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EXTENSIONS OF THE GEOMETRIC-ARITHMETIC MEANS
INEQUALITY TO A DISC OF THE COMPLEX PLANE

RICHARD FOURNIER

(communicated by H. M. Srivastava)

Abstract. For complex numbers Zj with |zj — 1| <r, r <1, we consider the arithmetic mean

1/n

., no_ - T
A = (1/n) Zj:l zj and the geometric mean G, := Hj:l g and prove, amongst other
results, that

Introduction and Statement of the Results

The inequality

n 1/n n
1
(sz) <;E z, 0<z,n=1.2,...,
Jj=1 j=1

is a most important result and in any case one of the keystones of the general theory
of inequalities. Numerous proofs and generalizations (see [1, 3, 4]) are known; for

example,
n A‘ n n
[1z7 <> Az o<, > =1 (1)
j=1 j=1 j=1

In this note we shall be concerned by extensions of (1) to the case where the
quantities z; are assumed to represent complex numbers. Our point of view is the

following: let G := []’ J. G, o= (H'7:1ZJ~)1/n, A= 30 Az and A, =

j=1%j > .
1/n37 | 7, where the complex numbers z; are assumed to satisfy [z — 1] < r < 1;
we wish to obtain bounds for |G| (resp. |G,|) in terms of A (resp. A,) and r. Our
main results are
1—r |A]
THEOREM 1. —— < |G| £ ———.
2 — A c V1=1r2
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THEOREM 2. (1 — )\ H=AD2(1 4 )4V 1G] < /T4 21— AT+ 2.
THEOREM 3. [A,,|'/"(1 = r)'=/" < |Gy < AW/ (14 r)' =10,

All our results are sharp and it should be noted that no upper (resp. lower) bound
given for |G| in our Theorems is universally better (that is, for all eligible complex
numbers z; and all reals r and A;) than any other one. All our inequalities but one also
sharpen the trivial estimates 1 — r < |G| < 1 + r. Our method is based on well-known
results concerning starlike univalent functions (we refer to the book of Duren [2] for
basic facts concerning geometric function theory).

Proof of Theorem 1

Let D denote the open unitdisc {z | [z| < 1} of the complex plane. We consider
the class S, of functions f(z) :=z+ -, a,(f)z" analyticin D and starlike of order
a,ie., Re(zf'(2)/f(z)) > a if z € D. Itis a result of Sheil-Small [6] that f € S
if and only if, for each x € D, the function F defined by

x f&)—f) fOx=1 fE)/x=1-al)x ,
F(z) i = — =1+ 7+ 24

DT e 709 70
satisfies Re(F (z)) > 1/2 if z € D. It then follows from Schwarz Lemma that for
xeD,

f@x—T-a()x  (f@/x=1\]_ [f@/x—1]
I (55 [ < - 1%
i.ea, (T4 ax(f)x)f (x)/x+ (1=2f (x) /x)| < —(1—[x?) V(x)/x’2+2Re(f(x)/x) -1
an ,
Re((l +a2(f)x)@> > (1 [x?) @ >0, xeD. (2)
In particular
@ < ral) :raii];z)X|> x e D. (3)

The class S9 of functions f defined as
f@) =205, gl <1
j=1

is known to be a dense subset of S, (endowed with the topology of uniform convergence
over compact subsets of D). For such functions f , with o = 1/2, we have ax(f) =
—>_i1 A and an application of (3) with x = r € (0, 1) yields

1— 72

— < .
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Clearly equality shall hold in (4) if we choose z; = 1 +r forall 1 < j < n orif
zj=1—rforal 1 <j<n.

The proof of the right-hand side inequality in Theorem 1 is rather elementary.
Indeed

Al =

ij(l + x7)
j=1

> " 4|1+ xjr| cos (arg(1 + x;7))
=

>4/1 - rZZ?Lj\l + xjr|
=1

>41- r2H|1 —|—xjr\lf,
Jj=1

where we have made use of the “real”” geometric-arithmetic means inequality. We obtain

Al
1—r2

G| < (5)
For values of |A| larger than (1+7)v/'1 — r2, the estimate (5) is rather crude. Neverthe-
less equality may hold in (5) for each fixed r € (0, 1); indeedif n =2, z; = 1 +ie'r,
22 =121, M = A = 1/2 and finally 6 is an acute angle with cos(6) = v/1 — r%, we
obtain |G| = 1 —7r2 and |A| =1 —r2.

The following corollary can be obtained by a density argument and should be
compared with (3):

COROLLARY 1. The sharp inequality

1—[z]? ‘f(Z)
< /|, z€D,
|1 — ax(f )z

<
holds for functions f € Sy .

We shall conclude this section by a remark. By applying (2) to functions f (z) =
21 (1 +x2) ™% € SY),» we obtain that F(z) := 377 (1 —x;2) /T, (1 + x;7)%
is an analytic function with positive real part in I; as in the proof of Theorem 2 (see
below), we obtain

2—Al

1—1r2

COROLLARY 2. |G| < (L+2[1—A]+ 7).

This last inequality is stronger than (5) when A is close enough to 1 + r. It can
alsoseentobe sharpif A=G=1+r.
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Proof of Theorem 2
We consider functions f(z) = z+ax(f )z + - - - € Sp. We have the representation

@) _ 1+m(z) a(f)
2

F  1-m)

zeD, m'(0) = 2L (6)

where m is analytic in D and, by Schwarz Lemma,

[z + [m'(0)]

OIS o

<1 ifzeD. (7)

By (6) and (7),

F1@Y 1+ m@] 1+ aalf)llel + e
Re(%@))glm(zn< s ®)
and
f'(z) 1— |m(z)] 1— |z?
Re<Zf(Z) ) Z Trm@)] = Tr @)l + kP ©)
Since

d (If(re?)) _ 1 wof ' (re")
Eln(f) —;Re<re f(reie) 1>, 9€R7

we obtain upon integration of the last identity, for z € D,

H |2
< < )
L+ |ax(f)l|z] + |2 f @l (1 = [z)HHaOV2(1 + [¢])!=laal)l/2

(10)

We now choose £ (z) := z [, (1 + x2) 4 € S§; clearly ax(f) = =231, A
and an application of (10) with z = r € (0, 1) yields

(1— r)1/2+|1—A\/2r(1 +r)1/2*\1*A|/2" < |G| (11)

and

|G] < v/1+42[1 — A+ 2. (12)

Equality shall holdin (11)if n =2,z =1+r, 2=1—-r, A1 =A €[0,1/2] and
Ay = 1 — A . Equality shall hold in (12)if n =2, z; = 1 + €%, A, =1/2 = A, and
7 =1+ e, where cos(0) > 0. We finally mention

COROLLARY 3. V1 -2 < |G| < V1+7r? ifA=1.
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Proof of Theorem 3

Let us consider H(D), the set of analytic functions in D, endowed with the
topology of uniform convergence over compact subset of . Let n > 1 and

2, = {p | pis a polynomial of degree < n, p(0) = 1, with no zeroes in D }.

&, is a compact and rotationally invariant subset of H(ID). Let us also consider ¢,
and ¢, two continuous linear functionals over H(D) with 0 ¢ ¢,(2,). It follows
from Ruscheweyh’s Duality Theory [3] that

tL(p) ‘ } {fl(p) ’ /}
e, = e Z, 13
el &) | "
where &2, denotes the subset of %2, consisting of the polynomials p(z) = (1 + xz)",

x| < 1.
We choose, for fixed r € (0,1),

O(f) =f(r) and £6(f) :=f(0) +

Any p € &, can be represented as

n

p@ =[]0 +x2). i<l

J=1
For any p as above,

n

bLp) =1 Jr%ijr: %Z(l +xr) #0
j=1

j=1

and by (13), for n > 1,

1—|—xJ e
{ugz s | sl < }—{O+w)1Hﬂ<1}

It follows easily that

|An|(1 — r)n_l <G|" < A1 +r)n_l>

with obvious cases of equality.
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