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GLOBAL LIMITING EMBEDDINGS OF

LOGARITHMIC BESSEL POTENTIAL SPACES

PETR GURKA AND BOHUMÍR OPIC

(communicated by V. Burenkov)

Abstract. The paper is a continuation of [EGO II-IV], where it was shown that Bessel potential
spaces HσY(Rn) , modelled upon appropriate generalized Lorentz-Zygmund spaces Y(Rn)
may be embedded into Orlicz spaces LΦ(Ω) , where Φ(t) = exp(exp(. . . exp tν) . . .)) for large
t , ν > 0 , and Ω is a subset of R

n with finite volume. Using weighted Hardy inequalities, we
modify the Young function Φ near the origin so that the above embedding holds with Ω replaced
by R

n . The resulting Young function dominates globally the Young function Ψ(t) = tq , t > 0 ,
for q sufficiently large and consequently, HσY(Rn) ↪→ Lq(Rn) . We also obtain an estimate of
the norms of the last embeddings which is sharp in their dependence upon q provided that q is
large enough.

1. Introduction

In the recent paper [EGO IV] an embedding theory for certain logarithmic Bessel
potential spaces HσY(Rn) modelled upon generalized Lorentz-Zygmundspaces Y(Rn)
was established and the role of the logarithmic terms involved in the norms of spaces
HσY(Rn) was clarified. Since generalized Lorentz-Zygmund spaces include many
familiar objects including Lebesgue, Lorentz, Lorentz-Zygmund, and Zygmund spaces
(see Section 2), in [EGO IV]we got the refinements of the Sobolev embedding theorems,
Trudinger’s limiting embedding as well as embeddings of Sobolev spaces into space of
λ (·) -Hölder-continuous functions including the result of Brézis and Wainger. In these
embedding theorems all the target spaces are spaces of functions defined on R

n with
the exception of the embedding which generalizes Trudinger’s limiting embedding. In
this limiting case the result has a local character : For any bounded subset Ω of R

n

with finite volume we have
HσY(Rn) ↪→ LΦ(Ω); (1.1)

the target space in (1.1) is the Orlicz space with the Young function Φ given for large
t by

Φ(t) = exp(exp(. . . exp tν) . . .)), (1.2)
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ν is a positive number. (Note that the number of exponential functions appearing in
(1.2) is determined by the number of parameters of the generalized Lorentz-Zygmund
space Y(Rn) which are in the limiting state.)

It is well known (cf. [A, Section 8.26] or [EE]) that the Young function Φ from
Trudinger’s result

W1,n(Ω) ↪→ LΦ(Ω) (1.3)

(here Ω is a bounded domain in R
n whose boundary is sufficiently regular) can be

modified near the origin so that the embedding (1.3) holds even if the volume of Ω is
infinite. This leads us to the idea that also the Young function Φ from (1.2) can be
modified near the origin so that the resulting Young function Φ0 (equivalent to Φ near
infinity) is such that

HσY(Rn) ↪→ LΦ0(R
n), (1.4)

that is, the local embedding (1.1) can be replaced by a global one. In distinction to
[A, Section 8.26] or [EE], this modification is done by making use of convenient Hardy
inequalities with power-logarithmic weights. (Note that (1.4) with a particular choice
of the generalized Lorentz-Zygmund space Y extends to R

n the results of [EK] and
[FLS] (cf. [EGO IV, page 133]).) Since the Young function Φ0 from (1.4) dominates
globally the Young function Ψ given by Ψ(t) = tq , t � 0 , for large q , (1.4) implies
that

HσY(Rn) ↪→ Lq(Rn) (1.5)

provided that q is large enough.
We also obtain estimates of the norms of the embeddings (1.5) which are sharp

in their dependence on q (for large q ). This extends the result from [EGO V], where
such estimates were established for the embedding

HσY(Rn) ↪→ Lq(Ω) (1.6)

with Ω ⊂ R
n having non-empty interior and finite volume.

The paper is organized as follows. Section 2 contains the basic notation and
auxiliary assertions. The main results (Theorems 3.1 and 3.4) are given in Section 3
which also contains examples. The proofs of main results can be found in Sections 4
and 5.

2. Notation and preliminaries

Let (R,μ) be a totally σ -finite measure space. When R ⊆ R
n , we shall

always take μ to be n -dimensional Lebesgue measure μn , and we shall put |G| =
|G|n = μn(G) for any measurable subset G of R

n . The family of all extended scalar-
valued (real or complex) μ -measurable functions on R will be denoted by M(R,μ) ;
M+(R,μ) will represent the subset of M(R,μ) of all those functions which are non-
negative μ -a.e. The symbol M+(a, b) with (a, b) ⊆ R will stand for M+((a, b),μ1) .

For f ∈ M(R,μ) , the distribution function μf of f is given by

μf (λ ) = μf ,R(λ ) = μ({x ∈ R; |f (x)| > λ}), λ � 0,
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and the non-increasing rearrangement f ∗ of f is defined by

f ∗(t) = f ∗
(R,μ)(t) = inf{λ ;μf (λ ) � t}, t � 0.

Recall that if f ∈ M(R,μ) , then supp f ∗ ⊂ [0,μ(R)] , f ∗ is non-increasing on
(0,∞) , and f and f ∗ are equimeasurable (cf. [BS]). We shall also need the average
of f ∗ , and so define

f ∗∗(t) = t−1
∫ t

0
f ∗(s)ds, t > 0.

Now let m ∈ N and define (logarithmic) functions �1, . . . , �m on (0,∞) by

�1(t) = �(t) = 1 + | log t|, �m(t) = 1 + log �m−1(t) (m > 1). (2.1)

It is easy to see that for all t ∈ (0,∞) \ {1} ,

�′1(t) = t−1sgn(t − 1),

�′m(t) =
( m−1∏

j=1

�j(t)
)−1

t−1sgn(t − 1) (m > 1).

⎫⎪⎪⎬⎪⎪⎭ (2.2)

Let p, q ∈ (0,∞] and α1, . . . ,αm ∈ R . The generalized Lorentz-Zygmund space
Lp,q;α1,...,αm(R) consists of all functions f ∈ M(R,μ) such that the quantity

‖f ‖p,q;α1,...,αm :=
∥∥∥t1/p−1/q

( m∏
j=1

�
αj
j (t)

)
f ∗(t)

∥∥∥
q,(0,∞)

(2.3)

is finite, where ‖ · ‖q,(a,b) is the usual Lq -(quasi-) norm on an interval (a, b) ⊆ R . We
shall sometimes write

Lp(logL)α1 . . . ( log log . . . log︸ ︷︷ ︸
m times

L)αm(R)

instead of Lp,p;α1,...,αm(R) . When each αj = 0 , the space Lp,q;α1 ,...,αm(R) coincides
with the classical Lorentz space Lp,q(R) , which is just Lp(R) when p = q ; if m = 1 ,
Lp,q;α1(R) is the Lorentz-Zygmund space Lp,q(logL)α1(R) introduced in [BR] and
which, when p = q , is the Zygmund space Lp(logL)α1(R) . If μ(R) < ∞ , then

Lp,p;α1,...,αm(R) =
{

f ∈ M(R,μ);
∫
R

[
|f |

m∏
j=1

�
αj
j (e + |f |)

]p
dμ < ∞

}
.

The spaces Lp,q;α1 ,...,αm(R) were studied in [EGO II-IV], [EOP], and [OP], where more
information can be found.

Throughout the paper the symbol Iσ , σ ∈ (0, n) , is used to denote the kernel of
the Riesz potential, i.e. Iσ(x) = |x|σ−n , x ∈ R

n . The Bessel kernel gσ , σ > 0 , is
defined to be that function on R

n whose Fourier transform is

ĝσ(x) = (2π)−n/2(1 + |x|2)−σ/2,
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where the Fourier transform of a function f is given by

f̂ (x) = (2π)−n/2
∫

Rn
e−ix·yf (y)dy.

It is known that gσ is a positive, integrable function which is analytic except at the
origin (cf. [AS] or [Z]).

Let σ > 0 , p ∈ (1,∞) , q ∈ [1,∞] , and α1, . . . ,αm ∈ R . The logarithmic
Bessel potential space HσLp,q;α1,...,αm(Rn) is defined by

HσLp,q;α1,...,αm(Rn) := {u = gσ ∗ f ; f ∈ Lp,q;α1,...,αm(Rn)},
and is equipped with the (quasi-) norm

‖u‖σ;p,q;α1,...,αm := ‖f ‖p,q;α1,...,αm .

Note that for αj = 0 , j = 1, . . . , m , HσLp,p;α1 ,...,αm(Rn) is simply the (fractional)
Sobolev space of order σ .

When k ∈ N , p, q ∈ (1,∞) , and α1, . . . ,αm ∈ R then, by [EGO IV, Theorem
4.2], the space HkLp,q;α1,...,αm(Rn) equals to

WkLp,q;α1,...,αm(Rn) := {u; Dαu ∈ Lp,q;α1,...,αm(Rn) if |α| � k},
equipped with the (quasi-) norm∑

|α|�k

‖Dαu‖p,q;α1,...,αm ,

and the corresponding (quasi-) norms are equivalent.
By a Young function Φ we mean a continuous, non-negative, strictly increasing

and convex function on [0,∞) satisfying

lim
t→0+

Φ(t)/t = lim
t→+∞ t/Φ(t) = 0.

Given a Young function Φ and any measurable subset Ω of R
n , LΦ(Ω) will denote

the corresponding Orlicz space, equipped with the Orlicz norm ‖ · ‖Φ = ‖ · ‖Φ,Ω ; for
details of such spaces we refer to [A].

Let Φ1 and Φ2 be Young functions. Recall that Φ2 dominates Φ1 globally if
there exists a positive constant k such that

Φ1(t) � Φ2(kt) (2.4)

holds for all t � 0 . Similarly, Φ2 dominates Φ1 near infinity (near the origin) if
there exist positive constants k and T such that (2.4) holds for all t ∈ (T,∞) (for all
t ∈ (0, T) ). Two Young functions are said to be equivalent globally (near infinity or
near the origin) if each dominates the other globally (near infinity or near the origin).
It is easy to see that if Φ2 dominates (is equivalent to) Φ1 near infinity and near the
origin, then Φ2 dominates (is equivalent to) Φ1 globally.
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We have from [A, Theorem 8.12]: If Φ1 and Φ2 are equivalent globally (or near
infinity and |Ω| < ∞ ), then

LΦ1(Ω) = LΦ2(Ω) (2.5)

and the corresponding norms are equivalent. In particular, (2.5) holds if there are T0

and T∞ , 0 < T0 < T∞ < ∞ , such that

Φ1(t) = Φ2(t) for all t ∈ (0, T0) ∪ (T∞,∞).

Given two (quasi-) Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding id : X → Y is continuous. The norm of the embedding is

‖id‖ = ‖id‖X→Y = sup
‖f ‖X�1

‖f ‖Y .

For two non-negative expressions (i.e. functions or functionals) F1 and F2 we
shall write F1 � F2 whenever F1 � CF2 for some constant C ∈ (0,∞) independent
of the variables in the expressions F1 and F2 . If F1 � F2 and F2 � F1 , we write
F1 ≈ F2 .

We shall adopt the convention that a/∞ = 0 and a/0 = ∞ for all a ∈ (0,∞) .
If p ∈ [1,∞] , the conjugate number p′ is given by 1/p + 1/p′ = 1 .

If m ∈ N , we define

expm = exp ◦ exp ◦ . . . ◦ exp︸ ︷︷ ︸
m times

.

For the formal reason we put

�0(t) = max(t, t−1), t ∈ (0,∞), (2.6)

and, if m = 1 ,
m−1∏
j=1

�j(t) = 1 , t ∈ (0,∞).

For ρ ∈ (0,∞) and x ∈ R
n let Bn(x, ρ) denote the open ball in R

n of radius ρ
and center x . The symbol B(Bn(0, 1)) stands for the set of all bounded measurable
functions on R

n with supports in Bn(0, 1) (the closure of Bn(0, 1) ). By κn we denote
the surface area of the unit ball in R

n .

3. Main theorems and examples

Our first result concerns global limiting embeddingsof logarithmicBessel potential
spaces into Orlicz spaces and reads as
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3.1. THEOREM. Let σ ∈ (0, n) , p ∈ [1,∞] , and m ∈ N . Let αm < 1/p′ ,
α = αm − 1/p′ and, if m > 1 , let αj = 1/p′ for j = 1, . . . , m − 1 . Suppose that
q ∈ [p,∞) and that one of the following conditions is satisfied:

q > n/σ; (3.1)
q = n/σ, p > 1, m > 1; (3.2)
q = n/σ, p > 1, m = 1, αm � 0; (3.3)
q = n/σ, p = 1, αm � 0; (3.4)

Then
HσLn/σ,p;α1,...,αm(Rn) ↪→ LΦ(Rn), (3.5)

where the Young function Φ is given by

Φ(t) =
{

tq for all small enough t � 0

expm t−
1
α for all large enough t > 0.

(3.6)

3.2. COROLLARY. Let all the assumptions of Theorem 3.1 be satisfied. Then

HσLn/σ,p;α1,...,αm(Rn) ↪→ Lq(Rn).

3.3. REMARK. Let all the assumptions of Theorem 3.1 be satisfied. Using the
method of [EGO III], one can prove:

(1) (i) The embedding (3.5) is not compact.
(2) (ii) The space Hσ

n/σ,p;α1,...,αm
(Rn) is not continuously embedded in any

Orlicz space LΨ(Rn) , where Ψ dominates Φ near infinity.

The next theorem provides estimates of norms of the embeddings in Corollary 3.2.
These estimates are sharp in their dependence on q provided that q is large enough.

3.4. THEOREM. Let σ ∈ (0, n) , p ∈ [1,∞] , and m ∈ N . Let αm < 1/p′ ,
α = αm − 1/p′ and, if m > 1 , let αj = 1/p′ for j = 1, . . . , m − 1 . Put

X(Rn) = HσLn/σ,p;α1,...,αm(Rn).

Then for all sufficiently large q ,

X(Rn) ↪→ Lq(Rn) (3.7)

and
‖id‖X(Rn)→Lq(Rn) ≈ �−α

m−1(q). (3.8)

3.5. EXAMPLE. Suppose that p ∈ (1,∞) , σ = n/p , and{
either q ∈ (p,∞), β ∈ (−∞, 1/p′)
or q = p, β ∈ [0, 1/p′).

(3.9)

Then, by Theorem 3.1,

Hn/pLp(log L)β(Rn) ↪→ LΦ(Rn), (3.10)
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where

Φ(t) =

{
tq for small t � 0,

exp t
n

n(1−β)−σ for large t > 0.

If, in addition, p = n > 1 , we have from (3.9) and (3.10) that

W1Ln(logL)β (Rn) = H1Ln(logL)β (Rn) ↪→ LΦ(Rn), (3.11)

where

Φ(t) =

{
tq for small t � 0,

exp t
n

n(1−β)−1 for large t > 0,

provided that {
either q ∈ (n,∞) and β ∈ (−∞, 1/n′)
or q = n, and β ∈ [0, 1/n′).

(3.12)

In particular, if β = 0 , we have

W1,n(Rn) = W1Ln(Rn) ↪→ LΦ(Rn), (3.13)

where

Φ(t) =
{

tq for small t � 0,

exp tn
′

for large t > 0,

provided that q ∈ [n,∞) , which is the result corresponding to that of [A, Section 8.26]
or [EE].

Let ‖id1‖ , ‖id2‖ , and ‖id3‖ , respectively, stands for the norm of the embedding

Hn/pLp(logL)β (Rn) ↪→ Lq(Rn),

W1Ln(logL)β (Rn) ↪→ Lq(Rn),

and

W1,n(Rn) ↪→ Lq(Rn).

Then, by Theorem 3.4, for all large q ,

‖id1‖ ≈ q1/p′−β if β < 1/p′,

‖id2‖ ≈ q1/n′−β if β < 1/n′,

and

‖id3‖ ≈ q1/n′ .
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3.6. EXAMPLE. Let p ∈ (1,∞) , σ = n/p , q ∈ [p,∞) and β ∈ (−∞, 1/p′) .
Then, by Theorem 3.1,

Hn/pLp(logL)1/p′ (log logL)β (Rn) ↪→ LΦ(Rn), (3.14)

where

Φ(t) =

{
tq for small t � 0,

exp exp t
n

n(1−β)−σ for large t > 0.

If, moreover, p = n > 1 , we have from (3.14) that

W1Ln(logL)1/n′(log logL)β(Rn) ↪→ LΦ(Rn), (3.15)

where

Φ(t) =

{
tq for small t � 0,

exp exp t
n

n(1−β)−1 for large t > 0,

provided that q ∈ [n,∞) and β ∈ (−∞, 1/n′) . In particular, if β = 0 , we obtain

W1Ln(logL)1/n′ ↪→ LΦ(Rn), (3.16)

where

Φ(t) =
{

tq for small t � 0,

exp exp tn
′

for large t > 0,

provided that q ∈ [n,∞) .
Let ‖id1‖ , ‖id2‖ , and ‖id3‖ , respectively, stands for the norm of the embedding

Hn/pLp(logL)1/p′(log logL)β (Rn) ↪→ Lq(Rn),

W1Ln(logL)1/n′(log logL)β (Rn) ↪→ Lq(Rn),

and

W1Ln(logL)1/n′(Rn) ↪→ Lq(Rn).

Then, by Theorem 3.4, for all large q ,

‖id1‖ ≈ (log q)1/p′−β if β < 1/p′,

‖id2‖ ≈ (log q)1/n′−β if β < 1/n′,

and

‖id3‖ ≈ (log q)1/n′ .



GLOBAL LIMITING EMBEDDINGS 573

4. Proofs of Theorem 3.1 and Corollary 3.2

To prove Theorem 3.1, we need the following lemmas.

4.1. LEMMA. Let Φ be a Young function and let X be a (quasi-) normed linear
space satisfying X ⊂ M(Rn,μn) . Assume that there exist t0 and t∞ , 0 < t0 < t∞ <
∞ , such that for all u ∈ X with ‖u‖X � 1 ,∫ t0

0
Φ(u∗(t))dt � 1 and

∫ ∞

t∞
Φ(u∗(t))dt � 1. (4.1)

Then
X ↪→ LΦ(Rn). (4.2)

Proof. Let u ∈ X , ‖u‖X � 1 . We have (cf. [BS])∫
Rn
Φ(|u(x)|)dx =

∫ t0

0
Φ(u∗(t))dt +

∫ t∞

t0

Φ(u∗(t))dt +
∫ ∞

t∞
Φ(u∗(t))dt.

Using monotonicity of Φ ◦ u∗ , we obtain∫ t∞

t0

Φ(u∗(t))dt � (t∞ − t0) Φ(u∗(t0)) � t∞ − t0
t0

∫ t0

0
Φ(u∗(t))dt.

Consequently, ∫
Rn
Φ(|u(x)|)dx �

∫ t0

0
Φ(u∗(t))dt +

∫ ∞

t∞
Φ(u∗(t))dt,

which, together with (4.1), yields∫
Rn
Φ(|u(x)|)dx � 1.

Since, by Young’s inequality

‖u‖Φ �
∫

Rn
Φ(|u(x)|)dx + 1,

we obtain that ‖u‖Φ � 1 and (4.2) follows. �
The next lemma provides us with an estimate for the non-increasing rearrangement

of the Bessel kernel gσ .

4.2. LEMMA. Let σ ∈ (0, n) . Then there is B ∈ (0,∞) such that

g∗σ(t) � tσ/n−1 exp(−Bt1/n) , t > 0, (4.3)

and

g∗∗σ (t) �
{

tσ/n−1, t ∈ (0, 1],
t−1, t ∈ (1,∞).

(4.4)
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Proof. The estimate (4.3) is proved in [EGO II, Lemma 3.5]. Moreover, we have
from (4.3) that

g∗∗σ (t) = t−1
∫ t

0
g∗σ(τ)dτ � tσ/n−1 if t ∈ (0, 1],

and

g∗∗σ (t) = t−1
[ ∫ 1

0
g∗σ(τ)dτ +

∫ t

1
g∗σ(τ)dτ

]
≈ t−1 if t ∈ (1,∞). �

Using the well-known criterion for the validity of Hardy’s inequality (cf. [OK]),
one can prove the following lemma.

4.3. LEMMA. Let σ ∈ (0, n) , p ∈ [1,∞] , m ∈ N , and α1, . . . ,αm ∈ R . Suppose
that q ∈ [p,∞] and that one of the following conditions is satisfied:

q >
n
σ

;

q =
n
σ

, α1 > 0;

q =
n
σ

, α1 = 0, α2 > 0;

...

q =
n
σ

, α1 = α2 = . . . = αm−2 = 0, αm−1 > 0;

q =
n
σ

, α1 = α2 = . . . = αm−2 = αm−1 = 0, αm � 0.

Then there is a constant C ∈ (0,∞) such that for all h ∈ M+(1,∞) ,∥∥∥t−1
∫ t

1
h(τ)dτ

∥∥∥
q,(1,∞)

� C
∥∥∥t

σ
n − 1

p

( m∏
j=1

�
αj
j (t)

)
h(t)

∥∥∥
p,(1,∞)

(4.5)

and ∥∥∥ ∫ ∞

t
h(τ)dτ

∥∥∥
q,(1,∞)

� C
∥∥∥t

σ
n + 1

p′
( m∏

j=1

�
αj
j (t)

)
h(t)

∥∥∥
p,(1,∞)

. (4.6)

The next lemma provides an estimate of f ∗ for f from generalized Lorentz-
Zygmund space.

4.4. LEMMA. Let m ∈ N , α1, . . . ,αm ∈ R and let r ∈ (0,∞) and p ∈ (0,∞] , or
r = ∞ = p . Then there exists a constant c ∈ (0,∞) such that for every f ∈ Lr,p;α1,...,αm

and all t ∈ (0,∞) ,

f ∗(t) � c t−1/r
( m∏

j=1

�
−αj
j (t)

)
‖f ‖r,p;α1,...,αm .
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The proof is similar to that of [EGO I, Lemma 3.3], where the case r ∈ (1,∞) ,
p ∈ [1,∞] was treated. �

Proof of Theorem 3.1. Put L = Ln/σ,p;α1,...,αm(Rn) and X = HσL . Let u ∈ X ,
‖u‖X � 1 . Then u = gσ ∗ f , where f ∈ L and ‖f ‖L = ‖u‖X � 1 .

The proof will be given in three steps:

Step 1. We prove that for all such u ,∫ 1

0
expm(u∗(t)−

1
α ) dt � 1 (4.7)

and ∫ ∞

1
u∗(t)qdt � 1. (4.8)

The estimate (4.7) with m = 2 was proved in [EGO II, Lemmas 4.2 and 4.1]; the
proof for a general m ∈ N is analogous.

Since 1 � ‖f ‖L , the estimate (4.8) will be proved if we show that

‖u∗(t)‖q,(1,∞) � ‖f ‖L. (4.9)

We have by O’Neil’s lemma (see [O, Lemma 1.5] or [Z, Lemma 1.8.8]) that

u∗(t) � u∗∗(t) � tg∗∗σ (t)f ∗∗(t) +
∫ ∞

t
g∗σ(τ)f ∗(τ)dτ.

Consequently,

‖u∗(t)‖q,(1,∞) � ‖tg∗∗σ (t)f ∗∗(t)‖q,(1,∞) + ‖
∫ ∞

t
g∗σ(τ)f

∗(τ)dτ‖q,(1,∞)
(4.10)

=: N1 + N2.

Using (4.4), we obtain

N1 � ‖f ∗∗(t)‖q,(1,∞) =
∥∥∥t−1

(∫ 1

0
f ∗(τ)dτ +

∫ t

1
f ∗(τ)dτ

)∥∥∥
q,(1,∞) (4.11)

�
( ∫ 1

0
f ∗(τ)dτ

)
‖t−1‖q,(1,∞) +

∥∥∥t−1
∫ t

1
f ∗(τ)dτ

∥∥∥
q,(1,∞)

=: N11 + N12.

Since q ∈ (1,∞) , we have ‖t−1‖q,(1,∞) ≈ 1 , and thus, by Hölder’s inequality,

N11 �
∫ 1

0
f ∗(τ)dτ (4.12)

=
∫ 1

0

[
τ
σ
n − 1

p

( m∏
j=1

�
αj
j (τ)

)
f ∗(τ)

][
τ

1
p− σ

n

m∏
j=1

�
−αj
j (τ)

]
dτ

� ‖f ‖L

∥∥∥τ1− σ
n − 1

p′
m∏

j=1

�
−αj
j (τ)

∥∥∥
p′,(0,1)

≈ ‖f ‖L.
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Applying Lemma 4.3 (the estimate (4.5)), we obtain

N12 �
∥∥∥t

σ
n − 1

p

( m∏
j=1

�
αj
j (t)

)
f ∗(t)

∥∥∥
p,(1,∞)

� ‖f ‖L.

Together with (4.12) this yields
N1 � ‖f ‖L. (4.13)

Using Lemma 4.3 (the inequality (4.6)), the estimate (4.3), and the fact that

t
σ
n exp(−Bt

1
n ) � 1 for all t ∈ (1,∞),

we arrive at

N2 �
∥∥∥t

σ
n + 1

p′
( m∏

j=1

�
αj
j (t)

)
g∗σ(t)f

∗(t)
∥∥∥

p,(1,∞)
(4.14)

�
∥∥∥t

σ
n + 1

p′
( m∏

j=1

�
αj
j (t)

)
t
σ
n −1 exp(−Bt

1
n )f ∗(t)

∥∥∥
p,(1,∞)

�
∥∥∥t

σ
n − 1

p

( m∏
j=1

�
αj
j (t)

)
f ∗(t)

∥∥∥
p,(1,∞)

� ‖f ‖L

and (4.9) follows from (4.10), (4.13), and (4.14).

Step 2. We prove that there is A ∈ (0,∞) such that

u∗(1) � A for every u ∈ X with ‖u‖X � 1. (4.15)

Take u ∈ X with ‖u‖X � 1 . Then u = gσ ∗ f , with ‖f ‖L � 1 and O’Neil’s
lemma, together with (4.4), implies

u∗(1) � f ∗∗(1) +
∫ ∞

1
g∗σ(τ)f ∗(τ)dτ. (4.16)

We have from (4.12) that
f ∗∗(1) � A1‖f ‖L, (4.17)

where A1 = ‖τ1− σ
n − 1

p′
m∏

j=1
�
−αj
j (τ)‖p′,(0,1) . ByLemma4.4 there is a constant c ∈ (0,∞)

(independent of f ) such that for all t > 0 ,

f ∗(t) � ct−
σ
n

( m∏
j=1

�
−αj
j (t)

)
‖f ‖L. (4.18)

Since ‖f ‖L � 1 , we have

f ∗(t) � ct−
σ
n

m∏
j=1

�
−αj
j (t) for all t > 0.
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Together with (4.3) this yields∫ ∞

1
g∗σ(τ)f ∗(τ)dτ � c

∫ ∞

1
τ−1

( m∏
j=1

�
−αj
j (τ)

)
exp(−Bτ

1
n )dτ =: A2 < ∞. (4.19)

Thus, we have from (4.16), (4.17), and (4.19) that (4.15) holds with A = A1 + A2 .

Step 3. By Lemma 4.1, to prove Theorem 3.1, it is enough to verify (4.1) with
some t0 and t∞ satisfying 0 < t0 < t∞ < ∞ .

We have from (3.5) that there are T0 and T∞ , 0 < T0 < T∞ < ∞ such that

Φ(t) =
{

tq , t ∈ [0, T0]

expm t−
1
α , t ∈ [T∞,∞).

(4.20)

Take some t0 ∈ (0, 1) and t∞ ∈ (1,∞) . Let u ∈ X , ‖u‖X � 1 .
If

u∗(t) > T∞ for all t ∈ (0, t0), (4.21)

then (4.20) and (4.7) imply∫ t0

0
Φ(u∗(t))dt =

∫ t0

0
expm(u∗(t)−

1
α ) dt �

∫ 1

0
expm(u∗(t)−

1
α ) dt � 1.

(Since |{t > 0 ; u∗(t) > T∞}|1 = |{x ∈ R
n; |u(x)| > T∞}|n = μu(T∞) , where

μu = μu(λ ) stands for the distribution function of u , we have that (4.21) is equivalent
to t0 � μu(T∞) .)

If (4.21) does not hold, then μu(T∞) < t0 and (4.20), (4.7), and the fact that
u∗(μu(T∞)) � T∞ imply∫ t0

0
Φ(u∗(t))dt =

∫ μu(T∞)

0
. . . dt +

∫ t0

μu(T∞)
. . . dt

=
∫ μu(T∞)

0
expm(u∗(t)−

1
α ) dt +

∫ t0

μu(T∞)
Φ(u∗(t))dt

�
∫ 1

0
expm(u∗(t)−

1
α ) dt + t0Φ(u∗(μu(T∞)))

� 1 + t0Φ(T∞) ≈ 1.

It remains to verify the second estimate in (4.1). To this end we make use of (4.15).
If the constant A from (4.15) satisfies A � T0 , we obtain from (4.15), (4.20), and

(4.8) that ∫ ∞

t∞
Φ(u∗(t))dt =

∫ ∞

t∞
u∗(t)qdt �

∫ ∞

1
u∗(t)qdt � 1

for all u ∈ X with ‖u‖X � 1 .
Assume that A > T0 . Taking y ∈ (T0, A] , we have with C1 = Φ(A)/Tq

0 that

Φ(y) � Φ(A) = C1T
q
0 � C1y

q.
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Together with (4.20) this implies that

Φ(y) � Cyq for all y ∈ [0, A], (4.22)

where C = max{1, C1} . Finally, using (4.15), the monotonicity of u∗ , (4.22), and
(4.8), we obtain∫ ∞

t∞
Φ(u∗(t))dt �

∫ ∞

1
Φ(u∗(t))dt � C

∫ ∞

1
u∗(t)qdt � 1

for all u ∈ X , ‖u‖X � 1 , and the proof is complete. �

Proof of Corollary 3.2. Since the Young function Φ from (3.6) dominates globally
the Young function Φ1 given by Φ1(t) = tq , t ∈ [0,∞) , the result follows from (3.5)
by [A, Theorem 8.12]. �

5. Proof of Theorem 3.4.

Note that the embedding (3.7) of Theorem 3.4 follows from Corollary 3.2. To
prove the estimate (3.8), we need several lemmas.

5.1. LEMMA. Let m ∈ N and ν > 0 . Then there is a constant C1 ∈ (0,∞) such
that for all s ∈ (0, 1) ,

sup
q∈[1,∞)

�−ν
m−1(q)s1/q � C1�

−ν
m (s). (5.1)

Proof. Let m ∈ N and ν > 0 . Let s0 ∈ (0, 1) be fixed.
First we show that

sup
q∈[1,∞)

�−ν
m−1(q)s1/q � �−ν

m (s) for all s ∈ [s0, 1). (5.2)

If q ∈ [1,∞) , then �m−1(q) � 1 , which implies that

�−ν
m−1(q) � 1 for all q ∈ [1,∞). (5.3)

The function �m is decreasing on (0, 1) and hence

�−ν
m (s0) � �−ν

m (s) for all s ∈ [s0, 1). (5.4)

Since s1/q � 1 for all q ∈ [1,∞) and all s ∈ (0, 1) , we have from (5.3) and (5.4),

sup
q∈[1,∞)

�−ν
m−1(q)s1/q � 1 ≈ �−ν

m (s0) � �−ν
m (s) for all s ∈ [s0, 1),

which is (5.2).
It remains to show that for some s0 ∈ (0, 1) ,

sup
q∈[1,∞)

�−ν
m−1(q)s1/q � �−ν

m (s) for all s ∈ (0, s0). (5.5)



GLOBAL LIMITING EMBEDDINGS 579

Take s0 ∈ (0, 1) such that
s0 < e−ν. (5.6)

We claim that for any j ∈ N ,

�j−1

( ν
− log s

)
≈ �j(s) for all s ∈ (0, s0). (5.7)

Note that it suffices to verify (5.7) for j = 1, 2 ; the other cases follow by the induc-
tion applying the definition (2.1) of �k (k = 1, 2, . . .) . Since 0 < ν/(− log s) <
ν/(− log s0) < 1 for s ∈ (0, s0) , we have (cf. (2.6))

�0

( ν
− log s

)
=

− log s
ν

≈ 1 − log s = �1(s) for all s ∈ (0, s0), (5.8)

which is (5.7) with j = 1 . The case j = 2 follows from the fact that

lim
s→0+

�1

( ν
− log s

)
/�2(s) = 1.

For a fixed s ∈ (0, s0) we define the function

Fs(τ) = �−ν
m−1

( τ
− log s

)
e−τ , τ ∈ (0,− log s], (5.9)

and we want to prove that

Fs(τ) � C�−ν
m (s), τ ∈ (0,− log s] (5.10)

with a constant C independent of s and τ .
As ν < − log s (cf. (5.6)), we may split the interval (0,− log s] into the intervals

(0, ν) and [ν,− log s] . Consider first τ ∈ (0, ν) . Then

τ/(− log s) < ν/(− log s) < 1. (5.11)

Since the function �−ν
m−1 is increasing on (0,1), we have from (5.11) and (5.7) that for

all τ ∈ (0, ν) ,

Fs(τ) = �−ν
m−1

( τ
− log s

)
e−τ � �−ν

m−1

( ν
− log s

)
≈ �−ν

m (s). (5.12)

Using (2.2), we obtain for all τ ∈ (0,− log s) that

dFs

dτ
(τ) = e−τ�−ν

m−1

( τ
− log s

)[
− 1 + ν

( m−1∏
j=1

�j

( τ
− log s

))−1
τ−1

]
� e−τ�−ν

m−1

( τ
− log s

)[
− 1 +

ν
τ

]
and consequently, Fs(τ) is decreasing on [ν,− log s] . Thus, for all τ ∈ [ν,− log s] ,

Fs(τ) � Fs(ν) = �−ν
m−1

( ν
− log s

)
e−ν � �−ν

m−1

( ν
− log s

)
≈ �−ν

m (s). (5.13)
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The estimate (5.10) follows from (5.12) and (5.13).
Taking τ = τs,q = (− log s)/q with q ∈ [1,∞) , we have τs,q ∈ (0,− log s] and,

by (5.10) and (5.9),

�−ν
m (s)� Fs(τs,q) = �−ν

m−1

(1
q

)
e−τs,q = �−ν

m−1

(1
q

)
s1/q = �−ν

m−1(q)s1/q

and (5.5) follows. �

The proof of the next lemma is analogous to that of [EGO II, Lemma 4.1], where
the case m = 2 was treated.

5.2. LEMMA. Let σ ∈ (0, n) , p ∈ [1,∞] , and m ∈ N . Let αm < 1/p′ ,
α = αm − 1/p′ and, if m > 1 , let αj = 1/p′ for j = 1, . . . , m − 1 . Then there exists
a positive constant C2 such that for all u ∈ HσLn/σ,p;α1,...,αm(Rn) ,

sup
s∈(0,1)

�αm(s)u∗(s) � C2‖u‖σ;n/σ,p;α1,...,αm . (5.14)

An upper estimate of the norm of embedding (3.7) is given in the following
assertion.

5.3. LEMMA. Let all the assumptions of Theorem 3.1 be satisfied. Then there exists
a constant c ∈ (0,∞) such that for all u ∈ HσLn/σ,p;α1,...,αm(Rn) ,

‖u‖q,Rn � c �−α
m−1(q)‖u‖σ;n/σ,p;α1,...,αm (5.15)

(where ‖ · ‖q,Rn stands for the norm in the Lebesgue space Lq(Rn) ).

Proof. Put X = HσLn/σ,p;α1,...,αm(Rn) and take u ∈ X . Then

‖u‖q,Rn =
( ∫ ∞

0
u∗(s)qds

)1/q
� I1(u) + I2(u), (5.16)

where
I1(u) = ‖u∗‖q,(0,1) and I2(u) = ‖u∗‖q,(1,∞). (5.17)

Using Lemmas 5.1 and 5.2, we have for all u ∈ X and all q ∈ [1,∞) ,

sup
s∈(0,1)

s1/qu∗(s) � �−α
m−1(q) sup

s∈(0,1)
[ sup
ρ∈[1,∞)

�αm−1(ρ)s1/ρ] u∗(s)

� C1�
−α
m−1(q) sup

s∈(0,1)
�αm(s) u∗(s) � C1C2�

−α
m−1(q)‖u‖X.

Consequently, for all u ∈ X and all q ∈ [1,∞) ,

I1(u) =
(∫ 1

0
s1/2[s1/(2q)u∗(s)]q

ds
s

)1/q
(5.18)

� C1C2�
−α
m−1(2q)‖u‖X

( ∫ 1

0
s−1/2ds

)1/q
� �−α

m−1(q)‖u‖X.
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Since u ∈ X , we have u = gσ ∗ f with f ∈ L := Ln/σ,p;α1,...,αm(Rn) and ‖u‖X = ‖f ‖L .
Using (4.10), (4.13), and (4.14), we obtain

I2(u) � ‖f ‖L = ‖u‖X

Together with (5.18), (5.17), and (5.16) this implies that for all u ∈ X and all q ∈
(max{p, n/σ},∞) ,

‖u‖q,Rn � (�−α
m−1(q) + 1)‖u‖X � 2�−α

m−1(q)‖u‖X

and the result follows. �
To find a lower estimate of the norm of embedding (3.7) we need the following

lemma.

5.4. LEMMA. Let g be a positive function which is continuous on (0, 1] and
non-increasing in some interval (0, r0] ⊂ (0, 1] . Let σ ∈ (0, n) , p ∈ [1,∞] , m ∈ N ,
and α1, . . . ,αm ∈ R . Then there exists a number r1 ∈ (0, r0) such that the functions
hr , r ∈ (0, r1) , defined in R

n by

hr(y) =
{

g(|y|) , r < |y| < 1

0 , otherwise
(5.19)

satisfy

(Iσ ∗ hr)(x) = κn

∫ |x|/r

|x|

( |x|
τ

)σ
g
( |x|
τ

)
vσ(τ)dτ (5.20)

+ κn

∫ 1

r
tσ−1g(t)dt, |x| < r,

where vσ ∈ L1(0,∞) ,

‖hr‖n/σ,∞;α1,...,αm � sup
t∈[r,1)

tσg(t)
m∏

j=1

�
αj
j (t), (5.21)

and, if p ∈ [1,∞) ,
‖hr‖n/σ,p;α1,...,αm � V1(r) + V2(r) (5.22)

with

V1(r) =
( ∫ 1

2r

[
tσg(t)

m∏
j=1

�
αj
j (t)

]p dt
t

)1/p

and

V2(r) = rσg(r)
m∏

j=1

�
αj
j (r).

Proof is an easy modification of that of [EGO III, Lemma 4.1], where we replace
the function L(s) by

Lm(s) = sp σ
n −1

m∏
j=1

�
pαj
j (s) , s ∈ (0,∞) (p ∈ [1,∞)) ,
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and the function L(t) by

Lm(t) = t
σ
n

m∏
j=1

�
αj
j (t) , t ∈ (0,∞). �

5.5. COROLLARY. Suppose that σ ∈ (0, n) , p ∈ [1,∞] , and m ∈ N . Let
αm < 1/p′ and, if m > 1 , let αj = 1/p′ for j = 1, . . . , m− 1 . For γ < αm + 1/p put

g(t) = t−σ
( m−1∏

j=1

�j(t)
)−1

�−γ
m (t) , t ∈ (0, 1]. (5.23)

Then there exists r1 ∈ (0, 1] such that for all r ∈ (0, r1) the function hr defined by
(5.19) satisfy:

(Iσ ∗ hr)(x)� �1−γ
m (r) , |x| < r, (5.24)

‖hr‖n/σ,p;α1,...,αm � �αm−γ+1/p
m (r). (5.25)

Proof is analogous to that of [EGO III, Examples 4.2] and thus it is omitted. �

5.6. COROLLARY. Let σ ∈ (0, n) , p ∈ [1,∞] , and m ∈ N . Let αm < 1/p′ ,
α = αm − 1/p′ and, if m > 1 , let αj = 1/p′ for j = 1, . . . , m − 1 . Then there exist
a number r1 ∈ (0, 1) and non-negative functions f r ∈ B(Bn(0, 1)) , r ∈ (0, r1) , such
that

(Iσ ∗ f r)(x)� �−α
m (r) for all x ∈ Bn(0, r) (5.26)

and
‖f r‖n/σ,p;α1,...,αm � 1. (5.27)

Proof. Take hr fromCorollary 5.5. Then, by (5.25) and (5.24), there are constants
c, C ∈ (0,∞) independent of r ∈ (0, r1) such that

(Iσ ∗ hr)(x) � c�1−γ
m (r) , |x| < r,

and
‖hr‖n/σ,p;α1,...,αm � C�αm−γ+1/p

m (r).

Hence, putting f r = C−1�
γ−1/p−αm
m (r)hr , we obtain (5.26) and (5.27). �

Now, we are able to establish a lower estimate of the norm of embedding (3.7).

5.7. LEMMA. Let σ ∈ (0, n) , p ∈ [1,∞] , and m ∈ N . Let αm < 1/p′ ,
α = αm − 1/p′ and, if m > 1 , let αj = 1/p′ for j = 1, . . . , m − 1 . Then there is
a constant C ∈ (0,∞) such that for any sufficiently large q ∈ (1,∞) there exists a
function uq ∈ HσLn/σ,p;α1,...,αm(Rn) satisfying

‖uq‖σ;n/σ,p;α1,...,αm � 1 and ‖uq‖q,Rn � C�−α
m−1(q).
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Proof. By Corollary 5.6, there exist r1 ∈ (0, 1) and functions f r ∈ B(Bn(0, 1)) ,
r ∈ (0, r1) , such that (5.27) and (5.26) hold. Putting Fr = gσ ∗ f r , r ∈ (0, r1) , and
using the fact that

(gσ ∗ f r)(x) ≈ (Iσ ∗ f r)(x) , |x| < 1,

we obtain
‖Fr‖σ;n/σ,p;α1,...,αm = ‖f r‖n/σ,p;α1,...,αm � 1

and
Fr(x)� �−α

m (r) for all x ∈ Bn(0, r). (5.28)

Choose q1 ∈ (1,∞) such that exp(1 − q1) = r1 . If q ∈ (q1,∞) , set

r = exp(1 − q). (5.29)

Obviously, r ∈ (0, r1) and the function uq := Fr satisfies

‖uq‖σ;n/σ,p;α1,...,αm � 1

and (cf. (5.28))

‖uq‖q,Rn �
( ∫

{x;|x|<r}
|uq(x)|qdx

)1/q
=

(∫
{x;|x|<r}

|Fr(x)|qdx
)1/q

� �−α
m (r)|Bn(0, 1)|1/qrn/q � �−α

m (r)

since |Bn(0, 1)|1/q → 1 as q → ∞ and, by (5.29), rn/q = en(1−q)/q → e−n as
q → ∞ . �

Proof of Theorem 3.4. Theorem 3.4 follows from Lemmas 5.3 and 5.7. �
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Žitná 25
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