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(communicated by J. Marshall Ash)

Abstract. A variety of measure–theoretic inequalities are derived for algebraic sum sets involving
sets with fractal structure. The derivations are based on combinatorial inequalities which in turn
are derived from canonical univariate algebraic inequalities for polynomials in noninteger powers.
A systematic procedure is presented and some known results generalized.

1. Introduction

Measure–theoretic properties of algebraic sums of sets have been studied by a
number of authors (see, for example, [2], [5–9], [12] and [15–17]). One typical problem
is the following. If two sets E , F are very thin in some sense (for example, they have
Lebesgue measure zero) how “thick" will their sum set E + F be? By the algebraic
sumset E + F we signify the set

E + F = {x + y : x ∈ E, y ∈ F}.
Suppose m denotes Lebesgue measure and μc Cantor–Lebesgue measure, that is,

the uniform distribution on the Cantor subset C of [0,1] formed by repeated removal of
middle thirds. The following result has been established by Brown and Moran [5].

THEOREM A. If E , F are Borel subsets of [0,1], then

m(E + F) � 2μc(E)αμc(F)α , (1.1)

where α = log 3/ log 4.

An immediate corollary is that μc is a basic measure (see [25] and [6]).
A related result has been derived by Oberlin [16]. Suppose that E ⊂ [0, 1] and

F ⊂ C are Borel sets. Then

m(E + F) � 2m(E)1−log 2/ log 3μC(F).

Mathematics subject classification (1991): 28A05, 11B05.
Key words and phrases: sumsets, inequalities, singular measures.

c© � � , Zagreb
Paper MIA-02-04

25



26 GAVIN BROWN, CHARLES E. M. PEARCE, JOSIP PEČARIĆ AND QINGHE YIN

In [16] this result appears without the factor 2 on the right, since the sum E +F is taken
on the circle group T ≡ [0, 1] . If sums are so evaluated, the factor 2 disappears from
(1.1) also.

Brown and Moran’s proof in [5] follows from the inequality

xαyα + max{xα(1− y)α , yα(1− x)α}+ (1− x)α(1− y)α � 1 (0 � x, y � 1) (1.2)

established by Woodall [26].
Woodall and subsequently Hajela and Seymour [11] derived a variety of interesting

results in combinatorial geometry from the latter inequality, which is therefore of some
interest in its own right. The history of these results and related ideas pertaining to a
multivariate extension of (1.2) (see [14], [4]) is quite colourful. A brief account is given
by Brown [2].

In [2] Brown also stated that (1.2) follows from a simpler canonical univariate
inequality.

PROPOSITION B. Suppose that s , t � 1 and s−1 + t−1 = log 3/ log 2 . Then

1 + x + x2 � (1 + xs)1/s(1 + xt)1/t (1.3)

for all for 0 � x � 1 if and only if 3(s + t) � 8 .

Proposition B has also proved seminal. Kemp [13] has given a simpler proof and
noted that the domain 0 � x � 1 can be replaced by x � 0 , since (1.3) is invariant
under the tranformation x → 1/x . She proved also that for x � 0 (1.3) holds in the
overlapping regions

s−1 + t−1 � log 3/ log2, s � s1, t � s1,

and
s−1 + t−1 � 1.5, s � 1, t � 1,

where s1 = 1.0246 . . . is the (unique) solution of s−1+t−1 = log 3/ log 2 , s+t = 8/3 ,
s < t .

The condition s, t � 1 in Proposition B derives from Lemma 4 of [7]. In [18] an
improvement of this lemma was proved without the restriction on s, t (see also [19],
[22]). From [18] it follows that this restriction is equivalent to s, t > 0 . The results of
[18] and [19] have been taken further by Alzer [1].

In the following section we establish a generalization of (1.1) which allows two
different exponents α , β on the right–hand side. We show how this follows from a
two–exponent version of (1.2), which will in turn be derived from Proposition B. In
fact, these results can be strengthened by working from an appropriate generalization
of Proposition B. So as to emphasize the simplicity of the approach, this strengthening
is postponed to Section 3.

In the remainder of the paper we show how our technique leads directly to a number
of other measure–theoretic inequalities of the type

m(E + F) � kμ(E)αν(F)β (1.4)
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for appropriately chosen measures μ , ν and constants α , β . In Section 4 we extend
some canonical univariate inequalities established in [2]. Associated multivariate in-
equalities are derived in Section 5. The consequent measure–theoretic inequalities for
sumsets are presented in Section 6.

To minimize the appearance of the intrusive constant k in specific instances of
(1.4), we shall follow Oberlin and throughout take the addition of sets as being modulo
[0,1].

2. Generalizing Theorem A

We begin with a generalization of Proposition B.
PROPOSITION 2.1. Suppose 0 < α, β � 1 with α + β = log 3/ log2 and

3(α−1 + β−1) � 8 . Then

xαyβ + max{xα(1 − y)β , (1 − x)αyβ} + (1 − x)α(1 − y)β � 1

for all x, y ∈ [0, 1] .

Proof. As 0 < α, β � 1 , the desired result holds when x = 1 or y = 1 , so
without loss of generality we may assume x, y < 1 . Again by symmetry, we may
assume without loss of generality that

xα(1 − y)β � (1 − x)αyβ (2.1)

or (
x

1 − x

)α

�
(

y
1 − y

)β

.

We wish to show that

xαyβ + xα(1 − y)β + (1 − x)α(1 − y)β � 1. (2.2)

Obviously (2.2) holds when y = 0 , since α < 1 . Also the second derivative of
the left–hand side with respect to y is nonpositive since β � 1 . Hence the left–hand
side of (2.2) is concave in y and we need only check that (2.2) is satisfied when (2.1)
holds with equality, that is, when

y =

(
x

1 − x

)α/β

1 +
(

x
1 − x

)α/β .

We need to verify that

xα
(

x
1 − x

)α

+ xα + (1 − x)α �
(

1 +
(

x
1 − x

)α/β
)β

. (2.3)
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If x � 1/2 , divide both sides of (2.3) by (1 − x)α and let u = (x/(1 − x))α , while
when x > 1/2 multiply both sides by (1 − x)α/x2α and let u = ((1 − x)/x)α . In
either case the condition is

1 + u + u2 � (1 + u1/α)α(1 + u1/β)β .

The desired result follows from Proposition B. �

We are now ready to extend Theorem A.

THEOREM 2.2. Suppose that 0 < α ,β � 1 and E , F are Borel subsets of [0, 1] .
Then

m(E + F) � μc(E)αμc(F)β (2.4)

whenever α + β = log 3/ log 2 and 3(α−1 + β−1) � 8 .

Proof. Since μc and m are regular measures, it suffices to prove the result for E ,
F closed and contained in C . Let

An =

{
n∑

i=1

εi

3i

∣∣∣∣∣ there exists x ∈ E such that x =
∞∑
i=1

εi

3i
, εi = 0 or 2

}
,

Aj
n+1 =

{
n∑

i=1

εi

3i
∈ An+1

∣∣∣∣∣in+1 = 2j

}
(j = 0, 1)

and let Bn , Bj
n denote the corresponding quantities for x ∈ F .

We can establish by induction that

|An + Bn| � |An|α |Bn|β , (2.5)

where as subsequently |A| = card A . By a direct check, this holds for n = 1 . Suppose
the result is true for some n � 1 . By considering the last digit in the base 3 expansion
of An+1 + Bn+1 , we obtain that

|An+1+Bn+1| � |A0
n+1+B0

n+1|+|A1
n+1+B1

n+1|+ max{|A0
n+1+B1

n+1|, |A1
n+1+B0

n+1|}
� |A0

n+1|α |B0
n+1|β + |A1

n+1|α |B1
n+1|β

+ max{|A0
n+1|α |B1

n+1|β , |A1
n+1|α |B0

n+1|β}.
Here the second step follows from the inductive assumption. To derive (2.5) it suffices
to show that( |A0

n+1|
|An+1|

)α( |B0
n+1|

|Bn+1|
)β

+
( |A1

n+1|
|An+1|

)α( |B|
n+1)

|Bn+1|
)β

+ max

{( |A0
n+1|

|An+1|
)α( |B1

n+1|
|Bn+1|

)β

,

( |A1
n+1|

|An+1|
)α( |B0

n+1|
|Bn+1|

)β
}

� 1.
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Since Aj
n+1 ⊂ An+1 and Bj

n+1 ⊂ Bn+1 , the inductive step now follows from Proposition
2.1.

Define

En = An + [0, 3−n], Fn = Bn + [0, 3−n].

Then E =
⋂∞

n=1 En , F =
⋂∞

n=1 Fn and by compactness E + F =
⋂∞

n=1(En + Fn) .
Since 2α+β = 3 , we have

m(E + F) = lim
n

m(En + Fn)

= lim
n

|An + Bn|3−n

� lim
n

|An|α |Bn|β3−n

= lim
n

|An|α2−nα × lim
n
|Bn|β2−nβ

= μc(E)αμc(F)β .

�

Since all measures under consideration are probability measures, (2.4) entails that
for any γ � α and δ � β we have

m(E + F) � μc(E)γ μc(F)δ ,

which provides an extension of Theorem 2.2. However we can do better. This is is the
aim of the next section.

To complete our preliminary overview,we now list several other measure–theoretic
results likeTheorem2.2 and themultivariate inequalities in order fromwhich they derive.
The derivation is in each case closely similar to that presented in this section. We return
to the question of proving the multivariate inequalities in Section 5, where we establish
strengthened versions of them.

We use ν1 to denote the probabilitymeasure on [0,1]which is uniformly distributed
on all the numbers whose base 4 expansion contains only the digits 0 and 1.

THEOREM 2.3 Suppose that 0 � α , β � 1 . Let E , F be any Borel subsets of
[0,1]. Then we have the following results.

(i) m(E + F) � m(E)αμc(F)β whenever α + β
log 2
log 3

= 1 ;

(ii) m(E + F) � m(E)αν1(F)β whenever α +
1
2
β = 1 .
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PROPOSITION 2.4. Suppose that ai , bi are nonnegative numbers satisfying
∑

i ai =
1 =

∑
i bi , where the summation is over the relevant set of values i appearing in the

inequality concerned. Let 0 � α, β � 1 .

(i) If α + β
log 2
log 3

= 1 , then

max
{

aα0 bβ0 , aα2 bβ1

}
+ max

{
aα0 bβ1 , aα1 bβ0

}
+ max

{
aα1 bβ1 , aα2 bβ0

}
� 1.

(ii) If α +
1
2
β = 1 , then

max
{

aα0 bβ0 , aα3 bβ1

}
+ max

{
aα0 bβ1 , aα1 bβ0

}
+ max

{
aα1 bβ1 , aα2 bβ0

}
+ max

{
aα2 bβ1 , aα3 bβ0

}
� 1.

3. Strengthening Theorem 2.2

First we derive a sharpened form of Proposition B.

PROPOSITION 3.1. Suppose that α , β are positive constants satisfying
(i) α + β � log 3/ log 2;
(ii) 3(α−1 + β−1) � 8.

Then for all x � 0 ,

1 + x + x2 � 3
2α+β (1 + x1/α)α(1 + x1/β )β . (3.1)

Proof. Since (3.1) is invariant under the transformation x → 1/x , it is sufficient
to establish the result for 0 � x � 1 . Further, for each given value of

u = α + β , (3.2)

we have by [7, Lemma 4] that the right–hand side of (3.1) is maximized by the extremal
values of α , β subject to (ii). Hence without loss of generality we may replace (ii) by

3(α−1 + β−1) = 8. (3.3)

We shall proceed regarding α , β as functions of u determined by (3.2) and (3.3).
If α and β were equal, then (3.3) would imply α = β = 3/4 , so that u = 3/2 , which
contradicts (i) since log 3/ log 2 > 3/2 . Hence α , β are distinct and we may choose
α > β .

Set

f (u, x) :=
3
2u

(1 + x1/α)α(1 + x1/β )β .



MEASURES OF ALGEBRAIC SUMS OF SETS 31

When u = log 3/ log2 , we have 3/2u = 1 and so by PropositionB f (u, x) � 1+x+x2.
We establish our result by showing that f (u, x) is decreasing in u . For convenience of
calculation we consider the logarithm of f (u, x) . Let

g(u, x) := ln f (u) = ln 3 − u ln 2 + α ln(1 + xα
−1

) + β ln(1 + xβ
−1

).

Then

g′u(u, x) = − ln 2 +

[
ln(1 + xα

−1

) − xα
−1

ln x

α(1 + xα−1)

]
dα
du

+

[
ln(1 + xβ

−1

) − xβ
−1

ln x

β(1 + xβ−1)

]
dβ
du

.

From (3.2) and (3.3) we get

dα
du

=
α2

α2 − β2
,

dβ
du

=
β2

α2 − β2
.

Therefore

g′u(u, x) = − ln 2 +
1

α2 − β2

[
α

(
α ln(1 + xα

−1

) − xα
−1

ln x

(1 + xα−1)

)

− β

(
β ln(1 + xβ

−1

) − xβ
−1

ln x

(1 + xβ−1)

)]
.

Let h(u, x) denote the expression in brackets. Then

h′x(u, x) =

(
αxα

−1−1

1 + xα−1 − xα
−1−1 ln x + αxα

−1−1

1 + xα−1 − x2α−1−1 ln x

(1 + xα−1)2

)

−
(
βxβ

−1−1

1 + xβ−1 − xβ
−1−1 ln x + βxβ

−1−1

1 + xβ−1 − x2β−1−1 ln x

(1 + xβ−1)2

)

= x2 ln x

(
− xα

−1

(1 + xα−1)2
− +

xβ
−1

(1 + xα−1)2

)

� 0,

since y/(1 + y)2 increases as y increases on [0, 1] and xα
−1 � xβ

−1
for α > β and

x ∈ [0, 1] . Hence

g′u(u, x) � − ln 2 +
1

α2 − β2
h(u, 1) = 0,

which completes the proof. �
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This result enables us to derive the following further extension of Woodall’s in-
equality.

PROPOSITION 3.2. Suppose that α , β are positive constants satisfying

(i) α, β � log 3
log 2

− 1 ;

(ii) α + β � log 3
log 2

;

(iii) 3(α−1 + β−1) � 8 ;
(iv) at least one of α , β does not exceed unity.

Then for a, b ∈ [0, 1] we have

aαbβ + max{aα(1 − b)β , (1 − a)αbβ} + (1 − a)α(1 − b)β � 3
2α+β . (3.4)

Proof. First we remark that (ii) is equivalent to

3
2α+β � 1. (3.5)

We now observe that (3.4) holds when either a or b is an endpoint of [0, 1] . For
by symmetry it suffices to consider a = 0, 1 . We then require

bβ + (1 − b)β � 3
2α+β . (3.6)

The left–hand side is convex or concave according as β � 1 or β � 1 , so by symmetry
it suffices to verify (3.6) for b = 0, 1/2, 1 . The first and last cases are immediate by
(3.5), while for b = 1/2 , (3.6) becomes

2

(
1
2

)β

� 3
2α+β

which follows from (i) . We may therefore suppose that a, b ∈ (0, 1) .
A relation equivalent to (3.4) is obtained by dividing both sides by (1−a)α(1−b)β

and setting
x = [a/(1 − a)]α , y = [b/(1 − b)]β .

We derive

1 + max(x, y) + xy � 3
2α+β (1 + x

1
α )α(1 + x

1
β )β , x, y � 0.

The cases where one of x , y is zero or infinity correspond respectively to one of a, b
being zero or unity and have been dealt with.

Referring to condition (iv) , let us take for definiteness β � 1 and consider

F(x, y) := 1 + (x, y) + xy − 3
2α+β (1 + x

1
α )α(1 + y

1
β )β
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for 0 < x , y < ∞ . Since β � 1 , F is a concave function of y on (0, x) and
on (x,∞) , so to verify that F(x, y) � 0 it is sufficient to check that this holds for
y = 0, x,∞ . The first and last cases have already been established, so it remains to
show that

1 + x + x2 � 3
2α+β (1 + x

1
α )α(1 + x

1
β )β for x > 0

given that (ii) and (iii) hold. This is the content of Proposition 3.1, so we are done. �

An argument parallel to that of Theorem 2.2 now establishes the following result.

THEOREM 3.3. Let E, F ⊂ [0, 1] be Borel sets and suppose α, β are real numbers
satisfying

α + β � log 3
log 2

,

3(α−1 + β−1) � 8,

α, β � log 3
log 2

− 1.

Then
m(E + F) � μc(E)αμc(F)β .

This does not entail the restriction α, β � 1 . To see that it really has broadened
the domain of values (α, β) to which (2.4) applies, note that α = log 3/ log 2 − 1 ,
β = 2 satisfy the restrictions on α, β in Theorem 3.3. However, since

3

((
log 3
log 2

− 1

)−1

+ 1

)
> 8,

we cannot obtain this pair (α, β) by incrementing a pair satisfying Theorem 2.2 as
proposed at the end of the preceding section.

An exactly similar development to the foregoing may be used to derive the follow-
ing.

THEOREM 3.4. Denote by ν2 the probability measure spread uniformly on on all
numbers on [0,1] in whose base 4 expansion no digit 3 appears. Let E, F ⊂ [0, 1] be
Borel sets and suppose α, β are real numbers satisfying

α + β � log 3
log 2

,

3(α−1 + β−1) � 8,

α, β � log 3
log 2

− 1.

Then
ν2(E + F) � ν1(E)αν1(F)β .
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This reflects the fact that a natural measure–preserving isomorphism σ exists
between subsets of full measure of the supports of ν1 and μc . The subset of ν1 of full
measure is the set of points x =

∑∞
i=1 ai4−i with ai ∈ {0, 1} and ai = 0 for infinitely

many values of i . If x =
∑∞

i=1 ai4−i with ai ∈ {0, 1} then σ(x) =
∑∞

i=1 bi3−i with
bi = 2ai . If E , F are Borel subsets of supp (ν1 ), then E + F is Lebesgue measurable
and ν2(E + F) = m(σ(E + F)) .

4. Canonical univariate inequalities

Our starting point is a collection of results proved in [2] (see also [13]).
PROPOSITION 4.1. Suppose that s, t � 1 . Then for 0 � x � 1 we have

(i) 1 + x + x2 � (1 + xs)1/s(1 + xt + x2t)1/t whenever
log 2
log 3

s−1 + t−1 = 1 ;

(ii) 1+ x+ x2 + x3 � (1+ xs)1/s(1+ xt + x2t + x3t)1/t whenever
1
2
s−1 + t−1 = 1 ;

(iii) 1+x+x2+x3 � (1+xs+x2s)1/s(1+xt+x2t)1/t whenever s−1 + t−1 =
log 4
log 3

;

(iv) 1+x+x2+x3 � (1+xs+x2s)1/s(1+xt+x2t+x3t)1/t whenever
log 3
log 4

s−1 + t−1 = 1 .

To these we add the following result.

PROPOSITION 4.2. Suppose that s , t > 0 and satisfy
1
2
s−1 +

log 3
log 4

t−1 = 1 . Then

for 0 � x � 1 we have

1 + x + x2 + x3 � (1 + xs)1/s(1 + xt + x2t)1/t (4.1)

if and only if 3s + 8t � 15 .

Sketch of Proof. First consider necessity. Let x = 1 − y . By a second–order
Taylor expansion with respect to y we get that

1 + x + x2 + x3 = 4 − 6y + 4y2 + o(y2)

and

(1 + xs)1/s(1 + xt + x2t)1/t = 4 − 6y +
3s + 8t + 9

6
y2 + o(y2).

Hence if (4.1) holds then we must have
3s + 8t + 9

6
� 4 , that is, 3s + 8t � 15 .

For sufficiency, note that by Lemma 4 of [7] we need prove (4.1) only when
3s + 8t = 15 . From

1
2
s−1 +

log 3
log 4

t−1 = 1,

3s + 8t = 15,
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we get that

s = 5 − 8
3
t, t1 = 1.0126 . . . , t2 = 1.4673 . . . .

Let

Ft(x) = log(1 + x + x2 + x3) − 1
s(t)

log(1 + xs(t)) − 1
t

log(1 + xt + x2t).

Then (3.1) is equivalent to Ft(x) � 0 when 0 � x � 1 . We have Ft(0) = Ft(1) = 0
and F′

t(0) = 1 , F′
t (1) = 0 . If F′

t (x) has at most one zero in (0,1), then the desired
result follows. To show this, we consider Gt(x) = Ht(x)F′

t (x) , where Gt(x) and Ht(x)
are sums of nonnegative powers of x whose exponents are functions of t . We have
Ht(x) > 0 for all x ∈ [0, 1] . Then Gt(x) and F′

t (x) have the same zeros in(0,1). For
t = t1 we consider

Φ(x) = x−1Gt1(x)

and when t = t2

Ψ(x) = x−
1
2 Gt2(x).

By studying up to the fourth derivative of Φ(x) and the sixth of Ψ(x) , we can show
that Gt1(x) and Gt2(x) have the required properties. For example, we can calculate that

Ψ(0) = Ψ′(0) = Ψ′′(0) = ∞

and

Ψ(1) = Ψ′(1) = Ψ′′(1) = 0.

If we can show that Ψ(4)(x) > 0 for x ∈ (0, 1) , then Ψ′′(x) is convex on (0,1)
and we can obtain the required result. In fact, if Ψ′′(x) is convex on (0,1) then it is
either positive on (0,1) or first positive and then negative on (0,1). If Ψ′′(x) > 0 for
0 < x < 1 then Ψ′(x) < 0 for 0 < x < 1 . Therefore Ψ(x) > 0 for 0 < x < 1 .
Thus we get that Ψ(x) , then Gt2(x) and then F′

t2(x) has no zero on (0,1). If Ψ′′(x) is
initially positive, Gt2(x) and then F′

t2(x) has only one zero on (0,1).
To show Ψ(4)(x) > 0 we first derive

Ψ(4)(0) = ∞, Ψ(5)(0) = −∞, Ψ(4)(1) = 6, Ψ(6)(1) = −6.

The last step is checking that Ψ(6)(x) > 0 for 0 < x < 1 by comparing the coefficients
of positive and negative terms. Because Ψ(6)(x) has 16 terms and the coefficients
(except the first) are polynomials of t2 of degree 6, the checking process entails tedious
calculation and some numerical testing. The details are given in [10]. A simple proof
would be welcome.

We now extend these canonical results.
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PROPOSITION 4.3. Let α , β be positive numbers. Then the following apply for all
x ∈ [0, 1] .

(i) If β � α +
log 2
log 3

β , then

1 + x + x2 � min

{
1,

3
2β3α

}
(1 + x1/β )β(1 + x1/α + x2/α)α .

(ii) If β � 2α , then

1 + x + x2 + x3 � min

{
1,

4
2β4α

}
(1 + x1/β )β(1 + x1/α + x2/α + x3/α)α .

(iii) If α, β � (α + β)
log 3
log 4

, then

1 + x + x2 + x3 � min

{
1,

4
3α+β

}
(1 + x1/β + x2/β )β(1 + x1/α + x2/α)α .

(iv) If β � α + β
log 3
log 4

, then

1 + x + x2 + x3 � min

{
1,

4
4α3β

}
(1 + x1/β + x2/β )β(1 + x1/α + x2/α + x3/α)α .

(v) If u1β � α � u2β , then

1 + x + x2 + x3 � min

{
1,

4
3α2β

}
(1 + x1/β )β(1 + x1/α + x2/α)α ,

where u1 , u2 are respectively the lesser and greater solutions of

6u2 − (27 log3 4 − 16)u + 8 log3 4 = 0.

Proof. To prove (v), first make the substitutions x → x1/k , s = k/β , t = k/α in
(4.1), which then becomes

(1 + x1/β)β/k(1 + x1/α + x2/α)α/k � 1 + x1/k + x2/k + x3/k

or
(1 + x1/β )β(1 + x1/α + x2/α)α � (1 + x1/k + x2/k + x3/k)k. (4.2)

For (4.1) to hold we need 1
2 s−1 + t−1 log 3/ log4 = 1 and 3s + 8t � 15 , which

translate into k = 1
2β + α log 3/ log 4 and(

1
2
β +

log 3
log 4

α
)(

3
β

+
8
α

)
� 15



MEASURES OF ALGEBRAIC SUMS OF SETS 37

or
(6 log 3)u2 − (27 log 4 − 16 log 3)u + 8 log 4 � 0,

where u = α/β . Since log3 4 = log 4/ log 3 , this is simply the condition stated for
(v).

For k � 1 , the function f (w) = wk is convex and by Jensen’s inequality, (4.2)
gives

(1 + x1/k + x2/k + x3/k)k � 4k−1(1 + x + x2 + x3), (4.3)

while for k � 1 it is concave and by Petrović’s inequality (4.2) yields

(1 + x1/k + x2/k + x3/k)k � 1 + x + x2 + x3. (4.4)

On combining (4.2), (4.3) and (4.4) we get (v), since 4k = 2β3α .
The other parts are established in a closely similar way, with most interest residing

in the conditions. For example, (i) uses the conditions s, t � 1 and s−1 log 2/ log 3+t−1

of the corresponding part of Proposition 4.1. The second condition provides k =
α + β log 2/ log3 . The first gives β ,α � k . The latter of these requirements is trivial,
leaving the former as the stated condition β � α + β log 2/ log 3 in (i). �

For our further consideration we shall also need the following.
PROPOSITION 4.4. Let α , β be two positive numbers such that β � 2α . Then

1 + x + x2 � min
{

1, 31−α− 1
2β
}

(1 + x1/β)β (1 + x1/α)α (4.5)

and
1 + x + x2 � min

{
1, 41−α− 1

2β
}

(1 + x1/β)β (1 + x1/α)α (4.6)

for all 0 � x � 1 .

Proof. Set k = α + β
2 . If k = 1 , by [7, Lemma 4] for (4.5) we need only prove

that
1 + x + x2 � (1 + x1/β )β(1 + x1/α)α

holds for β = 0 and β = 1 , that is,

1 + x + x2 � max
{

1 + x, (1 + x)
√

1 + x2
}

.

This is immediate. The rest of the proof of (4.5) is similar to that of Proposition 4.3.
That (4.6) holds now follows from

min
{

1, 31−α− 1
2 β
}

� min
{

1, 41−α− 1
2 β
}

.

�
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5. Multivariate inequalities

In this section we give first the following extension of Proposition (2.4)(i).
THEOREM 5.1. Suppose ai ( i = 0, 1, 2 ), bi ( i = 0, 1 ) are nonnegative numbers

with
a0 + a1 + a2 = 1 = b0 + b1,

and α , β positive numbers satisfying

β � 1 and β � α + β
log 2
log 3

.

Then

max(aα0 bβ0 , aα2 bβ1 ) + max(aα0 bβ1 , aα1 bβ0 ) + max(aα1 bβ1 , aα2 bβ0 ) � min

{
1,

3
2β3α

}
. (5.1)

Proof. For b0 = 0 or b1 = 0 , (5.1) reduces to

aα0 + aα1 + aα2 � min

{
1,

3
2β3α

}
.

For α � 1 , this is true since aα0 + aα1 + aα2 � 1 , while for α > 1 Jensen’s inequality
provides aα0 + aα1 + aα2 � 31−α � 3

2β3α
. Hence we may assume without loss of

generality that 0 < b0 ,b1 < 1 .
Set b1 = 1 − b0 . Except where one pair of parentheses contains two equal

numbers, the second derivative of the left–hand side of (5.1) exists and is nonpositive,
since β � 1 . The left–hand side of (5.1) is thus piecewise concave in b0 and to
establish (5.1) it suffices to show that inequality subsists when a pair of parentheses
contains two equal numbers. By symmetry, any of the three cases is representative, and
may as well choose

aα0 bβ0 = aα2 bβ1 . (5.2)

If a2 = 0 , then a0 = 0 and a1 = 1 so that (5.1) reduces to

bβ0 + bβ1 � min

{
1,

3
2β3α

}
,

which is trivial since β � 1 . So we assume that a2 �= 0 and accordingly from (5.2)
that a0 �= 0 .

Define x and y by

x = (a0/a2)α , y = (a1/a2)α .

From (5.2) we derive that

x = ((1 − b0)/b0)
β
, b0 = (1 + x1/β )−1.
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Since a0 �= 0 , we may take x > 0 and by interchanging a0 and a2 if necessary
guarantee 0 < x � 1 . As b0 �= 0 we have 0 � y < ∞ . In terms of our new variables,
(5.1) becomes

x + max(x2, y) + max(xy, 1) � min

{
1,

3
2β3α

}
(1 + x1/β)β (1 + x1/α + y1/α)α (5.3)

for 0 < x � 1 and 0 � y < ∞ .
Again we may argue via second derivatives in y that it suffices to check (5.3) for

y = 0, x2, 1/x . The first case requires

1 + x + x2 � min

{
1,

3
2β3α

}
(1 + x1/β )β(1 + x1/α)α , (5.4)

the second

1 + x + x2 � min

{
1,

3
2β3α

}
(1 + x

1
β )β(1 + x

1
α + x

2
α )α (5.5)

and the third (on multiplication by x ) (5.5) again. Proposition 4.3(i) gives that (5.5)
holds under the assumptions made on α and β . Since (5.5) implies (5.4), we are
done. �

Proposition 2.4(i) entails the conditions 0 � α, β � 1 and α+β log 2/ log 3 = 1 .
If α, β satisfy these conditions, then β � 1 � α +β log 2/ log 3 and so the conditions
of Theorem 5.1 are satisfied. This shows that Theorem 5.1 is a generalization of
Proposition 2.4(i).

The following result gives a generalization of Proposition 2.4 (ii).

THEOREM 5.2. Suppose that α , β are positive numbers such that β � 1 and
β � 2α , and that a, b, c, d, u, v are nonnegative with a+b+ c+d = 1 = u+ v . Then

max(aαuβ , dαvβ) + max(bαuβ , aαvβ) + max(cαuβ , bαvβ)

+ max(dαuβ , cαvβ) � min

{
1,

4
2β4α

}
. (5.6)

Proof. For u = 0 or v = 0 , (5.6) reduces to

aα + bα + cα + dα � min

{
1,

4
2β4α

}
.

If α < 1 then aα +bα +cα +dα � 1 , while for α > 1 we have by Jensen’s inequality
that aα + bα + cα + dα � 41−α � 4/2β4α . Hence we may assume without loss of
generality that 0 < u , v < 1 .

Put v = 1 − u . The second derivative of the left–hand side of (5.6) with respect
to u exists and is nonpositive except when αuβ = dα(1 − u)β or bαuβ = aα(1 − u)β
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or cαuβ = bα(1 − u)β or dαuβ = cα(1 − u)β . By symmetry, any one of these is
representative so the task is reduced to proving (5.6) under the hypothesis

aαuβ = dα(1 − u)β . (5.7)

Suppose d = 0 . Then a = 0 , b + c = 1 and (5.6) becomes

(1− c)αuβ +max
{

cαuβ , (1 − c)α(1 − u)β
}

+ cα(1−u)β � min

{
1,

4
2β4α

}
. (5.8)

This in turn is true if it holds when

cαuβ = (1 − c)α(1 − u)β .

In this situation set x = [(1 − u)/u]β . Then (5.8) becomes

1 + x + x2 � min

{
1,

4
2β4α

}(
1 + x1/α

)α (
1 + x1/β

)β
, (5.9)

which holds by Proposition 4.4. So without loss of generality we may require d �= 0 in
(5.7).

Write x = (a/d)α , y = (b/d)α , z = (c/d)α . Since d �= 0 , we have x, y, z < ∞ .
Also

x = ((1 − u)/u)β ; u = (1 + x
1
β )−1.

By interchanging a and d if necessary we may suppose without loss of generality that
0 < x � 1 . The required task is to show that

x + max(y, x2) + max(z, xy) + max(1, xz)

� min

{
1,

4
2β4α

}
(1 + x1/β)β (1 + x1/α + y1/α + z1/α)α . (5.10)

By taking all the terms of (5.10) to the left and differentiating with respect to z , we can
reduce the problem to the cases z = 0 , xy , x−1 , ∞ . The last case has already been
dealt with.

The first demands that we consider

x + max(y, x2) + xy + 1 � min

{
1,

4
2β4α

}
(1 + x1/β)β (1 + x1/α + y1/α)α .

Differentiation with respect to y allows us to consider only y = 0 , x2 , ∞ , and again
the last possibility has been treated. The first subcase is

1 + x + x2 � min

{
1,

4
2β4α

}
(1 + x1/β )β(1 + x1/α)α , (5.11)

which holds by Proposition 4.4. The middle subcase y = x2 corresponds to

1 + x + x2 + x3 � min

{
1,

4
2β4α

}
(1 + x1/β )β(1 + x1/α + x2/α)α , (5.12)
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which is subsumed under Proposition 4.4, since

min

{
1,

4
3α+β

}
� min

{
1,

4
2β4α

}
.

Now we must consider z = xy , which gives

x + max(y, x2) + xy + max(1, x2y)

� min

{
1,

4
2β4α

}
(1 + x1/β)β (1 + x1/α + y1/α + (xy)1/α)α .

Differentiation with respect to y yields the cases y = 0 , x2 , x−2 , ∞ , of which the last
can be removed. The first case is (5.11) once more, and the second subcase reduces to
Proposition 4.3 (ii), as does the third on multiplication by x2 .

Next we take z = x−1 , and must consider

x + (y, x2) + (x−1, xy) + 1 � min

{
1,

4
2β4α

}
(1 + x1/β)β (1 + x1/α + y1/α + x−1/α)α ,

with the subcases y = 0 , x2 , x−2 , ∞ , of which the last is again resolved. When
y = 0 , we must consider

1 + x + x−1 + x2 � min

{
1,

4
2β4α

}
(1 + x1/β )β(1 + x1/α + x−1/α)α .

Multiplication by x converts this to (5.12), which has already been dealt with. We
consider next y = x2 and the inequality

1 + x + x−1 + x2 � min

{
1,

4
2β4α

}
(1 + x1/β )β(1 + x1/α + x2/α + x−1/α)α ,

which is covered by Proposition 4.3(ii) on multiplication by x . When y = x−2 , we
multiply both sides by x2 to recover the same inequality. �

Suppose that α, β satisfy the conditions α + 1
2β = 1 and 0 � α, β � 1 of

Proposition 2.4(ii). Then

β = 1 − 1
2
α � 1

2
� 1

2
α,

so the requirements of Theorem 5.2 are satisfied. Clearly the reverse implication does
not hold in general. Thus Theorem 5.2 is a generalization of Proposition 2.4(ii).

The concluding theorem in this section hangs on Propositions 3.2 and 4.3(v) and
so requires the assumptions of both. There is some overlap here. It is convenient to
separate out the following from the argument.
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LEMMA 5.3. Suppose α, β are positive numbers satisfying α � 1 and α + β �
log 2/ log 3 . Then

α/β < u2.

Proof. The given conditions imply that

α/β � 1/

(
log 3
log 2

− 1

)
=

L
2 − L

,

where L = log 4/ log 3 . From Proposition 4.3(v), it suffices to show that

[
6u2 − (27L − 16)u + 8L

]
u=L/(2−L) < 0.

The left–hand side can be written as

L
(2 − L)2

(5L − 8)(7L − 8).

It is readily seen that 8/5 > L > 8/7 , whence the required result. �

THEOREM 5.4. Suppose α, β are positive numbers such that

α, β � 1, (5.13)

α � log 4/3
log 3/2

, (5.14)

β � log 3/2
log 2

, (5.15)

α + β � log 3
log 2

, (5.16)

3(α−1 + β−1) � 8, (5.17)

u1β � α. (5.18)

Suppose further that ai , bi are nonnegative numbers satisfying a0 + a1 + a2 = 1 =
b0 + b1 . Then

aα0 bβ0 + max
{

aα0 bβ1 , aα1 bβ0

}
+ max

{
aα1 bβ1 , aα2 bβ0

}
+ aα2 bβ1 � 4

2β3α
. (5.19)
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Proof.. Asapreliminary,we remark that (5.14), (5.16) entail respectively (3/2)α �
4/3 and 2α+β � 3 . Multiplication gives

3α2β � 4, (5.20)

or equivalently
β
2

+ α
log 3
log 4

� 1. (5.21)

This enables us to deal with some special cases. For b0 = 0 or b1 = 0 , (5.19)
reduces to

aα0 + aα1 + aα2 � 4
3α2β

. (5.22)

Since α � 1 , the left–hand side is at least unity. Now (5.22) is immediate from (5.20).
Hence we need only establish (5.19) for 0 < b0, b1 < 1 .

Also, if a2 = 0 , then (5.19) becomes

aα0 bβ0 + max
{

aα0 bβ1 , aα1 bβ0

}
+ aα1 bβ1 � 4

3α2β
(5.23)

with a0 + a1 = 1 = b0 + b1 . Since log 4/3
log 3/2 > log 3

log 2 − 1 , (5.13)–(5.17) give that α , β
satisfy the conditions of Proposition 3.2 and hence the left–hand side of (5.23) is at least
3/2α+β . But (5.14) entails that 3/2α+β � 4/(3α2β) . Hence (5.19) holds. Similarly
there is no problem if a0 = 0 .

Put b1 = 1−b0 . The second derivative of the left–hand side of (5.19) with respect
to b0 exists and is nonpositive except when

aα0 bβ1 = aα1 bβ0 or aα1 bβ1 = aα2 bβ0 .

By symmetry, either is representative and it suffices to prove (5.19) under the condition

aα0 bβ1 = aα1 bβ0 . (5.24)

We have seen that we may take a0, a2, b0, b1 > 0 , so we can also assume a1 > 0 .
Put x = (b0/b1)β , so x = (a0/a1)β too, by (5.24). Also put y = (a2/a1)α . Then
1/b1 = 1+x1/α and 1/a1 = 1+x1/α +y1/α . Under (5.24), inequality (5.19) becomes

x2 + x + max(1, xy) + y � 4
3α2β

(1 + x1/β)β (1 + x1/α + y1/α)α .

Differentiationwith respect to y allows us to reduce this to the cases y = 0, 1/x,∞ ,
the first and last of which have already been dealt with under the banners a2 = 0 and
a1 = 0 . Thus we need to establish

x2 + x + 1 + 1/x � 4
3α2β

(1 + x1/β )β(1 + x1/α + x−1/α)α .
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Multiplication by x converts this to

x3 + x2 + x + 1 � 4
3α2β

(1 + x1/β )β(1 + x1/α + x2/α)α . (5.25)

By (5.13) and (5.16), Lemma 5.3 applies, so that by (5.18) we have

u1β � α < u2β .

This ensures that Proposition 4.3(v) applies for 0 < x � 1 . As (5.25) holds when x is
replaced by 1/x , it therefore applies for all x > 0 , and we are done. �

6. Measure–theoretic results

The three theorems of the previous section lead immediately to the following
measure–theoretic results for sum sets.

THEOREM 6.1. Suppose E, F ⊂ [0, 1] are Borel sets.
(a) If α + log 2

log 3β � 1 and α � 1 − log 2
log 3 , then

m(E + F) � m(E)αμc(F)β .

(b) If α + 1
2β � 1 and α � 1

2 , then

m(E + F) � m(E)αν1(F)β .

(c) If α � α0 , β � β0 , where α0 , β0 satisfy (5.13)–(5.18), then

m(E + F) � ν1(E)αν2(F)β .
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