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Abstract. We discuss the behavior of the minimal eigenvalue λ of the Dirichlet Laplacian in
the domain D1\D2 := D (an annulus) where D1 is a circular disc and D2 ⊂ D1 is a smaller
circular disc. It is conjectured that the minimal eigenvalue λ has a maximum value when D2
is a concentric disc. If h is a displacement of the center of the disc D2 and λ(h) is the

corresponding minimal eigenvalue, then dλ (h)
dh < 0 so that λ(h) is minimal when ∂D2 touches

∂D1 , where ∂D is the boundary of D . Numerical results are given to back the conjecture.
Upper and lower bounds are given for λ(h) .

1. Introduction

Let D1 be a disc on R2 , centered at the origin, of radius 1 , D2 ⊂ D1 be a
disc of radius a < 1 , the center (h, 0) of which is at the distance h from the origin.
Denote by λ (h) the minimal Dirichlet eigenvalue of the Laplacian in the annulus
D := Dh := D1\D2 .

In this paper the following conjecture is formulated and partly justified:

CONJECTURE C.. The minimal eigenvalue λ (h) is a monotonically decreasing
function of h on the interval 0 � h � 1 − a . In particular

(1.1) λ (0) > λ (h), h > 0.

Let λ̇ := dλ
dh and let S denote ∂D2 , the boundary of D2 .

The following results are given to back this conjecture:

LEMMA 1. One has

(1.2) λ̇ =
∫

S
u2

NN1ds,
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where N is the unit normal to S = Sh pointing into the annulus Dh , N1 is the
projection of N onto x1 -axis, uN is the normal derivative of u , and u(x) = u(x1, x2)
is the normalized in L2(D) eigenfunction corresponding to the first eigenvalue λ :

(1.3) Δu + λu = 0 in D, u = 0 on ∂D1 ∪ ∂D2 := ∂D,

(1.4) ‖u‖L2(D) = 1.

It is argued at the end of Section 2 that

(1.5) λ̇ < 0 if 0 < h < 1 − a.

In Lemma 2 below we give upper and lower bounds (1.6) for λ (h) . These bounds
are practically convenient, especially for small h .

Let D(r) be the disc |x| � r, μ(r) be the first Dirichlet eigenvalue of the
Laplacian in D1\D(r) , and in Section 3 (1.5) is illustrated by numerical results.

LEMMA 2. One has

(1.6) μ(a − h) < λ (h) < μ(a + h), 0 < h < 1 − a.

In section 2 proofs are given.

2. Proofs

Proof of Lemma 2. Lemma 2 is an immediate consequence of the variational
principle for λ since D(a + h) ⊂ Dh ⊂ D(a− h) . Note that μ(b), a � b < 1 , can be
calculated efficiently. Indeed, by symmetry the first eigenfunction φ of the Dirichlet
Laplacian in D1\D(b) depends on the radial variable r = |x| only, and solves the
problem

(2.1) φ ′′ +
1
r
φ ′ + μφ = 0, b � r � 1; φ(b) = φ(1) = 0.

Thus

(2.2) φ = c1J0(
√
μr) + c2N0(

√
μr),

where J0 and N0 are the Bessel functions, and c1 , c2 are constants. The boundary
conditions (2.1) are satisfied if μ = μ(b) > 0 is a positive root of the equation:

(2.3) J0(
√
μb)N0(

√
μ) − J0(

√
μ)N0(

√
μb) = 0.

The smallest positive root μ = μ(b) of (2.3) is the desired first eigenvalue of the
Dirichlet Laplacian in D1\D(b) . Equation (2.3) can be solved numerically. This
makes (1.6) an efficient estimate of λ (h) , especially for small h > 0 . �
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Proof of Lemma 1. We use the known technique based on the domain derivative
[1].

It is known that λ (h) is continuously differentiable with respect to h [2] . Let
u̇ = du

dh , where u solves (1.3)-(1.4). Differentiate the equation and the boundary
condition (1.3) with respect to h and get

(2.4) Δu̇ + λ u̇ = −λ̇u in D = Dh,

(2.5) u̇ + uNN1 = 0 on S = Sh.

Multiply (2.4) by u , (1.3) by u̇ , subtract, integrate over D = Dh , use Green’s formula,
and (2.5) and get:

(2.6) λ̇
∫

D
u2dx =

∫
S
(uu̇N − u̇uN)ds =

∫
S
u2

NN1ds.

From (2.6) and (1.4) one gets (1.2). Lemma 1 is proved. �

It follows from (1.2) by symmetry that λ̇(0) = 0 . Indeed, if h = 0 , then u2
N |S0

= const by symmetry, and
∫

S0
N1ds = 0 .

If h > 0 , then u2
N on the half circle S+

h , the part of the boundary of Sh which is
closer to ∂D1 , is likely to be less than on the other half S−h of Sh , while N1 > 0 on
S+

h and N1 < 0 on S−h . Moreover, |N1| is the same at the symmetric points of S+
h and

S−h , where the axis of symmetry is the vertical diameter of D2 . Therefore one expects
λ̇(h) < 0 for h > 0 , which is the conjecture C .

3. Numerical Results

We use a finite element method to calculate u2
N at a number of nodal points ϕ

on ∂D2 , where ϕ is the angle between the radial line at the positive x1 -axis. Due to
symmetry, it is sufficient to consider 0 � ϕ � π . The following tables give values for
u2

N for various values of h and ϕ . The last row gives λ (h) for different values of h .
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Table 1
Values for u2

N

a = 0.1 λ (0) = 10.98324859

ϕ h = 0.1 h = 0.3 h = 0.6 h = 0.8
0◦ 0.18340156 0.08997194 0.03502936 0.00538128

15◦ 0.18586555 0.09354750 0.03875921 0.00792279
30◦ 0.19312533 0.10408993 0.04977909 0.01615017
45◦ 0.20478642 0.12105508 0.06745736 0.03118122
60◦ 0.22019869 0.14357017 0.09052611 0.05294918
75◦ 0.23846941 0.17048691 0.11728631 0.07901455
90◦ 0.25848609 0.20042583 0.14624640 0.10706183

105◦ 0.27895498 0.23176494 0.17645804 0.13678539
120◦ 0.29846292 0.26256868 0.20707716 0.16793719
135◦ 0.31556947 0.29053976 0.23653390 0.19964213
150◦ 0.32892971 0.31313057 0.26197403 0.22879649
165◦ 0.33743644 0.32789921 0.27954557 0.24990529
180◦ 0.34035750 0.33304454 0.28585725 0.25766770
λ (h) 10.51624800 8.76956649 6.91928150 6.21431318

Table 2
Values for u2

N

a = 0.3 λ (0) = 19.46950428

ϕ h = 0.1 h = 0.3 h = 0.6
0◦ 0.04651448 0.00601084 0.00006665

15◦ 0.05078040 0.00792264 0.00029224
30◦ 0.06389146 0.01432651 0.00162487
45◦ 0.08665951 0.02711431 0.00616138
60◦ 0.12001996 0.04901522 0.01734345
75◦ 0.16444947 0.08285892 0.03916871
90◦ 0.21927390 0.13049149 0.07481155

105◦ 0.28204163 0.19150347 0.12521694
120◦ 0.34820007 0.26211532 0.18784387
135◦ 0.41130766 0.33475001 0.25580537
150◦ 0.46389778 0.39885669 0.31827254
165◦ 0.49888764 0.44319924 0.36272535
180◦ 0.51117180 0.45907590 0.37887932
λ (h) 17.00607073 12.31240018 8.54494014
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Table 3
Values for u2

N
a = 0.6 λ (0) = 61.2854372

ϕ h = 0.1 h = 0.3
0◦ 0.00010994 0.00000018

15◦ 0.00025775 0.00000144
30◦ 0.00101252 0.00002268
45◦ 0.00370221 0.00026580
60◦ 0.01190759 0.00195778
75◦ 0.03332159 0.00947178
90◦ 0.08086609 0.03287792

105◦ 0.17026477 0.08782665
120◦ 0.32267905 0.18896048
135◦ 0.49728793 0.33653240
150◦ 0.69311417 0.50402714
165◦ 0.84533543 0.64040281
180◦ 0.90307061 0.69330938
λ (h) 42.71463081 23.79696055

In all the cases above, u2
N increases in value as ϕ increases from zero to π , thereby

confirming that λ̇ < 0 (see formula (2.6)). From the above tables we also note that
for fixed a , λ (h) is a decreasing function of h , and that λ (h) < λ (0) for h > 0 thus
confirming the Conjecture C.
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