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Abstract. In this paper, new classes of stochastic order relations are introduced. These can be seen
as extensions of the usual convexorder and are closely related to the orderings discussed inLefèvre
and Utev (1996), as well as to the stochastic dominances in economics and stop-loss orders in
actuarial sciences. These classes are studied in detail, including properties, characterizations,
sufficient conditions, and extrema with respect to these orderings in different sets of distribution
functions. Some applications illustrate the theory.

1. Introduction and motivation

Let X and Y be, respectively, the waiting times of a typical customer in two
adjacent businesses which sell similar items for about the same price. If X �st Y
(that is, if X is smaller than Y in the stochastic dominance; see the exact definition
below) then a customer will usually prefer the first business because then, in particular,
EX � EY . Thus, in order not to lose customers, the second business can then be
expected to improve its queueing procedure; in other words, the economic competition
can be expected to lead to EX = EY . Given that EX = EY , if now X �cx Y (that
is, if X is smaller than Y in the convex order; see the exact definition below) then a
typical customer, in order to avoid possible long waits, will still prefer the first business
because then, in particular, EX2 � EY2 (that is, Var(X) � Var(Y) ). Again, economic
competition can be expected then to lead to EX2 = EY2 . In such a situation, when
the first two moments of X and Y are, respectively, the same, neither the stochastic
dominance, nor the convex order, can be used to compare these waiting times. Indeed,
if X �st Y (respectively, X �cx Y ) and EX = EY (respectively, EX2 = EY2 ),
then X and Y are necessarily identically distributed (see Proposition 3.8 below). The
aim of this study is to introduce new concepts of stochastic dominance which allow
the comparison of random variables with identical first moments. In other words, we
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will study in this paper the generalization of the usual (that is, non-monotone) convex
and concave stochastic orders to higher degrees of convexity and concavity. Such
comparisons can be used, in particular, to derive extrema in specific sets of distribution
functions. For example, we can obtain the “best” and the “worst” waiting times among
those having the same first moments. As we will see, these stochastic extrema will
furnish useful numerical bounds on quantities that are hard to compute.

Many attempts have been made in the past twenty years to extend the classical
increasing convex and concave orders into hierarchical classes of stochastic order rela-
tions. Essentially, two approaches to this problem have been used: the first one is by
Rolski (1976) and Fishburn (1976, 1980) who based their study on iterative integrals of
the distribution and survival functions, and then identified classes of real functions that
define their orderings as integral stochastic order relations (see (1) below for the defi-
nition of this notion); the second one, arising for instance in the economic and actuarial
literature, is based on the expected utility theory and defines the stochastic orderings
by means of various cones of functions using the operator expectation (see (1)). The
second approach can be found, for example, in Levy (1992), Kaas, Van Heerwaarden
and Goovaerts (1994) or Lefèvre and Utev (1996).

Quite surprisingly, to the best of our knowledge, the usual convex and concave
orders seem not to have been generalized so far. Our aim here is to propose extensions
of these orders, that we will call the s -convex and s -concave orders. We will examine
their relationship to the s -increasing convex order (called stop-loss dominance of order
s − 1 in the actuarial literature and s -convex orders in Lefèvre and Utev (1996)) as
well as to the s -increasing concave orders (called s th degree stochastic dominance in
economics and in the financial literature, and s -concave orders in Lefèvre and Utev
(1996)). We will then derive some properties and some characterizations of these
orderings. Finally, we will obtain some extrema with respect to these new stochastic
order relations. These extrema yield interesting applications in various fields of applied
probability.

In the sequel, FX will denote the distribution function of a random variable X , FX

its survival function, that is, FX ≡ 1− FX , and f X its probability density function with
respect to some dominating measure μ .

For any subinterval S of the real line R let C s(S ) denote the class of all the
functions φ : S → R such that their s th derivative, φ (s) , exists and is continuous on
S ; S may be open, half-open, or closed, finite or infinite. We will denote respectively
by a and b the left and right endpoints of S when they are necessarily finite. For
any real value y let y+ = |y|+y

2 , that is, y+ = y if y � 0 and 0 otherwise (with the

understanding that y0
+ = 1 if y � 0 and 0 otherwise), and let y− = |y|−y

2 , that is
y− = −y if y � 0 and y− = 0 otherwise.

2. Preliminaries and definitions

In this section we introduce some new classes of partial orders defined on the set (or
on a suitable subset thereof) of all distribution functions of real-valued randomvariables



THE s -CONVEX ORDERS AMONG REAL RANDOM VARIABLES, WITH APPLICATIONS 587

(that is, binary relations satisfying the reflexivity, the transitivity and the anti-symmetry
properties on this set). As it is more intuitive to speak about random variables than
about distribution functions, we will say that the random variables X and Y are ordered
if their respective distribution functions FX and FY are ordered. However, let us note
that by dealing with random variables instead of with distribution functions, we lose the
anti-symmetry property (see, for example, Stoyan (1983)).

The stochastic order relations that are studied in this paper are called integral
stochastic orders (for instance, by Whitt (1986), Marshall (1991) and Müller (1997)).
Such stochastic order relations are defined by a reference to a class U S of real functions
φ : S → R , satisfying some desirable properties (usually U S is a convex cone), by
saying that the random variable X is U S -smaller than the random variable Y if

Eφ(X) � Eφ(Y) for all φ ∈ U S (1)

for which the expectations exist. In practice, S is the common support of the distribu-
tion functions of the random variables X and Y , or the smallest subset of R containing
their respective supports.

Let us first recall the notions of the usual stochastic dominance as well as of
the (increasing) convex and (increasing) concave orderings (see, for instance, Shaked
and Shanthikumar (1994), Sections 1.A, 2.A and 3.A). Let X and Y be two random
variables whose distribution functions have supports in S . Then X is said to be
smaller than Y in the usual stochastic dominance, denoted by X �st Y , if (1) holds
with the class U S of the non-decreasing functions over S ; while X is said to
be smaller than Y in the convex (respectively, concave) order, denoted by X �cx Y
(respectively, X �cv Y ), if (1) holds with the class U S of the convex (respectively,
concave) functions on S . Furthermore, X is said to be smaller than Y in the increasing
convex (respectively, increasing concave) sense, denoted by X �icx Y (respectively,
X �icv Y ), if (1) holds with the class U S of the non-decreasing convex (respectively,
non-decreasing concave) functions on S .

The readermaywonderwhy, in the notation U S , wemake explicit the dependence
on S . This dependence is fundamental for the orders studied in this paper. Denuit,
Lefèvre and Utev (1997) and Denuit and Lefèvre (1997) exploited a particular structure
of the support (when it is an arithmetic grid) for the purpose of defining more efficient
orders than those obtained by simply taking S = R .

In this paper we study some extensions of the stochastic dominance as well as of
the convex and concave orders. In order to generalize these classical stochastic order
relations, we opt for an extension of the non-decreasing and of the convex (concave)
functions which generate �st and �cx (�cv ). For this purpose it is useful to note that
a real-valued function φ is non-decreasing on its domain S if, and only if,∣∣∣∣ 1 1

φ(x0) φ(x1)

∣∣∣∣ � 0 whenever x0 < x1 ∈ S , (2)
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while it is convex if, and only if,∣∣∣∣∣∣
1 1 1
x0 x1 x2

φ(x0) φ(x1) φ(x2)

∣∣∣∣∣∣ � 0 whenever x0 < x1 < x2 ∈ S . (3)

A natural extension of (2) and (3) consists of considering real functions φ for which

δs(x0, x1, . . . , xs; φ) ≡

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x0 x1 . . . xs
...

...
. . .

...
xs−1
0 xs−1

1 . . . xs−1
s

φ(x0) φ(x1) . . . φ(xs)

∣∣∣∣∣∣∣∣∣∣
� 0

whenever x0 < x1 < · · · < xs ∈ S . (4)

This leads to the following definition. A real-valued function φ is said to be s -convex on
its domain S if, and only if, for all choices of s+1 distinct points x0 < x1 < · · · < xs

in S we have δs(x0, x1, . . . , xs; φ) � 0 .
Now, a function φ is said to be concave if (3) holds with the sign reversed.

We thus may define s -concavity as follows. A real-valued function φ is said to be
s -concave on its domain S if, and only if, for all choices of s + 1 distinct points
x0 < x1 < · · · < xs in S we have (−1)s+1δs(x0, x1, . . . , xs; φ) � 0 . We mention that
our definition of s -concavity differs from the one usually found in the literature (see,
for example, Popoviciu (1933) and Bullen (1971)): classically, φ is s -concave if, and
only if, −φ is s -convex, whereas here we have that φ(·) is s -concave if, and only if,
−φ(−·) is s -convex. The only functions φ such that both φ and −φ are s -convex
(respectively, s -concave) in the present sense are the polynomials of degree at most
s − 1 . The 1-convex (respectively, 1-concave) functions are thus the non-decreasing
functions, while the 2-convex (respectively, 2-concave) functions are the usual convex
(respectively, concave) functions (the 0-convex functions should be the non-negative
functions over S , but we will only consider s � 1 in the sequel). Below we denote
by U S

s -cx (respectively, U S
s -cv ) the class of all the s -convex (respectively, s -concave)

functions φ : S → R .
The s -convex functions are classical in interpolation theory where they are called

convex of order s by Popoviciu (1933), and convex with respect to the Tchebycheff
system {1, x, x2, . . . , xs−1} by Karlin and Novikoff (1963) and by Karlin and Studden
(1966). See Roberts and Varberg (1973) for other terminology.

We now list some basic properties of U S
s -cx . The class U S

s -cx is a convex cone
(that is, if φ1 and φ2 both belong to U S

s -cx , then, for all non-negative α and β
we have that αφ1 + βφ2 also belongs to U S

s -cx ) which is closed in the topology of
pointwise convergence. If φ ∈ U S

s -cx where s � 2 , then φ (k) exists, is continuous and
it belongs to U S

(s−k) -cx for 1 � k � s − 2 . In particular, φ (s−2) exists, is convex and
therefore it has left and right derivatives in the interior of S , both of them being non-
decreasing (see Bullen (1971), Theorem 7(a) and Corollary 15(a), as well as Roberts
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and Varberg (1973), Theorem B on page 5 and Theorem A on page 238). If φ (s)

exists, then φ ∈ U S
s -cx if, and only if, φ (s) � 0 . Moreover, U S

s -cx consists of all
limits of sequences of functions in the class C s(S ) for which φ (s) � 0 (see Karlin
and Studden (1966), Chapter XI, Example 1.4). The s -convex functions φ on S
can also be characterized by their position with respect to the graphs of the associated
Lagrange interpolation polynomials of degree s − 1 (see Popoviciu (1933) or Bullen
(1971, Theorem 5)).

Let us denote by ψs the function defined by

ψs(x) = xs, (5)

s = 1, 2, . . . . Also, let ψs−1,t,+ denote the function defined by

ψs−1,t,+(x) = (x − t)s−1
+ . (6)

Popoviciu (1942) showed that the functions ±ψk , k = 0, 1, . . . , s − 1 , and ψs−1,t,+ ,
t ∈ S , span U S

s -cx . More precisely, for n � s , let the function ϕn be of the form

ϕn(x) =
s−1∑
j=0

αjx
j +

n−s∑
j=0

βj(x − tj)s−1
+ , (7)

where α0,α1, . . . ,αs−1 are real constants, β0, β2, . . . , βn−s are non-negative constants,
and t0 < t1 < · · · < tn−s ∈ S . Then every φ ∈ U S

s -cx is the uniform limit of a
sequence {ϕn, n � s} , where the ϕn ’s are of the form (7).

Let us now shift our attention to monotone s -convex functions. A function φ is
said to be increasing convex if, and only if, it is simultaneously non-decreasing and
convex, that is, if, and only if, (2) and (3) are simultaneously satisfied. Analogously, a
function φ is said to be increasing concave if it is non-decreasing and concave, that is, if
(2) and (3) with the sign reversed are satisfied. In order to extend the notion of increasing
convexity (respectively, concavity), it is natural to require that the δk(x0, x1, . . . , xk; φ) ’s
(defined in (4)) are non-negative for k = 1, 2, . . . , s (respectively, are of alternating
sign for k = 1, 2, . . . , s (of non-positive sign for even k and of non-negative sign
for odd k )). This leads to the following definition. A real-valued function φ is
said to be s -increasing convex on its domain S if, and only if, for all choices of
k + 1 distinct points x0 < x1 < · · · < xk in S , we have δk(x0, x1, . . . , xk; φ) � 0 ,
k = 1, 2, . . . , s . Analogously, we say that φ is s -increasing concave if, and only if,
(−1)k+1δk(x0, x1, . . . , xk; φ) � 0 , k = 1, 2, . . . , s .

We denote by U S
s -icx (respectively, U S

s -icv ) the class of the s -increasing convex
(respectively s -increasing concave) functions on S . It is easily seen that

U S
s -icx =

s⋂
k=1

U S
k -cx and U S

s -icv =
s⋂

k=1

U S
k -cv. (8)

The 1-increasing convex (respectively, 1-increasing concave) functions are the non-
decreasing functions,while the 2-increasing convex (respectively,2-increasing concave)
functions are the usual increasing convex (respectively, increasing concave) functions.
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The higher degree convex functions have already been utilized in the statistical
literature. See, for instance, Oja (1981), Cambanis and Simons (1982), and Johnson,
Kotz and Balakrishnan (1995, page 677).

Consider the case in which a (the left endpoint of S ) is finite. Let us denote by
ψs,a : S → R

+ the function defined by ψs,a(x) = (x − a)s , s = 1, 2, . . . . Popoviciu
(1942) showed that in this case (when a is finite)

the functions ψk,a , k = 0, . . . , s − 1 , and ψs−1,t,+ , t ∈ S , span U S
s -icx . (9)

In this paper we study the classes of stochastic order relations which are given in
Definition 2.1 below. In the sequel, s denotes an integer greater or equal to 1 and all
the random variables are assumed to possess a finite (s − 1) st moment.

DEFINITION 2.1. Let X and Y be two random variables that take on values in
S . Then X is said to be smaller than Y in the s -convex (respectively, s -concave,
s -increasing convex, s -increasing concave) order, denoted by X �S

s -cx Y (respectively,
X �S

s -cv Y , X �S
s -icx Y , X �S

s -icv Y ), if (1) holds with U S = U S
s -cx (respectively,

U S = U S
s -cv , U S = U S

s -icx , U S = U S
s -icv ).

Note that �S
1-cx⇐⇒�S

1-icx⇐⇒�st , �S
2-cx⇐⇒�cx , �S

2-cv⇐⇒�cv , �S
2-icx⇐⇒�icx ,

and �S
2-icv ⇐⇒�icv .

From now on, we will focus on the s -convex and the s -increasing convex orders,
since, for any real-valued random variables X and Y , we have that

X �S
s -icx Y ⇐⇒ −Y �−S

s -icv −X, (10)

where −S = {x ∈ R| − x ∈ S } , as φ(·) ∈ U S
s -icx ⇐⇒ −φ(−·) ∈ U −S

s -icv , and

X �S
s -cx Y ⇐⇒

{
X �S

s-cv Y when s is odd,

Y �S
s-cv X when s is even,

(11)

since U S
s -cx = U S

s -cv when s is odd, and φ ∈ U S
s -cx ⇐⇒ −φ ∈ U S

s -cv when s is even.
So, all the results obtained for the convex case can be easily adapted to the concave
one. Note that, when s = 1 and 2, then (10) and (11) reduce to the well-known results
concerning stochastic dominance, convex and concave orders, as well as increasing
convex and increasing concave orders (see, for example, Theorems 1.A.3(a) and 3.A.11
of Shaked and Shanthikumar (1994)).

3. Characterizations and properties

In this section we first give several characterizations which generalize known
characterizations of the usual convex order. We will need the following terminology
and lemma. Let φ : S → R and let x0 < x1 < · · · < xs ∈ S , and define recursively,
starting from

[xi; φ] = φ(xi), i = 0, 1, . . . , s,
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the divided differences of order s by

[x0, x1, . . . , xs; φ] =
[x1, x2, . . . , xs; φ] − [x0, x1, . . . , xs−1; φ]

xs − x0
; (1)

see, for example, Pečarić, Proschan and Tong (1992, page 14).
The following lemma shows that, in order to identify functions in U S

s -cx or in
U S

s -icx , one can check the signs of some divided differences rather than the signs of the
determinants in (4). Its proof can be found, for example, in Denuit, Lefèvre and Utev
(1997). Recall the notation ψs from (5).

LEMMA 3.1. Let φ : S → R , let s be a positive integer, and let x0 < x1 <
· · · < xs ∈ S . Then

[x0, x1, . . . , xs; φ] =
δs(x0, x1, . . . , xs; φ)
δs(x0, x1, . . . , xs;ψs)

,

where δs(x0, x1, . . . , xs;ψs) is the well-known Vandermonde’s determinant, so that

[x0, x1, . . . , xs; φ] =
δs(x0, x1, . . . , xs; φ)
Πs

i,j=0;i>j(xi − xj)
.

This leads to the characterization below which extends to the s -convex orders the
relations (1.A.1) and (2.A.5) in Shaked and Shanthikumar (1994).

THEOREM 3.2. (shifted truncated moments characterization) Let X and Y be two
random variables that take on values in S . Then

X �S
s -cx Y ⇐⇒

{
EXk = EYk, k = 1, 2, . . . , s − 1, and

E(X − t)s−1
+ � E(Y − t)s−1

+ for all t ∈ S ,
(2)

and

X �S
s -cx Y ⇐⇒

{
EXk = EYk, k = 1, 2, . . . , s − 1, and

(−1)s
[
E(t − Y)s−1

+ − E(t − X)s−1
+

]
� 0 for all t ∈ S .

(3)

Proof. We first prove the “=⇒ ”-part of (2). It is easily seen that the functions
±ψk , k = 1, . . . , s−1 , all belong to U S

s -cx (just by noting that δs(x0, x1, . . . , xs;ψk) =
0 for k = 1, 2, . . . , s−1 ). What remains to be proven is that the function ψs−1,t,+ (see
(6)) also belongs to U S

s -cx for any t ∈ S . In fact, we will prove that ψs−1,t,+ ∈ U S
s -icx .

The result is obvious for s = 1 . We now proceed by induction. Suppose that the
property holds for ψk−1,t,+ and let us establish it for ψk,t,+ . Note that ψk,t,+(x) =
(x − t)ψk−1,t,+(x) for any x . Let x0 < x1 < · · · < xk+1 ∈ S . If xk+1 < t , then
δk+1(x0, x1, . . . , xk+1;ψk,t,+) = 0 . Similarly, if x0 > t we have

δk+1(x0, x1, . . . , xk+1;ψk,t,+) =
k∑

j=0

(
k
j

)
(−t)k−jδk+1(x0, x1, . . . , xk+1;ψj) = 0.
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If x0 � t � xk+1 we use the following formula (that can be found in Popoviciu (1940)
and can be seen as an analog of the Leibniz formula for the divided differences). Let
φ1 and φ2 be two real-valued functions defined on S , and y0 < y1 < · · · < yk ∈ S ,
then

[y0, y1, . . . , yk; φ1φ2] =
k∑

i=0

[y0, y1, . . . , yi; φ1][yi, yi+1 . . . , yk; φ2].

We then get

[x0, x1, . . . , xk+1;ψk,t,+] = (x0 − t)[x0, x1, . . . , xk+1;ψk−1,t,+]
+[x1, x2, . . . , xk+1;ψk−1,t,+]

= (x0 − t)
[x1, x2, . . . , xk+1;ψk−1,t,+] − [x0, x1, . . . , xk;ψk−1,t,+]

xk+1 − x0

+[x1, x2, . . . , xk+1;ψk−1,t,+]

=
(xk+1 − t)[x1, x2, . . . , xk+1;ψk−1,t,+]

xk+1 − x0

+
(t − x0)[x0, x1, . . . , xk;ψk−1,t,+]

xk+1 − x0
.

The fact that ψk,t,+ ∈ U S
(k+1) -icx now follows from Lemma 3.1.

In order to prove the “⇐= ”-part of (2), let φ be an s -convex function. We know
that φ is the uniform limit of the sequence {ϕn, n � s} defined in (7). Thus

|Eϕn(X) − Eφ(X)| =
∣∣∣∣∫

x∈S

(ϕn(x) − φ(x)) dFX(x)
∣∣∣∣

�
∫

x∈S

|ϕn(x) − φ(x)| dFX(x)

� sup
x∈S

|ϕn(x) − φ(x)| → 0 as n → ∞

since ϕn converges uniformly to φ . Similarly, |Eϕn(Y) − Eφ(Y)| → 0 as n → ∞ .
Now, every function ϕn in (7) is a linear combination, with non-negative coefficients,
of the functions in the set {±ψ0,±ψ1, . . . ,±ψs−1,ψs−1,t,+, t ∈ S } . It follows that
Eφ(X) � Eφ(Y) for every φ ∈ U S

s -cx .
In order to prove (3) start from (x − t)s−1 = ((x − t)+ − (x − t)−)s−1 to get

E(X − t)s−1
+ =

s−1∑
j=0

(
s − 1

j

)
EXj(−t)s−j−1 + (−1)sE(t − X)s−1

+ (4)

(see (2.5) in Rachev and Rüschendorf (1990)). The characterization (3) now follows
from (2) using the identity (4) and a similar identity involving Y .

�
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In the actuarial literature (where the random variables under interest are mostly
non-negative) the s -increasing convex order �S

s -icx (see Definition 2.1) is often defined
or characterized by requiring (2) to hold with the inequalities EXk � EYk replacing the
equalities EXk = EYk , k = 1, 2, . . . , s − 1 (see, for example, Kaas, Van Heerwaarden
and Goovaerts (1994)). This is indeed a reasonable definition for non-negative random
variables. However, for more general random variables the situation is somewhat more
complex. A discussion on the s -increasing convex order for general random variables
is given later in this section (see Remark 3.6 below).

For any distribution function F let us denote F[0](t) = F(t) , and, for k � 1 , denote

F[k](t) =
∫ t

x=−∞ F[k−1](x) dx . Similarly, denote F
[0](t) = F(t) , and, for k � 1 , denote

F
[k](t) =

∫ ∞
x=t F

[k−1](x) dx . The next result characterizes the order �S
s -cx by means of

these iterated integrals; it extends Theorem 2.A.1 in Shaked and Shanthikumar (1994)
to the s -convex case.

THEOREM 3.3. (iterated integrals characterization) Let X and Y be two random
variables that take on values in S . Then

X �S
s -cx Y ⇐⇒

{
EXk = EYk, k = 1, 2, . . . , s − 1, and

(−1)s
[
F[s−1]

Y (t) − F[s−1]
X (t)

]
� 0 for all t ∈ R,

and

X �S
s -cx Y ⇐⇒

{
EXk = EYk, k = 1, 2, . . . , s − 1, and

F
[s−1]
Y (t) − F

[s−1]
X (t) � 0 for all t ∈ R.

Proof. These results follow from Theorem 3.2 using the identities

F[s−1]
Y (t) − F[s−1]

X (t) =
E(t − Y)s−1

+ − E(t − X)s−1
+

(s − 1)!
(5)

and

F
[s−1]
Y (t) − F

[s−1]
X (t) =

E(Y − t)s−1
+ − E(X − t)s−1

+

(s − 1)!
, (6)

which are easily proven by induction and Fubini’s Theorem.
�

The next characterization extends results proposed by Müller (1996) for the usual
stochastic order.

THEOREM 3.4. (monotonicity characterization) Let X and Y be two random vari-
ables that take on values in S . Then

X �S
s -cx Y ⇐⇒

{
EXk = EYk, k = 1, 2, . . . , s − 1, and

E(Y − t)s
+ − E(X − t)s

+ is non-increasing in t ∈ R,

and

X �S
s -cx Y ⇐⇒

{
EXk = EYk, k = 1, 2, . . . , s − 1, and

(−1)s
[
E(t − Y)s

+ − E(t − X)s
+
]

is non-decreasing in t ∈ R.
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Proof. These results follow from Theorem 3.3 using the identities

s!
∫ ∞

x=t

[
F

[s−1]
Y (x) − F

[s−1]
X (x)

]
dx = E(Y − t)s

+ − E(X − t)s
+

and

s!
∫ t

x=−∞

[
F[s−1]

Y (x) − F[s−1]
X (x)

]
dx = E(t − Y)s

+ − E(t − X)s
+. �

In the next result it is shown that the s -convex orders can be characterized by
means of U S

s -cx ∩ C s(S ) .
THEOREM 3.5. (continuous functions characterization)Let X and Y be two random

variables that take on values in S . Then X �S
s -cx Y if, and only if, (1) holds with

U S = U S
s -cx ∩ C s(S ) .

Proof. The necessity part is obvious from Definition 2.1 using the fact that U S
s -cx∩

C s(S ) ⊆ U S
s -cx . To prove the converse we note that the functions ±ψk (see (5)),

k = 1, 2, . . . , s − 1 , belong to U S
s -cx ∩ C s(S ) and that ψs,t,+ (see (6)), t ∈ S , can

be obtained as the limit of a sequence {�n, n � 1} of functions in U S
s -cx ∩ C s(S ) .

For example, we can define �n , for x ∈ R , by

�n(x) =
1√
2π

∫ x

−∞
(x − ξ)s−1e−

n2

2 (ξ−t)2

dξ , n � 1,

and note that

�(s)
n (x) =

1√
2π

(s − 1)!e−
n2

2 (x−t)2

> 0

for any real x . The result then follows from (2).
�

REMARK 3.6. Having the above characterizations of the s -convex orders, let us
examine some possible characterizations of the s -increasing convex orders, and their
relationship to similar orders in the literature. When a is finite, then from (9) it is seen
that the analog of characterization (2) in the s -increasing convex case becomes

X �S
s -icx Y ⇐⇒

{
E(X − a)k � E(Y − a)k, k = 1, 2, . . . , s − 1, and

E(X − t)s−1
+ � E(Y − t)s−1

+ for all t ∈ S .
(7)

However, this result has no meaning when a = −∞ . Thus, in our framework, if we
want a characterization such as (7) to hold for �S

s -icx then we need a to be finite. This
observation enables us to understand the links and the differences that exist between
the s -increasing convex orders and the stochastic order relations introduced by Rolski
(1976) (see also Remark 2.3 in Shaked and Wong (1995)). �
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In the rest of this section we give some properties of the s -convex orders which
are analogs of results in Sections 1.A and 2.A of Shaked and Shanthikumar (1994).
First we examine the relations that exist between the moments of two s -convex ordered
random variables. The following result follows at once from Definition 2.1.

PROPOSITION 3.7. Let X and Y be random variables that take on values in S .
If X �S

s -cx Y then

EXk � EYk for k � s such that k − s is even.

If, moreover, X and Y are non-negative then

EXk � EYk for k � s .

A useful property of the s -convexorder is stated next; it generalizes Theorem1.A.7
in Shaked and Shanthikumar (1994).

PROPOSITION 3.8. Let X and Y be two random variables that take on values in
S . If X �S

s -cx Y and if EXs = EYs then X and Y are identically distributed.

Proof. From Theorem 3.3 it follows that

(−1)s
[
F[s−1]

Y (t) − F[s−1]
X (t)

]
� 0 and F

[s−1]
Y (t) − F

[s−1]
X (t) � 0 for all t ∈ R .

Using (5) and (6) we get, after some computation, that∫ 0

−∞
(−1)s

[
F[s−1]

Y (t) − F[s−1]
X (t)

]
dt

+
∫ ∞

0

[
F

[s−1]
Y (t) − F

[s−1]
X (t)

]
dt =

EYs − EXs

s!
= 0,

where the last equality follows from the assumption of the proposition. Thus it is seen

that F[s−1]
Y (t) − F[s−1]

X (t) = 0 for t � 0 , and that F
[s−1]
Y (t) − F

[s−1]
X (t) = 0 for t � 0 .

Differentiating these equalities s− 1 times we obtain, respectively, FY(t) − FX(t) = 0
for t � 0 , and FY(t) − FX(t) = 0 for t � 0 .

�

Let us now examine the supports of the distribution functions of two s -convex
ordered random variables. To this end, let us define, for any real-valued random
variable X , the quantities �X and uX , the left and the right endpoints of the support of
its distribution function, by �X = inf{x ∈ R|FX(x) > 0} and uX = sup{x ∈ R|FX(x) <
1} .

PROPOSITION 3.9. Let X and Y be two random variables that take on values in
S . If X �S

s -cx Y then uX � uY . Also, if s is even then �X � �Y , and if s is odd then
�X � �Y .
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Proof. Suppose that uX > uY . Let t ∈ R be such that uY < t < uX . We
then get E(Y − t)s−1

+ = 0 < E(X − t)s−1
+ , which contradicts (2). If s is odd and

if we assume that �Y < �X then, by choosing a real t such that �Y < t < �X , we
get E(t − X)s−1

+ = 0 < E(t − Y)s−1
+ , which contradicts (3). If s is even and if we

assume that �X < �Y then, by choosing a real t such that �X < t < �Y , we get
E(t − X)s−1

+ > 0 = E(t − Y)s−1
+ , which contradicts (3).

�

PROPOSITION 3.10. Let X and Y be two random variables that take on values in
S . Then

X �S
s -cx Y ⇐⇒

{ −X �−S
s-cx −Y when s is even,

−Y �−S
s-cx −X when s is odd.

Proof. If s is even, we have that φ(·) ∈ U S
s -cx ⇐⇒ φ(−·) ∈ U −S

s -cx , while if
s is odd then φ(·) ∈ U S

s -cx ⇐⇒ −φ(−·) ∈ U −S
s -cx . Hence the results follow from

Definition 2.1.
�

Finally we list some closure properties of the s -convex orders. For any ran-
dom variable Z and event A , we denote below by [Z

∣∣A] any random variable whose
distribution function is the conditional distribution of Z given A .

PROPOSITION 3.11. Let X , Y and be two random variables that take on values
in S , and let Θ be a random variable that takes on values in T ⊆ R .

(i) If [X
∣∣Θ = θ] �S

s -cx [Y
∣∣Θ = θ] for all θ ∈ T then X �S

s -cx Y ; that is, the
s -convex orders are closed under mixtures.

(ii) Let φ : S ×T → S̃ be a measurable function. If X and Y are independent
of Θ , and if φ(X, θ) �S̃

s -cx φ(Y, θ) for all θ ∈ T , then φ(X,Θ) �S̃
s -cx φ(Y,Θ) .

(iii) If X �S
s -cx Y then cX �cS

s -cx cY whenever c > 0 , where cS = {x ∈
R|x/c ∈ S } .

(iv) If X �S
s -cx Y then cX �cS

s -cx cY whenever c < 0 and s is even, and
cY �cS

s -cx cX whenever c < 0 and s is odd.
(v) If X �S

s -cx Y then X + d �S +d
s -cx Y + d for all d ∈ R , where S + d = {x ∈

R|x − d ∈ S } ; that is, the s -convex orders are shift-invariant.
(vi) If X1, X2, . . . , Xn (respectively, Y1, Y2, . . . , Yn ) are independent random vari-

ables that take on values in S , such that Xi �S
s -cx Yi , i = 1, 2, . . . , n , then

n∑
i=1

Xi �R
s -cx

n∑
i=1

Yi,

where R denotes the union of the supports of the distribution functions of the two sums;
that is, the s -convex orders are closed under convolutions.

(vii) If X1, X2, . . . (respectively, Y1, Y2, . . . ) are independent random variables
that take on values in S , such that Xi �S

s -cx Yi , i = 1, 2, . . . , then, for any positive
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integer-valued random variable N which is independent of the Xi ’s and of the Yj ’s,
one has

N∑
i=1

Xi �R̃
s -cx

N∑
i=1

Yi,

where R̃ denotes the union of the supports of the distribution functions of the two
compound sums; that is, the s -convex orders are closed under compounding.

(viii) Let {Xj, j � 1} and {Yj, j � 1} be two sequences of random variables
that take on values in S , such that Xj → X and Yj → Y in distribution as j → ∞ .
If E(X)s−1

+ and E(Y)s−1
+ are finite, if E(Xj)s−1

+ → E(X)s−1
+ and E(Yj)s−1

+ → E(Y)s−1
+

as j → ∞ , and if Xi �S
s -cx Yi for all integers i , then X �S

s -cx Y ; that is, the s -convex
orders are preserved under limits.

Proof. In order to prove (i) we note that

EXk =
∫
θ∈T

E[Xk
∣∣Θ = θ] dFΘ(θ) =

∫
θ∈T

E[Yk
∣∣Θ = θ] dFΘ(θ) = EYk,

k = 1, 2, . . . , s − 1,

where FΘ denotes the distribution function of Θ . Moreover, for any real t we have

E(X − t)s−1
+ =

∫
θ∈T

E[(X − t)s−1
+

∣∣Θ = θ] dFΘ(θ)

�
∫
θ∈T

E[(Y − t)s−1
+

∣∣Θ = θ] dFΘ(θ)

= E(Y − t)s−1
+ ,

and (i) follows from Theorem 3.2. Statement (ii) is a special case of (i) . Statements
(iii) , (iv) and (v) are obvious from Theorem 3.2 and Proposition 3.10. To prove (vi)
we first apply (ii) with φ(x, θ) = x + θ to the random variables X1 , Y1 and X2 . We
then get X1+X2 �S +S

s -cx Y1+X2 , where S +S = {x ∈ R|x = y+z where y, z ∈ S } .
Repetition of this argument yields (vi) . Using (vi) we get[

N∑
i=1

Xi

∣∣N = n

]
�R

s -cx

[
N∑

i=1

Yi

∣∣N = n

]
for any integer n , and hence (vii) follows from (i) . Finally, Rolski (1976) showed
that if Xk → X in distribution and E(Xk)s−1

+ → E(X)s−1
+ < ∞ , then, for every t ∈ R ,

one has E(Xk − t)s−1
+ → E(X − t)s−1

+ , and this proves (viii) .
�

4. Conditions which imply the s -convex orders

In this section we give some conditions, by means of the number of sign changes
of some functions, which imply the s -convex orders. These conditions are often very
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easy to verify, especially when s is small. They will be used in Section 5. for the
purpose of obtaining extrema with respect to the s -convex orders.

The following notations and terminology are used below. For a real-valued function
φ defined on R , define the number of sign-changes of φ on R by

S−(φ) = sup S−[φ(x1), φ(x2), . . . , φ(xn)],

where the supremum is extended over all sets x1 < x2 < · · · < xn ∈ R , n is arbitrary
but finite and S−[y1, y2, . . . , yn] is the number of sign changes of the indicated sequence
{y1, y2, . . . , yn} , zero terms being discarded (see, for example, Karlin (1968)). The
functions φ1 and φ2 are said to cross each other k times if S−(φ1 − φ2) = k ,
k = 0, 1, 2, . . . . We denote by Bs(S ;μ1,μ2, . . . ,μs−1) the class of all the random
variables X whose distribution functions have support in S and with prescribed first
s − 1 moments EXk = μk , k = 1, . . . , s − 1 .

We will need the following two lemmas. For the first lemma recall the notation

F
[k]

which was defined before Theorem 3.3.

LEMMA 4.1. Let X and Y be two random variables in Bs(S ;μ1,μ2, . . . ,μs−1) .
Then

lim
t→−∞

[
F

[k]
Y (t) − F

[k]
X (t)

]
= 0 for k = 1, . . . , s − 1.

Proof. Combining (6), (4), and the equality of the first s − 1 moments, we get

F
[k]
Y (t) − F

[k]
X (t) = (−1)k+1 E(t − Y)k

+ − E(t − X)k
+

k!
for k = 1, 2, . . . , s − 1,

and the result follows.
�

The next lemma can be proven using the variation diminishing property of totally
positive kernels (see, for instance, Karlin (1968)). However, for the sake of complete-
ness we provide here a direct simple proof of it.

LEMMA 4.2. Let g be a differentiable real function defined on R , and let g′ be
its derivative. Then

S−(g) � S−(g′) + 1. (1)
If, moreover, limx→−∞ g(x) = 0 and limx→∞ g(x) = 0 then

S−(g) � max(0, S−(g′) − 1). (2)

Proof. Suppose S−(g′) = i and suppose that g′ exhibits opposite signs on the
consecutive intervals I0, I1, . . . , Ii . Then g is monotone on each of the intervals, and
therefore it can have at most one sign change on each of the i + 1 intervals, and (1)
follows. When limx→−∞ g(x) = 0 then g cannot have a sign change on I0 . Similarly,
when limx→∞ g(x) = 0 then g cannot have a sign change on Ii . Thus (2) follows.

�
We now show that if S−(FX −FY) is small enough then X and Y are comparable

in the s -convex sense.
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THEOREM4.3. Let X and Y be two randomvariables in Bs(S ;μ1,μ2, . . . ,μs−1) .
If S−(FX − FY) � s − 1 and if the last sign of FX − FY is a + , then X �S

s -cx Y .

Proof. By Theorem3.3 it suffices to show that F
[s−1]
Y (t)−F

[s−1]
X (t) � 0 for t ∈ R ,

or, equivalently, that S−
(
F

[s−1]
Y − F

[s−1]
X

)
= 0 and that F

[s−1]
Y − F

[s−1]
X � 0 . Now, by

Lemma4.1 and (2) we have that S−
(
F

[s−1]
Y − F

[s−1]
X

)
� max

(
0, S−

(
F

[s−2]
Y − F

[s−2]
X

)
−1) � · · · � max

(
0, S−

(
F

[0]
Y − F

[0]
X

)
− (s − 1)

)
= 0 . Since the last sign of FX−FY

is a − , it follows that the last sign of F
[s−1]
X −F

[s−1]
Y is a − , and therefore F

[s−1]
X � F

[s−1]
Y

everywhere.
�

In the next theorem we obtain a sufficient condition for X �S
s -cx Y by means of

the number of crossings of the density functions f X and f Y . The proof of the next result
is similar to the proof of Theorem 4.3 and is therefore omitted.

THEOREM4.4. Let X and Y be two randomvariables in Bs(S ;μ1,μ2, . . . ,μs−1) .
If S−(f X − f Y) � s , and if the last sign of f Y − f X is a + , then X �S

s -cx Y .

REMARK 4.5. If the two random variables X and Y belong to Bs(S ;μ1,μ2, . . . ,
μs−1) , and if X �=st Y , then S−(f X − f Y) � s (this can be shown, for example, by
modifying the proof of Lemma4.2 of Denuit and Lefèvre (1997)). Thus, in Theorem4.4
we may replace the assumption S−(f X − f Y) � s by the assumption S−(f X − f Y) = s .
Similarly, in Theorem 4.3 we may replace the assumption S−(FX − FY) � s by the
assumption S−(FX − FY) = s . �

REMARK 4.6. It is worthwhile to mention that with the aid of Theorem 4.4 it is
possible to extend to the real case Theorem2.3 (iii) of Kaas and Hesselager (1995). For
a random variable X in Bs(S ;μ1,μ2, . . . ,μs−1) with a differentiable density function
f X let us define ρX by ρX(t) = d

dt log f X(t) , t ∈ R . Similarly, for another random
variable Y in Bs(S ;μ1,μ2, . . . ,μs−1) with a differentiable density function f Y we
define ρY . Observe that

S−(f X − f Y) = S−
(

log
f X

f Y

)
� S−

(
d
dt

log
f X

f Y

)
+ 1 = S−(ρX − ρY) + 1,

where the inequality follows from (1). Thus from Theorem 4.4 it follows that if
S−(ρX − ρY) � s − 1 , and if the last sign of ρY − ρX is a + , then X �S

s -cx Y . �

5. Bounds and extrema with respect to the s -convex orders

Recall from Section 4 that Bs([a, b];μ1,μ2, . . . ,μs−1) denotes the class of all
random variables X whose distribution functions have supports in [a, b] and with
prescribed first s − 1 moments EXk = μk , k = 1, . . . , s − 1 . In this section we
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first obtain the minimum and the maximum in the s -convex sense within the class
Bs([a, b];μ1,μ2, . . . ,μs−1) . That is, we identify the random variables X(s)

min and X(s)
max

that belong to Bs([a, b];μ1,μ2, . . . ,μs−1) such that X(s)
min �[a,b]

s -cx X �[a,b]
s -cx X(s)

max for all
X in Bs([a, b];μ1,μ2, . . . ,μs−1) . The theory of Tchebycheff systems, described in
Karlin and Studden (1966), may be used to solve this problem. Here, however, we will
derive the extrema from the sufficient conditions that we derived in Section 4.

For s = 1 the bounds are trivial. This is because the 1-convex ordering is the
standard stochastic dominance. Therefore, it is obvious that with respect to �[a,b]

1-cx we

have X(1)
min = a and X(1)

max = b almost surely.
The next theorem,which is the same asTheorem2.A.9 in Shaked andShanthikumar

(1994), gives the extrema for the case s = 2 . We include it here for clarity, especially
because its simple proof motivates the proof of the following Theorem 5.2.

THEOREM 5.1. Let X ∈ B2([a, b];μ1) . Consider the random variables X(2)
min and

X(2)
max in B2([a, b];μ1) defined by X(2)

min = μ1 almost surely, and

X(2)
max =

{
a with probability r1 = b−μ1

b−a ,

b with probability r2 = μ1−a
b−a .

Then X(2)
min �[a,b]

2-cx X �[a,b]
2-cx X(2)

max .

Proof. It is easily seen that the distribution functions of X(2)
min and of any X in

B2([a, b];μ1) intersect at most once, and therefore, by Theorem 4.3, X(2)
min is the

minimum in the �[a,b]
2-cx sense.

Now consider X(2)
max . The numbers r1 and r2 are probabilities since r1 + r2 = 1

and r1 , r2 � 0 . Moreover, EX(2)
max = μ1 , and it is easily seen that the distribution

functions of X(2)
max and of any X in B2([a, b];μ1) intersect at most once (see Figure 5.1).

Thus, Theorem 4.3 yields the result.
�

a b

F

F

r

1

(2)
max

X

X

1

Figure 5.1. A typical distribution and the distribution of X(2)
max .

It is of interest to note that we still have that X(2)
min �R

2-cx X for all X ∈ B2(R;μ1) .
However, the maximum in the 2-convex sense becomes meaningless if either a or b
are infinite.
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The next result describes the stochastic bounds for the case s = 3 .

THEOREM 5.2. Let X ∈ B3([a, b];μ1,μ2) . Consider the random variables X(3)
min

and X(3)
max in B3([a, b];μ1,μ2) defined by

X(3)
min =

⎧⎨⎩ a with probability p1 = μ2−μ2
1

(a−μ1)2+μ2−μ2
1
,

μ1 + μ2−μ2
1

μ1−a with probability p2 = (a−μ1)2

(a−μ1)2+μ2−μ2
1
,

(1)

and

X(3)
max =

⎧⎨⎩ μ1 − μ2−μ2
1

b−μ1
with probability q1 = (b−μ1)2

(b−μ1)2+μ2−μ2
1
,

b with probability q2 = μ2−μ2
1

(b−μ1)2+μ2−μ2
1
.

(2)

Then X(3)
min �[a,b]

3-cx X �[a,b]
3-cx X(3)

max .

Proof. The numbers p1 and p2 in (1) are such that p1 + p2 = 1 and p1 , p2 � 0 .
Moreover, we see that EX(3)

min = μ1 and that E[X(3)
min]2 = μ2 . Let us prove now that

the support of the distribution function of X(3)
min is contained in [a, b] . After some

simplifications it is seen that we need to show that μ2 − aμ1 � bμ1 − ab . Since the
Vandermonde’s determinant is always non-negative and X ∈ [a, b] almost surely, we
have that ∣∣∣∣∣∣

1 1 1
a X b
a2 X2 b2

∣∣∣∣∣∣ � 0 almost surely. (3)

By expanding the determinant in (3) we get that

(b2 − a2)X − (b − a)X2 − ab(b − a) � 0 almost surely, (4)

hence the desired result follows by taking the expectation in (4). As it can be easily
checked that the distribution functions of X(3)

min and of any X in B3([a, b];μ1,μ2) cannot
cross more than twice (see Figure 5.2), it follows that X(3)

min is indeed the minimum by
Theorem 4.3. Now, the numbers q1 and q2 in (2) are such that q1 + q2 = 1 and q1 ,
q2 � 0 . In addition, EX(3)

max = μ1 and E[X(3)
max]2 = μ2 . It remains to verify that the

support of the distribution function of X(3)
max is contained in [a, b] . This is equivalent

to ab − aμ1 � bμ1 − μ2 , which was shown above to be true. As it is easily seen, the
distribution functions of X(3)

max and of any X in B3([a, b];μ1,μ2) cannot cross more
than twice (see Figure 5.3). By Theorem 4.3 it now follows that X(3)

max is the maximum.
�
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a b

F

Fp

1

(3)
min

X

X

1

Figure 5.2. A typical distribution and the distribution of X(3)
min .

a b

F

F

q

1

(3)
max

X

X

1

Figure 5.3 A typical distribution and the distribution of X(3)
max .

Note that within B3([a,∞);μ1,μ2) we still have X(3)
min �[a,∞)

3-cx X for any X ,

however X(3)
max is now meaningless. When, in addition, a = 0 , we get a result derived

by Lefèvre and Utev (1996) (see their Property 2.10).
In Theorem5.1 (respectively, Theorem5.2) it is assumed that only the first moment

(respectively, the first two moments) of X is (respectively, are) known. When more is
known about X it is sometimes possible to improve the bounds on X . For example,
Denuit and Lefèvre (1997) studied this problem under the assumption that X takes on
values in {0, 1, . . . , n} , n > 0 , and has prescribed s − 1 first moments. Naturally the
extrema obtained in that case are better than those obtained in Theorems 5.1 and 5.2.
Below we will see how the bounds in Theorems 5.1 and 5.2 can be improved when X
is known to have a unimodal density function. As a special case of the results below
we will obtain improved bounds on X when X is known to have a decreasing density
function.

Denote by B∗
s ([a, b];μ1,μ2, . . . ,μs−1; m) the class of all randomvariables X with

unimodal density functions, whose distribution functions have support in [a, b] , with
prescribed first s − 1 moments EXk = μk , k = 1, . . . , s − 1 , and with a mode m .
In the sequel we will denote by Unif[α, β ] the uniform distribution function on the
interval [α, β ] . Furthermore, we will denote by p Unif[α1, β1] + (1 − p) Unif[α2, β2]
the distribution function which is the mixture of the uniform distributions on [α1, β1]
and on [α2, β2] with weights p and 1 − p , respectively. The notation Unif[α,α] will
stand for the distribution which is degenerate at the point α .
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Let us first examine the case s = 1 , that is, the standard stochastic dominance
�st . Let X ∈ B∗

1 ([a, b]; m) . Consider the random variables X(1)∗
min and X(1)∗

max in
B∗

1 ([a, b]; m) with the respective distribution functions

F
X(1)∗

min
= Unif[a, m] and F

X(1)∗
max

= Unif[m, b]. (5)

Then, X(1)∗
min �[a,b]

1-cx X �[a,b]
1-cx X(1)∗

max . The latter assertion is easily deduced from Theo-
rem 4.4, since f X and f

X(1)∗
min

, as well as f X and f
X(1)∗

max
, cross each other at most once

for any X ∈ B∗
1 ([a, b]; m) . Moreover, it is easily seen that X(1)

min �[a,b]
1-cx X(1)∗

min and

X(1)∗
max �[a,b]

1-cx X(1)
max . A typical graph of the density function of the bound X(1)∗

max , described

in (5), is depicted in Figure 5.4. The graph of the density function of X(1)∗
min is similar,

but over the interval [a, m] .

a b

f

f

(1)
max

X

X

m

*

Figure 5.4 A typical unimodal density and the density of X(1)∗
max .

To treat the case s � 2 , let us recall Khinchine’s Theorem which states that a
random variable Y has a unimodal density function with a mode 0 if, and only if, there
exist independent random variables U and Z , such that U is uniformly distributed on
[0, 1] and the product UZ has distribution function FY (see, for example, Theorem 1.3
in Dharmadhikari and Joag-Dev (1988)).

THEOREM 5.3. Let X ∈ B∗
2 ([a, b];μ1; m) . Consider the random variables X(2)∗

min

and X(2)∗
max in B∗

2 ([a, b];μ1; m) with the respective distribution functions

F
X(2)∗
min

= Unif[min(2μ1 − m, m), max(2μ1 − m, m)]

and

F
X(2)∗
max

=
b + m − 2μ1

b − a
Unif[a, m] +

2μ1 − a − m
b − a

Unif[m, b].

Then X(2)∗
min �[a,b]

2-cx X �[a,b]
2-cx X(2)∗

max .

Proof. Define Y = X − m . Then Y ∈ B∗
2 ([a∗, b∗];μ1 − m; 0) , where a∗ =

a − m and b∗ = b − m . By Khinchine’s Theorem Y =st UZ , where U and Z are
independent random variables, U is uniformly distributed on [0, 1] , and “=st ” denotes
equality in distribution. Since EY = EUEZ = 1

2EZ , it is seen that EZ = μ̃1 , where
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μ̃1 = 2μ1 − 2m . Therefore Z ∈ B2([a∗, b∗]; μ̃1) . From Theorem 5.1 we see that

Z(2)
min �[a∗,b∗ ]

2-cx Z �[a∗,b∗]
2-cx Z(2)

max , where Z(2)
min = μ̃1 = 2μ1 − 2m almost surely, and

Z(2)
max =

{
a∗ with probability b∗−μ̃1

b∗−a∗ ,

b∗ with probability μ̃1−a∗
b∗−a∗ ,

=

{
a − m with probability b+m−2μ1

b−a ,

b − m with probability 2μ1−a−m
b−a .

Now let U be a uniform [0, 1] random variable which is independent of Z(2)
min and of

Z(2)
max . Define Y(2)∗

min = Z(2)
minU and Y(2)∗

max = Z(2)
maxU . By Khinchine’s Theorem it follows

that Y(2)∗
min , Y(2)∗

max ∈ B∗
2 ([a∗, b∗];μ1 − m; 0) ; and by Proposition 3.11 (ii) and (iii) it

is seen that Y(2)∗
min �[a∗,b∗]

2-cx Y �[a∗,b∗]
2-cx Y(2)∗

max . If we set X(2)∗
min = Y(2)∗

min + m and X(2)∗
max =

Y(2)∗
max + m , then, from Proposition 3.11 (v) we get that X(2)∗

min �[a,b]
2-cx X �[a,b]

2-cx X(2)∗
max . A

straightforward calculation shows that X(2)∗
min and X(2)∗

max indeed have the distribution
functions stated in Theorem 5.3.

�
When we compare X(2)

min and X(2)
max of Theorem 5.1 with X(2)∗

min and X(2)∗
max of

Theorem5.3 we see that X(2)
min �[a,b]

2-cx X(2)∗
min and that X(2)∗

max �[a,b]
2-cx X(2)

max . Thus, unimodality

(when it is known to hold) yields improved bounds in the �[a,b]
2-cx sense. The lower bound

in Theorem 5.3 generalizes Theorem 2.A.18(a) of Shaked and Shanthikumar (1994).
Typical graphs of the density functions of the bounds X(2)∗

min and X(2)∗
max of Theorem 5.3

are depicted in Figures 5.5 and 5.6.

a b

f

f

(2)
min

X

X

m

*

Figure 5.5 A typical unimodal density and the density of X(2)∗
min .

a b

f

f

(2)
max

X

X

m

*

Figure 5.6. A typical unimodal density and the density of X(2)∗
max .
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It is worthwhile to point out that in the above proof, each point mass of Z(2)
min and of

Z(2)
max gives rise to a uniform distribution for the mixtures that make up the distribution

functions of X(2)∗
min and of X(2)∗

max . This observation gives an insight into the previous
proof, and into the proof of the following Theorem 5.4.

THEOREM 5.4. Let X ∈ B∗
3 ([a, b];μ1,μ2; m) . Consider the random variables

X(3)∗
min and X(3)∗

max in B∗
3 ([a, b];μ1,μ2; m) with the respective distribution functions

F
X(3)∗
min

=
3μ2 + 2μ1m − m2 − 4μ2

1

(a + m − 2μ1)2 + 3μ2 + 2μ1m − m2 − 4μ2
1

Unif[a, m]

+
(a + m − 2μ1)2

(a + m − 2μ1)2 + 3μ2 + 2μ1m − m2 − 4μ2
1

Unif[c, c],

where c = min(m, 3μ2+am−2aμ1−2mμ1

2μ1−a−m ) and c = max(m, 3μ2+am−2aμ1−2mμ1

2μ1−a−m ) , and

F
X(3)∗
max

=
3μ2 + 2μ1m − m2 − 4μ2

1

(b + m − 2μ1)2 + 3μ2 + 2μ1m − m2 − 4μ2
1

Unif[m, b]

+
(b + m − 2μ1)2

(b + m − 2μ1)2 + 3μ2 + 2μ1m − m2 − 4μ2
1

Unif[d, d],

where d = min(m, 2bμ1+2μ1m−bm−3μ2

b+m−2μ1
) and d = max(m, 2bμ1+2μ1m−bm−3μ2

b+m−2μ1
) . Then

X(3)∗
min �[a,b]

3-cx X �[a,b]
3-cx X(3)∗

max .

Proof. The proof of Theorem 5.4 is similar to the proof of Theorem 5.3, though
the computations are less simple. Define Y = X − m . Then Y ∈ B∗

3 ([a∗, b∗];μ1 −
m,μ2 − 2mμ1 + m2; 0) , where a∗ = a − m and b∗ = b − m . By Khinchine’s
Theorem Y =st UZ , where U and Z are independent random variables and U is
uniformly distributed on [0, 1] . A straightforward computation shows that the first
two moments of Z are μ̃1 = 2μ1 − 2m and μ̃2 = 3μ2 − 6mμ1 + 3m2 . Therefore

Z ∈ B3([a∗, b∗]; μ̃1, μ̃2) . From Theorem 5.2 we see that Z(3)
min �[a∗,b∗]

3-cx Z �[a∗,b∗]
3-cx Z(3)

max ,
where

Z(3)
min =

⎧⎨⎩ a − m with probability 3μ2+2mμ1−m2−4μ2
1

(a+m−2μ1)2+3μ2+2mμ1−m2−4μ2
1
,

2μ1 − 2m + 3μ2+2mμ1−m2−4μ2
1

2μ1−a−m with probability (a+m−2μ1)2

(a+m−2μ1)2+3μ2+2mμ1−m2−4μ2
1
,

and

Z(3)
max =

⎧⎨⎩ 2μ1 − 2m − 3μ2+2mμ1−m2−4μ2
1

b+m−2μ1
with probability (b+m−2μ1)2

(b+m−2μ1)2+3μ2+2mμ1−m2−4μ2
1
,

b − m with probability 3μ2+2mμ1−m2−4μ2
1

(b+m−2μ1)2+3μ2+2mμ1−m2−4μ2
1
.
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Now let U be a uniform [0, 1] random variable which is independent of Z(3)
min and of

Z(3)
max . Define Y(3)∗

min = Z(3)
minU and Y(3)∗

max = Z(3)
maxU . By Khinchine’s Theorem it follows

that Y(3)∗
min , Y(3)∗

max ∈ B∗
3 ([a∗, b∗];μ1−m,μ2−2mμ1+m2; 0) ; and by Proposition 3.11 (ii)

and (iii) it is seen that Y(3)∗
min �[a∗,b∗]

3-cx Y �[a∗,b∗]
3-cx Y(3)∗

max . If we set X(3)∗
min = Y(3)∗

min + m and

X(3)∗
max = Y(3)∗

max + m , then, from Proposition 3.11 (v) we see that X(3)∗
min �[a,b]

3-cx X �[a,b]
3-cx

X(3)∗
max . A straightforward calculation shows that X(3)∗

min and X(3)∗
max indeed have the

distribution functions stated in Theorem 5.4.
�

The bounds X(3)∗
min and X(3)∗

max of Theorem 5.4 (when unimodality is known to hold)
improve, in the �[a,b]

3-cx sense, the bounds X(3)
min and X(3)

max of Theorem 5.2, in the same
fashion as the bounds of Theorem 5.3 are an improvement of the bounds of Theorem
5.1.

An interesting special case of Theorem 5.4 is the situation in which a random
variable X has a monotone density on [a, b] . For example, if m = a in Theorem 5.4
then X has a non-increasing density on [a, b] . We thus obtain the following corollary.

COROLLARY 5.5. Let X be a random variable with first two moments μ1 and μ2

and with a non-increasing density function on [a, b] . Consider the random variables

X(3)∗∗
min and X(3)∗∗

max (which have the first two moments μ1 and μ2 and which have
non-increasing density functions on [a, b] ) with the respective distribution functions

F
X(3)∗∗
min

=
3μ2 + 2μ1a − a2 − 4μ2

1

3a2 − 6aμ1 + 3μ2
Unif[a, a]

+
4(a − μ1)2

3a2 − 6aμ1 + 3μ2
Unif[a,

3μ2 + a2 − 4aμ1

2(μ1 − a)
]

and

F
X(3)∗∗
max

=
3μ2 + 2μ1a − a2 − 4μ2

1

b2 + 2ab − 2aμ1 − 4bμ1 + 3μ2
Unif[a, b]

+
(a + b − 2μ1)2

b2 + 2ab − 2aμ1 − 4bμ1 + 3μ2
Unif[a,

2bμ1 + 2aμ1 − ab − 3μ2

a + b − 2μ1
].

Then X(3)∗∗
min �[a,b]

3-cx X �[a,b]
3-cx X(3)∗∗

max .

Note that in Corollary 5.5 the distribution of X(3)∗∗
min is a mixed distribution with

an atom at a and with a continuous component on [a, 3μ2+a2−4aμ1

2(μ1−a) ] . A typical graph of

the density function of the bound X(3)∗∗
max of Corollary 5.5 is depicted in Figure 5.7.
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a b

ff (3)
maxX X *

Figure 5.7. A typical non-increasing density and the density of X(3)∗∗
max .

6. Applications

6.1. Queueing theory

For any non-degenerate non-negative random variable X , with a survival function
FX , and with a finite mean EX , let us define the associated random variable X̃ whose
survival function F

X̃
is given by

F
X̃
(x) =

1
EX

∫ ∞

t=x
FX(t) dt, x � 0.

The random variable X̃ is often called in the literature the stationary forward recurrence
time, or the equilibrium age or residual lifetime. The following theorem shows that
transforming X and Y to X̃ and Ỹ reduces the degree of the s -convex order.

THEOREM 6.1. Let X and Y be two non-negative randomvariables. If X �R
+

s -cx Y
for some s � 2 , then X̃ �R

+

(s−1) -cx Ỹ .

Proof. First we obtain the relationship between the iterated integrals of X and of
X̃ . Since

F
X̃
(x) =

1
EX

∫ ∞

t=x
FX(t) dt =

1
EX

F
[1]
X (x)

we obtain

F
[s−2]

X̃
(x) =

1
EX

F
[s−1]
X (x) and, similarly, F

[s−2]

Ỹ
(x) =

1
EX

F
[s−1]
Y (x) (1)

since EX = EY . The relationship between the moments of X and of X̃ is given by

EX̃k =
EXk+1

(k + 1)EX
and, similarly, EỸk =

EYk+1

(k + 1)EY
, k = 1, 2, . . . , s−2,

as can be easily verified. Since EXk = EYk , k = 2, 3, . . . , s − 1 , we get that EX̃k =
EỸk , k = 1, 2, . . . , s−2 . From Theorem 3.3 and (1) we see that F

[s−2]

Ỹ
(t)−F

[s−2]

X̃
(t) �

0 for t � 0 . Thus the stated result follows from Theorem 3.3.
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�
Consider now a stable M/GI/1 queue with independent and identically distributed

service times X1, X2, . . . , and arrival rate λ . Let W denote the stationary waiting time
that is associated with the queue. Then W is expressible as

W =st

N∑
n=1

X̃n,

where N is geometrically distributed on {0, 1, . . .} with parameter λEX1 , and is
independent of the X̃n ’s (see, for instance, Stoyan (1983, page 82)).

Consider also a second stable M/GI/1 queue with independent and identically
distributed service times Y1, Y2, . . . , and arrival rate λ , and let V denote the stationary
waiting time that is associated with this second queue. Then V is expressible as

V =st

M∑
n=1

Ỹn,

where M is geometrically distributed on {0, 1, . . .} with parameter λEY1 , and is
independent of the Ỹn ’s.

If X1 �R
+

s -cx Y1 for some s � 2 then, from Theorem 6.1 we see that X̃1 �R
+

(s−1) -cx

Ỹ1 . Also we have then that N =st M since EX1 = EY1 . Thus, from Proposition
3.11 (vii) we get that

W �R
+

(s−1) -cx V. (2)

This result extends Theorem 5.2.3 in Stoyan (1983) to the s -convex stochastic orders
(see also Daley and Rolski (1984) and Makowski (1994)).

Inequality (2) can be used in several ways. For example, suppose that we are
interested in the queue with the service times X1, X2, . . . , where the distribution function
of X1 is either unknownor analytically complicated. However, suppose that the first two
moments of X1 are known or can be approximated, and suppose also that X1 is known
to have a unimodal density function with a known mode (in particular, it may be known
that the density of X1 is decreasing on the support of its distribution function). Then,
using the stochastic bounds of Theorem 5.4 we have that X(3)∗

min �R
+

3-cx X1 �R
+

3-cx X(3)∗
max .

Therefore, by (2) we see that the stationary waiting time W that is associated with the
queue of interest is bounded as W∗

min �R
+

2-cx W �R
+

2-cx W∗
max , where W∗

min and W∗
max are

the stationary waiting times of the queues with the relatively simple service times that
are distributed, respectively, as X(3)∗

min and X(3)∗
max .

Inequality (2) is also useful when it can be shown directly that X1 �R
+

3 -cx Y1 . For
example, Kaas and Hesselager (1995) have proved that if X , Y and Z are random
variables distributed respectively according to the gamma, the inverse Gaussian and the
lognormal laws with the same means and variances, then X �R

+

3-cx Y and X �R
+

3-cx Z .
Then, by (2), the stationary waiting times of the queues with service times that are
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distributed, respectively, as X , Y and Z , are ordered, correspondingly, according to
the 2-convex order.

6.2. Insurance

Consider the following situation. A manufacturer buys, for the price of d dollars,
a sophisticated piece of equipment with a random lifelength X . He would like to avoid
the serious financial loss that may be caused by the destruction of the piece of equipment
and therefore asks an insurer to cover this risk. The insurance contract provides for a
payment of d if the piece of equipment breaks down before time b , where b is the
useful lifetime of the piece of equipment; otherwise at age b the piece of equipment is
scrapped and a new one is provided by the insurer. If the insurance company computes
the premium on the basis of the “mean-value” principle (that is, the premium charged
is equal to the expectation of the actual financial loss suffered by the insurer), then the
premium should be

π = dEvX, (3)

where v is the discount rate corresponding to a yearly interest rate of r (that is,
v = 1/(1 + r) is the present value of an amount of 1 dollar paid in 1 year).

If the distribution function of X is mostly unknown, then π cannot be computed
accurately. Suppose, however, that the mean and the variance of X are known, as well
as the support [0, b] of its distribution function. Furthermore, suppose that X is known
to have a unimodal density function with a known mode (in particular, it may be known
that the density of X is decreasing on the support of its distribution function). In such
a situation, the bounds of Theorem 5.4 are very useful. They enable the actuary to
compute accurate bounds on the premium π based only on the partial information that
the insurer possesses.

We list below some bounds on π using the s -convex extrema on X when s = 2
and s = 3 . For simplicity we let d = 1 in all the computations below. The function
φ , defined by φ(x) = vx , is 2-convex. Thus, for s = 2 , when the mode is unknown,
we get from Theorem 5.1

πmin = vμ1 and πmax =
b − μ1

b
+ vb μ1

b
;

and when the mode m is known we get from Theorem 5.3

π∗
min =

∣∣∣∣ v2μ1−m − vm

2(μ1 − m) log(v)

∣∣∣∣ and

π∗
max =

b − 2μ1 + m
b

vm − 1
m log(v)

+
2μ1 − m

b
vb − vm

(b − m) log(v)
,

provided b �= m and μ1 �= m (when μ1 = m then π∗
min = vm ). Some values of these

bounds are given in Table 6.1.



610 MICHEL DENUIT, CLAUDE LEFEVRE AND MOSHE SHAKED

μ1 m Lower bound Upper bound
4 unknown 0.822702 0.845565

3 0.823029 0.831017
4 0.822702 0.830370
5 0.823029 0.829739

5 unknown 0.783526 0.806957
4 0.783837 0.791321
5 0.783526 0.791321
6 0.783837 0.791321

6 unknown 0.746215 0.768348
5 0.746511 0.752903
6 0.746215 0.753519
7 0.746511 0.754120

Table 6.1. Bounds on the premium (3) using s = 2 when b = 10 , d = 1 and r = 5% .

The function φ , defined by φ(x) = −vx , is 3-convex. Thus, for s = 3 , when the
mode is unknown, we get from Theorem 5.2

πmin = vμ1− σ2

b−μ1
(b − μ1)2

(b − μ1)2 + σ2
+vb σ2

(b − μ1)2 + σ2
and πmax =

σ2

μ2
+v

μ2
μ1
μ2

1

μ2
;

and when the mode m is known we get from Theorem 5.4

π∗
min = γ

∣∣∣∣∣∣ vm − v
2μ1b−mb+2mμ1−3μ2

b−2μ1+m

2mb−4μ1m+m2−2μ1b+3μ2

b−2μ1+m ln(v)

∣∣∣∣∣∣ + (1 − γ )
vb − vm

(b − m) ln(v)
,

where

γ =
(b + m − 2μ1)2

(b + m − 2μ1)2 + 3μ2 + 2mμ1 − m2 − 4μ2
1

,

and

π∗
max =

3σ2 − (m − μ1)2

3μ2 − 2μ1m
vm − 1
m ln(v)

+
(

1 − 3σ2 − (m − μ1)2

3μ2 − 2μ1m

) ∣∣∣∣∣∣ v
3μ2−2mμ1

2μ1−m − vm

3μ2−4mμ1+m2

2μ1−m ln(v)

∣∣∣∣∣∣ .

Some values of these bounds are given in Table 6.2. The accuracy of these bounds,
especially when the mode is known, is quite remarkable.
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μ1 σ m Lower bound Upper bound
4 1 unknown 0.823595 0.823744

3 0.823632 0.823704
4 0.823620 0.823722
5 0.823646 0.823718

1.5 unknown 0.824718 0.825035
3 0.824780 0.824951
4 0.824782 0.824971
5 0.824816 0.824980

5 1 unknown 0.784390 0.784536
4 0.784419 0.784488
5 0.784411 0.784511
6 0.784432 0.784503

1.5 unknown 0.785478 0.785790
4 0.785530 0.785695
5 0.785536 0.785723
6 0.785562 0.785729

6 1 unknown 0.747052 0.747194
5 0.747074 0.747140
6 0.747070 0.747167
7 0.747086 0.747154

1.5 unknown 0.748107 0.748411
5 0.748153 0.748307
6 0.748160 0.748340
7 0.748178 0.748343

Table 6.2. Bounds on the premium (3) using s = 3 when b = 10 , d = 1 and r = 5% .

6.3. Statistics

Let {f (·; θ), θ ∈ Ω} be a family of density functions such that f (x; θ) is STP
(strictly totally positive; see, for example, Karlin (1968)), where Ω ⊆ R . Let P be a
mixing probability measure on Ω with more than s support points (in particular, the
support of P may be a continuum), and let Qs be another mixing probability measure
on Ω with exactly s support points. Let Y be a random variable with the density
function f Y defined by

f Y(x) =
∫
θ∈Ω

f (x; θ) dP(θ),

and denote the distribution function of Y by FY . Similarly, let X be a random variable
with the density function f X defined by

f X(x) =
∫
θ∈Ω

f (x; θ) dQs(θ),
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and denote the distribution function of X by FX . When P is unknown, then it is
reasonable to estimate (that is, to approximate) f Y by f X , where Qs is such that

EXk = EYk, k = 1, 2, . . . , 2s − 1

(see, Lindsay and Roeder (1997) and references therein for more details). Lindsay
and Roeder (1997) have shown that if X and Y are as above, and if X �=st Y , then
S−(f X − f Y) = 2s (this is a natural conclusion in light of Remark 4.5) and the last sign
of f Y − f X is a + . They also showed that if the above X and Y are such that X �=st Y
then S−(FX − FY) = 2s− 1 and the last sign of FX − FY is a + . From Theorems 4.3
and 4.4 it follows that the above X and Y satisfy

X �S
2s -cx Y,

where S is the union of the supports of the distribution functions of X and Y . Thus
Y , and its “estimate” X , satisfy (1) with U S = U S

2s -cx , and this fact yields a host
of potentially useful inequalities. Further developments of these observations will be
reported elsewhere.
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