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STRONG DOUBLING CONDITIONS

STEPHEN M. BUCKLEY

(communicated by L.-E. Persson)

Abstract. We show that the class of strong doubling measures depends essentially on the param-
eter t , and that the measure of the boundary layer of a QHBC domain decays geometrically, if
the measure is suitably strong doubling.

0. Introduction

Various areas of analysis utilize doubling measures, i.e. positive Borel measures
on R

n satisfying (some variation of) the condition:

μ(B(x, r)) � Cμ(B(x, r/2)), for all x ∈ R
n, r > 0. (0.1)

For instance, Chapter I of [S2] investigates many questions in harmonic analysis within
a general framework involving a measure that satisfies a doubling condition relative
to a set of generalized balls in R

n , and [HKM] develops the potential theory of a
certain class of degenerate elliptic partial differential equations that involve admissable
weights, where a weight w is admissable if themeasure w dx satisfies certain conditions
including (0.1).

Much of this analysis takes place on an open subset Ω of R
n , rather than on all

of R
n (for instance, this is often the case for PDE-related analysis). Some such results

require only a local doubling condition for balls B(x, 2r) ⊂ Ω , for instance, but often
a stronger form of doubling is required. It is then quite common to assume that the
measure is defined on all of R

n and satisfies (0.1); this, for example, is the approach
adopted in [HKM] for the definition of an admissable weight. However, there exist
rather nice measures defined on an open set Ω which are not restrictions of global
doubling measures, e.g. power-weight measures dμ = δ a

Ω dx for certain domains Ω ,
where δΩ(x) is the distance from x to ∂Ω , and a > 0 . The author wishes to thank
Paul MacManus for kindly providing an explicit example of this type (given at the end
of Section 1).
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One doubling condition applicable to measures on Ω is the boundary doubling
condition:

μ(B(x, r) ∩Ω) � Cμ(B(x, r/2) ∩Ω), for all x ∈ Ω, r > 0. (0.2)

This condition, however, places restrictions on Ω as well as on μ , since even Lebesgue
measure does not always satisfy (0.2) (see the proof of Theorem 1.1). The concept
of a strong doubling measure, employed in [BKL] and [BO] to prove inequalities of
Poincaré and Trudinger type, is an attractive intermediate option; there are actually a
family of such strong doubling conditions indexed by a parameter 1 < t < ∞ (see
Section 1). These conditions are strong enough to do some non-local analysis, but
weaker than boundary doubling. Additionally, they are all satisfied by the measure
δ a
Ωdx , a � 0 , no matter how bad the geometry of the domain Ω .

In Section 1, we determine how strong doubling conditions relate to each other and
to other doubling conditions; in particular, we show that all strong doubling conditions
are different, since there exist measures which are strong doubling for all parameters less
than t , but not for parameter t . In Section 2, we prove that if a measure is appropriately
strong doubling on a QHBC domain Ω , then the measure of the part of Ω lying within
a distance ε of ∂Ω is dominated by a power of ε . This result, which generalizes a
result of Smith and Stegenga on the Minkowski dimension of ∂Ω , has been used in
[BO, Theorem 3.10] to prove a theorem on Trudinger-type inequalities.

1. Various doubling conditions

Throughout this paper, Ω is a proper open subset of R
n , which we may further

restrict as necessary. If B = B(x, r) is a ball, and t > 0 , we write tB = B(x, tr) (and
so t−1B = B(x, r/t) ). We also write δΩ(x) ≡ dist(x, ∂Ω) , x ∈ Ω , and define the
quasihyperbolic length of a rectifiable path γ ⊂ Ω to be

kΩ(γ ) =
∫
γ
δΩ(x)−1ds.

The quasihyperbolic distance between x, y ∈ Ω , kΩ(x, y) , is then defined to be the
infimum of kΩ(γ ) , as γ ranges over all paths linking x and y . There exists a
quasihyperbolic geodesic between any pair of points x, y ∈ Ω , i.e. a path γx,y such that
kΩ(x, y) = kΩ(γx,y) ; see [GO].

A (necessarily bounded)domain Ω satisfies a quasihyperbolic boundary condition
(more briefly, Ω is QHBC ) with respect to its QHBC center x0 ∈ Ω if there exists a
constant C � 1 such that for all x ∈ Ω ,

kΩ(x, x0) � C log

(
C

δ(x)

)
.

The QHBC path for x is the quasihyperbolic geodesic for x, x0 , and the QHBC constant
of Ω , denoted CΩ , is the smallest value of C for which the above inequality is valid.

We say that a bounded domain Ω is a John domain with respect to its John center
x0 ∈ Ω if there exists a constant K � 1 such that for all x ∈ Ω , there is a path
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γ = γx : [0, l] → Ω parametrized by arclength satisfying γ (0) = x , γ (l) = x0 , and
δ(γ (t)) � t/K . We call γx the John path for x , and we define KΩ , the John constant
of Ω , to be the smallest value of K for which the above inequality is valid.

Clearly every John domain is a QHBC domain, but it is not difficult to construct
examples of non-John QHBC domains (e.g. see [BO, Section 5]). Note that the choice
of center point x0 ∈ Ω in the definitions of John and QHBC domains is unimportant, in
the sense that if Ω is John (or QHBC) with respect to one point, it is John (or QHBC)
with respect to all of its points (of course, the John/QHBC constant tends to infinity as
we let x0 approach ∂Ω ).

Suppose that 0 < t � ∞ and that μ is a positive Borel measure on Ω . We say
that μ is t -doubling on Ω , denoted μ ∈ Dt(Ω) , if there exists a constant C such that

μ(B ∩Ω) � Cμ(2−1B ∩Ω) < ∞

whenever B is a ball for which t−1B ⊂ Ω (in the case t = ∞ , we merely require the
center of B to lie in Ω , or equivalently in Ω ). We denote by Cμ,t the smallest such
constant C for which this doubling condition is true (0 < t � ∞ ).

Note that the t -doubling condition imposes restrictions on the boundary behaviour
of the measure precisely when t � 1 . We say that a t -doubling measure μ is a
locally doubling if t < 1 , strong doubling if t > 1 , and boundary doubling if t = ∞ .
Obviously, strong doubling is logically stronger than local doubling but weaker than
boundary doubling. In fact, it is not difficult to construct examples of a measure that is
local doubling but not strong doubling, or strong doubling but not boundary doubling.
Whether or not strong doubling depends on the parameter t ∈ (1,∞) is a more difficult
question which we now answer.

THEOREM 1.1. Suppose 0 < t < t′ � ∞ . If t′ � 1 , Dt′(Ω)\Dt(Ω) is non-empty
for some QHBC domain Ω ⊂ R

n . If t′ < 1 , then Dt(Ω) = Dt′(Ω) for every proper
open set Ω .

Before proving this theorem, we first state a simple but useful lemma.

LEMMA 1.2. A sphere S ⊂ R
n of radius a > 0 can be covered by balls {Bi}m

i=1 ,
centered on S and of radius b ∈ (0, a) , for some m dependent only on n and b/a .

Proof. We choose a sequence of disjoint balls B′
1, B

′
2, . . . , centered on S and of

radius b/3 as long as we can continue to do so; this process must halt in a bounded
number of steps since each ball covers a fixed fraction (dependent only on b/a, n ) of
the surface measure of S . If the resulting balls are B′

1, . . . , B
′
m , then the required balls

are Bi = 3B′
i , 1 � i � m . �

Proof of Theorem 1.1. The equivalence of all local doubling conditions is intu-
itively rather obvious, but we prove it for completeness. Assume that μ ∈ Dt(Ω) for
some t < 1 , and so μ(B) � Cμ(2−1B) whenever B = B(x, r) , 0 < r � tδΩ(x) .
We fix such a ball B(x, r) with r = tδΩ , and write c = (2 − 2t)/(2 − t) . Applying
Lemma 1.2 with a = (1 − c/2)r , b = cr/4 , to the sphere S = {y : |x − y| = a} ,
we get balls B1, . . . , Bm covering S , where m is bounded by some number dependent
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only on n and t . Our choice of parameters ensures that

2Bi ⊂ B(x, r),
4Bi ⊃ B(x, (1 + (c/4))r) \ B(x, r),

4t−1Bi ⊂ Ω.

We deduce that μ ∈ Df (t) , where f (t) = (5t − 3t2)/(4 − 2t) = (1 + c/4)t . Defining
t0 = t and tk = f (tk+1) for all k > 0 , it follows iteratively that μ ∈ Dtk for every
k > 0 . Note that ct/4 < 1 − t and so the sequence (tk) is increasing and bounded by
1 . Since f is continuous on (0, 2) and 1 is the only fixed point there, we deduce that
tk tends to 1 as k → ∞ . Thus μ ∈ Dt′ for all t′ < 1 , as required.

Letting Ω be the unit ball in R
n , it is easy to find μ ∈ Dt(Ω) \ D1(Ω) whenever

t < 1 . For example, dμ = (1 − |x|)−1 dx is such a measure. Alternatively, we could
take dμ = [log(2/(1 − |x|))]−2(1 − |x|)−1 dx ; in this latter case, μ(Ω) < ∞ .

In the remaining cases, we give only planar counterexamples to equality; these are
easily modified to give counterexamples in any larger dimension. The domains we use
will consist of a central square with small narrow pieces attached. It is convenient for
us to take as our central square

Q0 = {(x, y) ∈ R
2 : −1 < x < 0, 0 < y < 1}.

We first consider the case t′ = ∞ (even though it follows from the case t′ < ∞ ),
because we can produce a counterexample here with μ equal to Lebesgue measure.
Note first that Lebesgue measure lies in Dt(Ω) for all t < ∞ , regardless of the domain
Ω . We define Ω to be the union of Q0 and the rectangles

Rk = {(x, y) ∈ R
2 : 0 � x < 2−k, 1 − 2−k(1 + 1/k) < y < 1 − 2−k}.

Then | · | is not boundary doubling because |2−1Bk ∩ Ω| ≈ |Bk ∩ Ω|/k , where Bk is
the ball whose center is the same as the center of Rk and whose radius is 2−k . The only
possible obstacle to Ω being QHBC is the narrowness of the rectangles Rk . Since the
length-to-width ratio of Rk , i.e. k , is dominated by the logarithm of the reciprocal of
Rk ’s diameter, this is not a genuine obstacle, and it is easy to check that Ω is QHBC.

To prove the remaining cases, it suffices to find, for all 1 < t < t′ < ∞ , a QHBC
domain Ω and a measure μ such that μ ∈ Dt(Ω) \ Dt′(Ω) . By elementary geometry,
we note that if B is a ball inscribed in the cone Ka = {(x, y) : |y| < ax} , a > 0 , then
the dilate sB , s > 1 , contains the vertex of Ka if and only if a > f (s) = [s2 − 1]−1/2 .
We shall define Ω to be a union of Q0 and a sequence of diamond-shaped sets Sk .
First, we define the preliminary diamond-shaped sets

S′k = {(x, y) ∈ R
2 : 0 � |x| < xk, |y| < f (t′)|x − xk|},

where xk = 2−kc , and c = min{1, [4f (t′)]−1} . We then write yk = 1 − 2−k and
define Sk to be the translate of S′k by the vector (xk − x2

k , yk) . Note that the sets Sk

have a small overlap with Q0 but are disjoint from each other. The sets Sk are of a
fixed length-to-width ratio, but there is a new potential obstacle to Ω being a QHBC
domain: each Sk is attached to Q0 by a narrow neck whose width is proportional to
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x2
k . However, it is a routine exercise to check that if “satellite pieces” (such as Sk ) are

adjoined to the main part of the domain via bottlenecks of width proportional to a fixed
power of the length of the satellite, then this does not destroy the QHBC condition.
Consequently, Ω is QHBC.

Let us denote by Uk and Vk the vertices (−x2
k , yk) and (2xk−x2

k , yk) , respectively,
of Sk . Defining

gk(x) = xk − |x − xk + x2
k |, x ∈ R,

ws(x, y) = [x2
k/gk(x)]s, (x, y) ∈ Sk,

dμs = ws(x, y) dx dy, (x, y) ∈ Sk,

we see that μs(Sk) < ∞ for 0 < s < 2 , but not for s = 2 . Furthermore, as s → 2− ,
more and more of the μs -mass of Sk is concentrated closer and closer to Uk and Vk .
More precisely,

lim
s→2−

μs({X ∈ Sk : min(|X − Uk|, |X − Vk|) < (2 − s)xk})
μs(Sk)

= 1.

By a routine calculation, this last limit reduces to the fact that limt→0+ tt = 1 .
We are now ready to define a measure μ ∈ Dt(Ω) \Dt′(Ω) . Specifically, we take

dμ ≡ w(x, y) dxdy , where

w(x, y) =
{

1, (x, y) ∈ Q0,

[x2
k/gk(x)]2−2/k, (x, y) ∈ Sk \ Q0.

Note that w is continuous across the necks of the sets Sk (i.e. at x = 0 ) and, by
the above considerations, most of the μ -measure of Sk is concentrated very near Vk

if k is large. Considering balls inscribed in Sk near this vertex, we deduce that any
t′ -doubling condition is violated for sufficiently large k . By contrast, μ is t -doubling
for all 0 < t < t′ . To see this, note that balls centered in Sk satisfy a t -doubling
condition (because their t−1 -dilates stay away from Vk ), and that balls centered in Q0

actually satisfy an ∞ -doubling condition (because the average value of w on Sk is
bounded, as can easily be checked). �

In the above proof, we chose Ω to be the unit ball when defining a locally doubling
measure on Ω which is not 1 -doubling. By contrast, the fact that, for 1 < t � ∞ ,
the Dt -conditions are all distinct, made use of a domain which, although QHBC, was
nevertheless rather nasty. We now show that such nastiness is in fact unavoidable.

PROPOSITION 1.3. If Ω is a John domain, then Dt(Ω) = D∞(Ω) for all t � t0 ,
where t0 depends only on KΩ , the John constant of Ω .

Proof. Let x0 be the John center of Ω . We fix a ball B = B(x, r) , x ∈ Ω . If
x0 ∈ B , then either B ⊂ Ω , or B contains a ball of radius δΩ(x0)/2 . In both cases, the
required estimate

μ(B ∩Ω) � Cμ(2−1B ∩Ω) < ∞
follows easily from the assumption that μ ∈ Dt(Ω) for sufficiently large t = t(KΩ) .
Thus we may assume that x0 /∈ B . We choose any point y on the John path for x with
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respect to x0 which lies in the annulus B(x, r/3)\B(x, r/6) . The John condition ensures
that B′ = B(y, r′) ⊂ Ω where r′ = r/6KΩ . Since B′ ⊂ 2−1B and 8KΩB′ ⊃ B , it
follows that μ(B ∩Ω) � Cμ(2−1B ∩Ω) if μ ∈ D8KΩ(Ω) . �

We end this section by giving an example, essentially due to Paul MacManus, of a
strong doubling measure which is not the restriction of a global doubling measure. Let
us fix s > 0 and define dμΩ = δ s

Ω dx for any proper non-empty open subset Ω of R
n .

Note that μΩ ∈ Dt(Ω) for every proper open subset Ω of R
n , with doubling constant

dependent only on s , n , and t . We define Ωk to consist of the interval (0, 2) with the
points i/k removed, 1 � i � k . Suppose that μΩk is a restriction of a global doubling
measure μk . Since the measure of a countable set is zero (for any global doubling
measure), μk(1, 2)/μk(0, 1) → ∞ as k → ∞ . By piecing together sets like Ωk , it
is thus easy to define a set Ω such that μΩ is not the restriction of a global doubling
measure. We could for instance take Ω to be the bounded open set given by

Ω = {2−k−1x + 1 − 2−k+1 : x ∈ Ωk, k ∈ N}.
One can even define a domain D ⊂ R

n , n > 1 , such that δ s
D dx is strong doubling but

not the restriction of a global doubling measure. For instance, if Ω is as above, then
D = Ω× (0, 1)∪(−1, 0]× (0, 1) is one such domain. Note that here we need the rather
well-known fact that line segments are null sets for all doubling measures on R

2 ; this
fact is, for example, an easy corollary of Theorem 2.4).

2. Geometric decay of the measure of a QHBC boundary layer

In this section, we shall prove that the measure of the boundary layer of a QHBC
domain decays like a power of its thickness if the measure is appropriately strong
doubling. We begin, though, with some preliminary definitions and lemmas. If p is an
exponent and S is a set, we write p′ = p/(p−1) , and χS for the characteristic function
of S . If Ω is a bounded domain, we denote by diam(Ω) and inrad(Ω) its diameter
and inradius (the latter being the radius of the largest ball that fits inside Ω ). If t > 0
and f ∈ L1

loc(Ω) , we define the maximal function

Mtf (x) ≡ Mt;Ω,μ f (x) = sup
x∈B⊂Ω

1
μ(tB)

∫
tB∩Ω

|f | dμ,

where the supremum is taken over all balls B satisfying the indicated conditions.
Our first lemma is both a generalization of the well-known Besicovitch Covering

Theorem, and a special case of a theorem of Morse [M] (also stated in [G]), and
consequently needs no proof.

LEMMA 2.1. Suppose that 0 < s < 1 , that A ⊂ R
n , and that F is a family of

balls of bounded radius. If for every x ∈ A , F contains a ball Bx of radius at most
R such that x ∈ sBx , then there exist subfamilies F1, . . . ,Fk ⊂ F such that each Fi

is a pairwise disjoint collection of balls,
⋃k

i=1 Fi covers A , and k � N for some N
dependent only on n and s .

The following lemma belongs to the large family of results that state that various
maximal operators are bounded on Lp , 1 < p � ∞ .
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LEMMA 2.2. If Ω is a bounded domain in R
n , and μ is a positive Borel measure

on R
n , then Mt;Ω,μ is bounded on Lp(Ω,μ) for all 1 < p � ∞ , 1 < t . Furthermore,

its operator norm is bounded by Cp′ , for some constant C dependent only on n and t .

Note that we do not assume that μ satisfies any doubling assumption. If we
assumed that μ ∈ D5t(Ω) , then the alternative “ 5 -covering lemma” (see e.g. [S1,
Section 1.1]) could be used in place of Lemma 2.1 in the following proof sketch;
additionally, the lemma would be true for all t > 0 , and not just t > 1 .

Sketch of proof of Lemma 2.2. As usual for results of this type, the proof consists
of an interpolation between the (obvious) boundedness of Mt on L∞(Ω,μ) , and its
boundedness from L1(Ω,μ) to the Lorentz (or “weak-type”) space L1,∞(Ω,μ) . Such
weak-type boundedness results are always proved by means of a covering theorem (see,
for example, [S2, Section I.3.1]). Here, we take f ∈ L1(Ω,μ) , fix a cut-off value
α > 0 and, for each x such that A = {x : Mtf (x) > α} , we associate a ball B′

x such
that x ∈ B′

x ⊂ Ω , and such that the μ -average of |f | on Bx ≡ tB′
x exceeds α . By

applying Lemma 2.1 with s = 1/t to the family {Bx : x ∈ A} , weak boundedness
follows in the usual manner. �

The next lemma is also a variant of a rather well-known lemma (e.g. see [Bo]); we
include a proof for completeness. In its proof and later, we use A <∼ B if A � CB for
some constant C dependent only on allowed parameters. In particular, we stress that
C is not allowed to depend on p in this lemma.

LEMMA 2.3. Suppose that 1 � p < ∞ , 1 < t , Ω ⊂ R
n , and μ ∈ Dt(Ω) . Let

F be a family of balls contained in Ω , and let aB be a non-negative number for each
B ∈ F . Then

‖
∑
B∈F

aBχtB‖Lp(Ω,μ) � Cp ‖
∑
B∈F

aBχB‖Lp(Ω,μ).

where C depends only on n , t , and Cμ,t .

Proof. Let g be a non-negative function in Lp′(Ω,μ) . Since μ is t -doubling,

A ≡
∫
Ω

(∑
B∈F

aBχtB

)
g dμ <∼

∑
B∈F

aB

[
1

μ(tB)

∫
tB∩Ω

g dμ
]
· μ(B).

We now use the fact that the bracketed quantity is dominated by Mtg(x) for every
x ∈ B , together with Hölder’s inequality and Lemma 2.2, to get

A <∼
∑
B∈F

aB

∫
B
Mtg dμ =

∫
Ω

Mtg ·
∑
B∈F

aBχB dμ

� ‖Mtg‖Lp′ (Ω,μ) · ‖
∑
B∈F

aBχB‖Lp(Ω,μ)

<∼ ‖g‖Lp′ (Ω,μ) · ‖
∑
B∈F

aBχB‖Lp(Ω,μ)

Taking a supremum over all g � 0 in the unit ball of Lp′(Ω,μ) , the required result
follows by duality. �
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In [SS], Smith and Stegenga prove that if Ω ⊂ R
n is a QHBC domain, then the

Minkowski dimension d of ∂Ω is bounded away from n , i.e. the Lebesgue measure
of the “boundary layer” decays geometrically; for more on Minkowski content and the
decay of the Lebesgue measure of boundary layers of sets, we refer the reader to [MV].
In the planar simply-connected case, Smith and Stegenga’s result follows, with a sharp
estimate of d , from the results in [JM]. Koskela and Rohde [KR], reproved Smith and
Stegenga’s result, in the process getting the sharp estimate of d in all dimensions. The
next theorem generalizes this boundary layer decay to the setting of strong doubling
measures; our proof is based on the method of [KR].

THEOREM 2.4. Suppose that Ω is QHBC and that μ ∈ Dt(Ω) , for some t > t0 ,
where t0 ∈ (1,∞) is dependent only on n and CΩ . Then there exist C,α > 0
dependent only on n , CΩ , and Cμ,t , such that

μ(Ωr) � C(r/ diam(Ω))αμ(Ω) < ∞, for all r > 0.

In the above statement, recall that CΩ is the QHBC constant of Ω and Cμ,t is the
t -doubling constant of μ . The QHBC condition is necessary in the above theorem—
just take μ to be Lebesgue measure, and Ω ⊂ R

n to be any domain whose boundary
has Minkowski dimension n . It is also necessary to assume a Dt(Ω) condition for
sufficiently large t . For instance, if Ω ⊂ R

2 consists of all points in the unit disk
whose argument is at most θ ∈ (0, π) , the measure dμ(x) = (|x| log2(2/x))−1dx does
not satisfy the conclusion of the theorem even though μ ∈ Dt(Ω) for t < sec−1 θ
(note that both sec−1 θ and CΩ tend to infinity as θ → 0 ).

Proof of Theorem 2.4. Assuming t � t1 ≡ diam(Ω)/ inrad(Ω) , the doubling
condition ensures that μ(Ω) < ∞ ; note also that t1 is bounded above by a constant
dependent only on CΩ . Without loss of generality, we normalize Ω so that diam(Ω) =
1 , and μ so that μ(Ω) = 1 . Let ε = 1/CΩ and c = 1/10 . For each x ∈ ∂Ω , and
n > 0 , we define

An(x) = {y ∈ R
n : (1 + ε)−n < |x − y| < (1 + ε)−n+1},

χn(x) =
{

1, if ∃ y ∈ Ω ∩ An(x) : d(y, ∂Ω) > cε|x − y|,
0, otherwise,

σn(x) =
n∑

k=1

χk(x).

Koskela and Rohde [KR] prove that the boundary of a QHBC domain is what they term
an ε -mean porous set (with auxiliary constant c = 1/10 , as here). This means that
there exists a number n0 , depending only on CΩ , such that σn(x) > n/2 for all n � n0

(actually, the mean porosity of a set only implies the existence of certain holes in its
complement, but an examination of the proof of Theorem 5.1 in [KR] reveals that one
can assume that these holes are contained in the domain itself, as we do here).

It follows, as in Theorem 2.1 of [KR], that we can find a collection F of pairwise
disjoint open balls and constants t2 > 1 , j0 � 1 , c′ > 0 , all dependent only on n and
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CΩ , such that ∑
B∈F

χt2B(x) > c′j, x ∈ Ω2−j , j � j0.

Note that in [KR], an initial reduction argument (which we do not use here) gives
n0 = 1 , and hence j0 = 1 . We define t0 = max{t1, t2} .

Writing u(x) =
∑

B∈F χt2B(x) for all x ∈ Ω , we have exp(au(x)) > exp(ac′j)
for all x ∈ Ω2−j , j > j0 , and a > 0 . It therefore suffices to find a constant a =
a(n, CΩ, Cμ,t) > 0 such that ∫

Ω
2−j

eau(x) dμ(x) <∼ μ(Ω1).

Now,

∫
Ω

2−j

eau dμ �
∑
k�0

∫
Ω1

(au)k

k!
dμ � μ(Ω1) +

∑
k>0

ak

k!

∫
Ω1

(∑
B∈F

χt2B

)k

dμ.

Since μ ∈ Dt(Ω) ⊂ Dt2(Ω) , we may use Lemma 2.3 to get

∫
Ω

2−j

eau(x) dμ(x) � μ(Ω1) +
∑
k>0

(aCk)k

k!

∫
Ω1

(∑
B∈F

χB

)k

dμ

<∼ μ(Ω1)

(
1 +

∑
k>0

(aCk)k

k!

)
.

This last series converges for all a < 1/Ce , and so we are done. �
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