. Bennett.

Recently in the papers [3], [4] we also studied some problems of factorization.
In the present paper we shall generalize two theorems of [4] which themselves,

disregarding two tolerable assumptions and the best possible constants, are certain
factorized extensions of two theorems of G. Bennett [1].

In order to recall these results and to formulate our new results we have to present
some notions and notations.

Let x := {xn} denote an arbitrary sequence of real (or complex) numbers. Let
λ := {λn} be a sequence of positive numbers. We shall use the following notations:

Hn :=
n∑

k=1

λk and Λn :=
∞∑
k=n

λk, (Λ1 < ∞);

furthermore, for c � 0 ,

Λ(c)
n :=

∞∑
k=n

λkΛ−c
k and R(c)

n :=
∞∑
k=n

λkH
−c
k .

We also define, for p > 0 and c � 0 , the following sets:

λ (p, c) :=

{
x :

∞∑
n=1

λnΛ−c
n

(
n∑

k=1

|xk|
)p

< ∞
}
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and

Λ(p, c) :=

{
x :

n∑
k=1

|xk|p = O(Λ(1−p)(1−c)
n )

}
;

furthermore if p > 1, 0 � c < 1 and Λ1 < ∞ the norms:

||x||λ (p,c) :=

{ ∞∑
n=1

λnΛ−c
n

(
n∑

k=1

|xk|
)p} 1

p

and

||x||Λ(p,c) := sup
n

(
Λ(p−1)(1−c)

n

n∑
k=1

|xk|p
) 1

p

.

If c = 0 we shall simply write λ (p) := λ (p, 0) and Λ(p) := Λ(p, 0).

Moreover denote

λ (p, c, H) :=

{
x :
∑

λnH
−c
n

(
n∑

k=1

|xk|
)p

< ∞
}

,

Λ(p, c, H) :=

{
x :

n∑
k=1

|xk|p = O(H(1−p)(1−c)
n )

}
,

||x||λ (p,c,H) :=

{∑
λnH

−c
n

(
n∑

k=1

|xk|
)p} 1

p

and

||x||Λ(p,c,H) := sup
n

(
H(p−1)(1−c)

n

n∑
k=1

|xk|p
) 1

p

.

A sequence γ := {γn} of positive terms will be called β -power-monotone de-
creasing if

nβγn � mβγm
holds for any n � m and for all m .

It will be convenient to lay down here that henceforth a summation sign
∑

in
which the limits of the summation are omitted will denote summation from 1 to ∞ .
We shall use K to denote a positive constant. Not necessarily the same on any two
occurrences. If we wish to express the dependence explicitly, we write K in the form
K(α, . . .).

Now we establish two interesting theorems of G. Bennett [1], and their fractional
extansions proved in [4].

THEOREM A. If p > 1 and 0 � c < 1 , then

∑
λnΛ−c

n

(
n∑

k=1

ak

)p

�
(

p
1 − c

)p∑
λ 1−p

n Λp−c
n ap

n.

The constant is best possible.
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THEOREM B. If 1 < c � p, then

∑
λnH

−c
n

(
n∑

k=1

ak

)p

�
(

p
c − 1

)p∑
λ 1−p

n Hp−c
n ap

n. (1.1)

The constant is best possible.

THEOREM C. Let p > 1 , 0 � c < 1 and let λ := {λn} be a given sequence of
positive terms.

(i) If a sequence x belongs to λ (p, c) then it admits a factorization

x = y · z (xn = ynzn) (1.2)

with
y ∈ �p and z ∈ Λ(p∗, c), p∗ :=

p
p − 1

; (1.3)

moreover

(1.4) !x!p,Λ,c � ||x||λ (p,c),

where
!x!p,Λ,c := inf ||y||p||z||Λ(p∗,c),

the infimum being extended over all factorization (1.2) with (1.3) .
(ii) Conversely, if the sequence λ satisfies the additional condition

nλn � KΛn, n = 1, 2, . . . , (1.5)

furthermore the sequence {Λ(c)
n } is β -power-monotone decreasing with some positive

β and the sequence x admits a factorization (1.2) with (1.3) , then x belongs to
λ (p, c) ; moreover

||x||λ (p,c) � K(λ , p, c)!x!p,Λ,c. (1.6)

THEOREM D. Let 1 < c � p and let λ be a given sequence of positive terms.
(i) If a sequence x belongs to λ (p, c, H) then it admits a factorization (1.2) with

y ∈ �p and z ∈ Λ(p∗, c, H); (1.7)

moreover
!x!p,H,c � ||x||λ (p,c,H), (1.8)

where
!x!p,H,c := inf ||y||p||z||Λ(p∗,c,H)

the infimum is being extended over all factorization (1.2) with (1.7) .
(ii) Conversely, if the sequence λ satisfies the additional conditions:

∑
λn = ∞

and
nλn � KHn, n = 1, 2, . . . , (1.9)

furthermore the sequence {R(c)
n } is β -power-monotone decreasing with some positive

β and the sequence x admits a factorization (1.2) with (1.7) , then x belongs to
λ (p, c, H) ; moreover

||x||λ (p,c,H) � K(λ , p, c)!x!p,H,c. (1.10)
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Perhaps it is not superfluous to show that Theorem C contains Theorem A, and
Theorem D includes Theorem B, under the assumptions on λ and disregarding the best
constants. E.g. we demonstrate that Theorem D contains Theorem B. Let us suppose
that the right-hand side of (1.1) is finite. Then we can factorize x := a as follows:

yn := λ
1−p

p
n H

1− c
p

n an and zn := λ
p−1

p
n H

c
p−1
n .

The finiteness of the right-hand side of (1.1) implies that y ∈ �p and by Lemma 4
(see below) z ∈ Λ(p∗, c, H) also holds, i.e. a is factorizable as in (1.2) with (1.7), so
the inequality (1.10) of Theorem D implies the inequality (1.1) disregarding the best
constant

( p
c−1

)p
, as stated.

We also emphasize, that the finiteness of the right-hand side of (1.1) always,
without any additional assumption on λ , implies that a has a factorization (1.2) with
(1.7). Namely then, by Theorem B, a belongs to λ (p, c, H) and by the part (i) of
Theorem D this fact implies the required factorization of the sequence a .

We also note that in [4] our Theorems C and D were formulated not in the present
form. By reformulating we intend to emphasize that the additional assumptions on λ
are required only to the proof of the assertions x ∈ λ (p, c) and x ∈ λ (p, c, H) .

According to my conjecture these assertions also follow from the factorization of
x = y · z without any additional condition on λ , but, unfortunately, I am not able to
prove this. It is proposed to the reader.

Thus our modest aim is to weaken the conditions (1.5) and (1.9) moderately.

2. Theorems

Now we formulate our results.

THEOREM 1. Let p > 1, 0 � c < 1 and let λ := {λn} be a given sequence of
positive terms.

(i) If a sequence a belongs to λ (p, c) then it admits a factorization (1.2) with
(1.3) ; furthermore (1.4) also holds.

(ii) Conversely, if the sequence λ satisfies the additional conditions:

n∑
k=2

λk−1

Λk
k � Kn, n = 1, 2 . . . , (2.1)

furthermore the sequence {Λ(c)
n } is β -power-monotone decreasing with some positive

β , and the sequence x admits a factorization (1.2) with (1.3) , then x belongs to
λ (p, c) and (1.6) also holds.

THEOREM 2. Let 1 < c � p and let λ be a given sequence as in the part (i) of
Theorem 1.

(i) If a sequence x belongs to λ (p, c, H) then it admits a factorization (1.2) with
(1.7) ; furthermore (1.8) also holds.
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(ii) Conversely, if the sequence λ satisfies the additional conditions:
∑

λn = ∞ ,

n∑
k=1

λk+1

Hk
k � Kn, n = 1, 2, . . . , (2.2)

and the sequence {R(c)
n } is β -power-monotone decreasing with some positive β , and

the sequence x admits a factorization (1.2) with (1.7) , then x belongs to λ (p, c, H)
and (1.10) also holds.

It is easy to show that the assumptions (1.5) and (1.9) in Theorems C and D
imply the conditions (2.1) and (2.2) in Theorems 1 and 2, respectively, but the converse
assertions are not true. See e.g. the case

λn =
{ 1

n , if n = 2m,
1
n2 , if n �= 2m.

Then (2.1) holds, but (1.5) is not satisfied for n = 2m . Similarly (2.2) holds and (1.9)
does not stay if

λn :=
{

n, if n = 2m,

1, if n �= 2m.

3. Lemmas

To prove our theorems we need the following lemmas.

LEMMA 1. Let u, v, w be sequences with non-negative terms and suppose that wk

decreases with k . If
n∑

k=1

uk �
n∑

k=1

vk (n = 1, 2, . . .),

then
n∑

k=1

ukwk �
n∑

k=1

vkwk (n = 1, 2, . . .).

This lemma is known, see e.g. Lemma 3.6 in [2].
The proof of the following three lemmas can be found in [4].

LEMMA 2. If 0 � c < 1 , λ is a sequence of positive terms λn and
∑

λn < ∞ ,
then

Λ1−c
n �

∞∑
k=n

λkΛ−c
k � K(c)Λ1−c

n

hold for all n .
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LEMMA 3. If 1 < c, λ is a sequence of positive terms such that
∑

λn = ∞ , then

∞∑
k=n

λkH
−c
k � K(c)H1−c

n

holds for all n .

LEMMA 4. If 1 < c � p, λ is a sequence of positive terms such that
∑

λn = ∞ ,
then

n∑
k=1

λkH
c−p
p−1

k � K(c, p)H
c−1
p−1
n

holds for all n .

Finally we prove one more lemma.

LEMMA 5. If 1 < c, λ is a sequence of positive terms such that
∑

λn = ∞ and
(2.2) stays, then

H1−c
n � K(c)

∞∑
k=n

λkH
−c
k (3.1)

holds for all n .

Proof. For any n let N(n) denote the only natural number satisfying the inequal-
ities

N(n)∑
k=n

λk � Hn <

N(n)+1∑
k=n

λk. (3.2)

Hence we get that
HN(n) � 2Hn (3.3)

also holds.
It is also clear that (2.2) implies the inequality

λn+1 � KHn,

whence
Hn+1 � K1Hn,

and thus
H−1

n � K1H
−1
n+1 (3.4)

follows.
Combining the inequalities (3.2), (3.3) and (3.4) yields the following

∞∑
k=n

λkH
−c
k �

N(n)+1∑
k=n

λkH
−c
k � H−c

N(n)+1

N(n)+1∑
k=n

λk > KH1−c
n

and this plainly proves (3.1).
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4. Proofs

Proof of Theorem 1. First we prove the special case c = 0 .
The part (i) of Theorem 1 was proved in [3], see the necessity part of the proof of

Theorem, namely the given proof does not use that all λn are positive.
Thuswe can turn to the proof of (ii) assuming c = 0 . Then x admits a factorization

(1.2) with (1.3). For such a sequence z we have, by definition, that

n∑
i=1

|zi|p∗ � ||z||p∗Λ(p∗)Λ
1

1−p
n = ||z||p∗Λ(p∗)

n∑
i=1

(
Λ

1
1−p
i − Λ

1
1−p
i−1

)
,

where Λ0 := 0 . This and Lemma 1 with the monotone decreasing sequence wi :=

Λ
1

p−1
i iε , where 0 < ε < β

p−1 , imply

n∑
i=1

|zi|p∗Λ
1

p−1
i iε � ||z||p∗Λ(p∗)

n∑
i=1

(
Λ

1
1−p
i − Λ

1
1−p
i−1

)
Λ

1
p−1
i iε

� ||z||p∗Λ(p∗)

{
1 + K

n∑
i=2

λi−1

Λi
iε
}

. (4.1)

Next we show that (2.1) implies that

σn(ε) :=
n∑

i=2

λi−1

Λi
iε � Knε . (4.2)

If ε � 1 then the assertion is obvious.
If (0 <)ε < 1 , then let δ = 1− ε . Assuming that 2N−1 < n � 2N , then by (2.1)

σn(ε) �
N∑

m=1

2m∑
i=2m−1+1

i1−δ λi−1

Λi
� K

N∑
m=1

2−mδ · 2m � K12Nε ,

whence (4.2) follows plainly.
Thus, (4.1) and (4.2) imply that

n∑
i=1

|zi|p∗Λ
1

p−1
i iε � K||z||p∗Λ(p∗)n

ε .

Using this and Hölder’s inequality, we have(
n∑

k=1

|xk|
)p

=

(
n∑

k=1

|yk|w
−1
p∗
k w

1
p∗
k |zk|

)p

�
(

n∑
k=1

|yk|pw
− p

p∗
k

)
K1||z||pΛ(p∗)n

ε p
p∗ . (4.3)
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Since p
p∗ = p − 1 and wk = Λ

1
p−1

k kε , thus (4.3) conveys that

∑
λn

(
n∑

k=1

|xk|
)p

� K||z||pΛ(p∗)

∑
λn

n∑
k=1

|yk|pΛ−1
k

(n
k

)ε(p−1)

= K||z||pΛ(p∗)

∞∑
k=1

|yk|pΛ−1
k kε(1−p)

∞∑
n=k

λnn
ε(p−1).

(4.4)

Now utilizing the assumptions Λnnβ ↓ and ε(p − 1) < β , we get that

∞∑
n=k

λnn
ε(p−1) =

∞∑
n=k

(Λn − Λn+1)nε(p−1)

� Λkk
ε(p−1) + K

∞∑
n=k

Λnn
ε(p−1)−1

� Λkk
ε(p−1) + KΛkk

β
∞∑
n=k

nε(p−1)−1−β � K1Λkk
ε(p−1).

This and (4.4) yield

∑
λn

(
n∑

k=1

|xk|
)p

� K||z||pΛ(p∗)||y||pp.

This inequality plainly proves that x belongs to λ (p) and that (1.6) also holds.
Herewith we have proved Theorem 1 in the special case c = 0 .
The case c > 0 of Theorem 1 can be proved by its special case c = 0 .
Let us define a new sequence λ := {λ n} as follows:

λ n := λnΛ−c
n .

First we show that this new sequence λ also satisfies the same conditions as λ
does in the special case c = 0 . It is clear that λ n > 0. Since

Λn :=
∞∑
k=n

λ k =
∞∑
k=n

λkΛ−c
k = Λ(c)

n ,

thus, by the assumption on {Λ(c)
n } , the sequence {Λn} is also β -power-monotone

decreasing.
Using Lemma 2, the monotonicity of {Λi} and (2.1) we get that

n∑
i=2

i
λ i−1

Λi
� K

n∑
i=2

i
λi−1Λ−c

i−1

Λ1−c
i

� K
n∑

i=2

i
λi−1

Λi
� K1n,

that is, the sequence λ also satisfies the condition (2.1).
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Summing up we see that λ satisfies all of the assumptions of Theorem 1 with
c = 0 .

Moreover let λ (p) and Λ(p) denote the spaces defined with this sequence λ . By
Lemma 2 it is clear that

λ (p) ≡ λ (p, c) and Λ(p) ≡ Λ(p, c).

Thus Theorem 1 with λ and c = 0 conveys the statements of Theorem 1 with the
given positive c , herewith Theorem 1 is verified.

Proof of Theorem 2. Conceptually the proof of Theorem 2 follows the line of
Theorem 1 with c > 0 , but now we define the sequence λ̃ := {λ̃n} as follows

λ̃n := λnH
−c
n .

Then

Λ̃n :=
∞∑
k=n

λ̃k =
∞∑
k=n

λkH
−c = R(c)

n ,

thus, by the assumption on {R(c)
n } , the sequence {Λ̃n} is also β -power-monotone

decreasing.
Since

∑
λn = ∞ we can apply both Lemma 3 and Lemma 5, thus there exist two

positive constants K1 and K2 such that

K1H
1−c
n � Λ̃n � K2H

1−c
n . (4.5)

Hereupon we can easily verify that the sequence λ̃ satisfies the condition (2.1),
too.
Namely (2.2) implies that

H−1
n−1 � KH−1

n , (4.6)

see (3.4). Thus, by (2.2), (4.5) and (4.6), an elementary consideration gives that

n∑
k=2

k
λ̃k−1

Λ̃k
� K

n∑
k=2

k
λk−1H

−c
k−1

H1−c
k

� K1

n∑
k=2

k
λk−1

Hk

� K2

(
1 +

n∑
k=1

λk+1

Hk
k

)
� K3n,

i.e. the sequence λ̃ satisfies (2.1) indeed.
Now let λ̃(p) and Λ̃(p) denote the spaces defined with the sequence λ̃ . Then,

by (4.5), it is plain that

λ̃ (p) ≡ λ (p, c, H) and Λ̃(p) ≡ Λ(p, c, H).

The final conclusion is self-evident: Theorem 1 with the sequence λ̃ and c = 0
proves Theorem 2 for the sequence λ .
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