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Abstract. In this paper, new classes of stochastic order relations are introduced. These can be seen
as extensions of the usual convexorder and are closely related to the orderings discussed inLefèvre
and Utev (1996), as well as to the stochastic dominances in economics and stop-loss orders in
actuarial sciences. These classes are studied in detail, including properties, characterizations,
sufficient conditions, and extrema with respect to these orderings in different sets of distribution
functions. Some applications illustrate the theory.
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