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Abstract. Wepresent several results related to the classical Lyapunov inequality for the oscillation
of second-order linear equations. The first is an improved Lyapunov inequality given in terms of

the downswing of the functions
∫ t
a(t− a)q(t) dt and

∫ b
t (b − t)q(t) dt , extending earlier results

of Kwong and Harris and Kong. Nonoscillation criteria are derived as corollaries. A Lyapunov-
type inequality for two consecutive zeros of the derivative of a solution is then established and
a nonoscillation criterion given as a corollary. An oscillation criterion for positive q(t) is also
proved. It extends the known condition

∫
tγ q(t) dt = ∞ , γ ∈ [0, 1) .

1. Statement of Main Results

The famous Lyapunov inequality states that if a non-trivial solution of the second-
order linear differential equation

y′′(t) + q(t)y(t) = 0, (1.1)

vanishes more than once in the interval [a, b] , then
∫ b

a
q+(t) dt >

4
b − a

. (1.2)

Here, q(t) is an integrable function defined on [a, b] and q+(t) = max {q(t), 0} . We
also define q−(t) = max{−q(t), 0} .

Lyapunov’s inequality can be derived from the following stronger result. If y1(t)
is a solution of (1.1) such that y1(a) = 0 and y′1(c) = 0 ( c > a ), then∫ c

a
q+(t) dt >

1
c − a

. (1.3)

The point a is said to be the left focal point of c , if there are no other zeros of y in
(a, c) . Likewise, if b is the first zero of y to the right of c , then b is called the right
focal point of c .
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In [4], (1.3) has been strengthened to∫ c

a
(t − a)q+(t) dt > 1. (1.4)

The above inequalities do not take into consideration the compensation that the
negative part of q(t) may have on the positive part. Hence, they do not apply very well
to those q that oscillate wildly. Harris and Kong [3] proved that a necessary condition
for focality is that there exists a subinterval I ⊂ [a, c] , such that∫

I
q(t) dt >

1
c − a

. (1.5)

They deduced from this an extension of (1.2), namely, there must exist two subintervals
I1 and I2 ⊂ [a, b] such that ∫

Ii∪I2

q(t) dt >
4

b − a
. (1.6)

It is easy to see that neither (1.4) nor (1.5) implies the other.
Recently, Brown and Hinton [1] obtained a similar result, which was then extended

to linear Hamiltonian systems by Clark and Hinton [2].
One of the purposes of this paper to point out that a result that encompasses both

(1.4) and (1.5), can be obtained from a simple integral identity using just an integration
by parts argument.

We first give some definitions which are used to simplify the statement of our
criteria. Let F be a continuous function defined on an interval (a, b) , where b may be
∞ . The (forward) downswing of F at a point t ∈ (a, b) is defined to be

DFb(t) = DF(t) = F(t) − inf
u∈[t,b)

F(u). (1.7)

It measures the maximum amount that F can fall below F(t) from the point t onward.
If the right endpoint b is obvious from the context, it is sometimes omitted from the
notation. The (forward) downswing of F over the entire interval (a, b) is defined as

DF(a, b) = sup
t∈(a,b)

DF(t). (1.8)

If F is a monotonically decreasing function, then its downswing is simply the total
variation of F in (a, b) . It is easy to see that an equivalent definition of DF(a, b) is

DF(a, b) = sup
a<t<u<b

{F(t) − F(u)} . (1.9)

Furthermore, in the above definition, we can consider only those t and u at which F
has local maxima and local minima, respectively.

In a similar way, we can define the backward downswing of F at t as

D̄F(t) = F(t) − inf
s∈(a,t]

F(s), (1.10)
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and the backward downswing of F over (a, b) as

D̄F(a, b) = sup
t∈(a,b)

D̄F(t). (1.11)

Condition (1.5) can now be restated as

D̄Q(a, c) >
1

c − a
, (1.12)

where Q(t) =
∫ t

a q(s) ds .
Our first result is

THEOREM 1. Define

K(t) =
∫ t

a
(s − a)q(s) ds. (1.13)

A necessary condition for a to be a left focal point of c is that

D̄K(a, c) > 1. (1.14)

If, in addition, we know that y1 is nondecreasing in [a, c] , then

D̄K(c) > 1. (1.15)

It will be shown in Section 2 that (1.14) implies (1.12), so Theorem 1 contains the
result of Harris and Kong.

In order to extend the original Lyapunov inequality for the existence of two zeros
of solutions of (1.1) in [a, b] , we construct, for the endpoint b , the analogous function

K̄(t) =
∫ b

t
(b − s)q(s) ds. (1.16)

THEOREM 2. If there is a non-trivial solution of (1.1) with more than one zero in
[a, b] , then there exists a point c ∈ (a, b) , such that

D̄K(a, c) > 1, (1.17)

and
DK̄(c, b) > 1, (1.18)

where K and K̄ are defined as above.

Some applications of Theorem 1 will be given in Section 3. In particular, we have
the next two Theorems.

THEOREM 3. Let (1.1) be defined in [0,∞) . If

lim sup
T→∞

∫ T

0
tq(t) dt − lim inf

T→∞

∫ T

0
tq(t) dt < 1, (1.19)

then (1.1) is nonoscillatory.
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This is an extension of the well-known nonoscillation criterion that requires

lim
T→∞

∫ T

tq(t) dt to exist. (1.20)

Leighton ([8, p. 71]) has established a rather unconventional nonoscillation crite-
rion: if q is nonincreasing and

∫ ∞
q1/2(t) dt < ∞ , then (1.1) is nonoscillatory. Most

oscillation and nonoscillation criteria make use of the integral of q rather than that of
q1/2 . With the help of Theorem 1, we can extend Leighton’s criterion to a much wider
class of equations. What follows is only a particular case.

THEOREM 4. If for some n > 0 , q(t)/tn is nonincreasing (or equivalently,
tq′(t)/q(t) is bounded above) and∫ ∞

a
q1/2(t) dt < ∞, (1.21)

then (1.2) is nonoscillatory in (a,∞) .

It is obvious that the above-mentioned nonoscillation criteria are useless for differ-
ential equations that have coefficients that are somewhat periodic in nature. In general,
only a few very specialized nonoscillation criteria are known for such equations. The
following theorem — analogous to Lyapunov’s inequality, but for a solution whose
derivative has more than one zero — can be used to give one such criterion, albeit rather
crude.

Let [a, b] be a given interval. We define

P =
∫ b

a
q+(t) dt, and (1.22)

N =
∫ b

a
q−(t) dt. (1.23)

THEOREM 5. If (1.1) has a solution y2(t) such that y′2(a) = 0 , y′2(b) � 0 , and
y2(t) > 0 in [a, b] , then

P � N
1 + N(b − a)

, (1.24)

or equivalently,

either P(b − a) � 1 or N � P
1 − P(b − a)

. (1.25)

A simple corollary of Theorem 5 is

THEOREM 6. If one can decompose [0,∞) into a sequence of consecutive
disjoint intervals {Ii, i = 0, 1, . . .} , of lengths Ti , respectively, such that over each Ii
( i > 0 ) with

Pi =
∫

Ii

q+(t) dt, (1.26)
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and

Ni =
∫

Ii

q−(t) dt, (1.27)

we have

Pi <
Ni

1 + NiTi
, (1.28)

then equation (1.1) is nonoscillatory in [0,∞) .

We shall prove Theorems 1 and 2 in Section 2. Our starting point is the simple
identity

y1(c) =
∫ c

a
(t − a)q(t)y1(t) dt (1.29)

where, as before, y1 is the solution of (1.1) such that y1(a) = y′1(c) = 0 . This can
be easily obtained by integrating (1.1) twice (first over [s, c] and then over [a, b]) , and
then changing the order of integration.

The proof is based on some lemmas relating the downswing of a function to that
of another or to some identity of the form (1.29).

In Section 3, we indicate how the results can be extended to the more general
equation

(p(t)y′(t))′ + q(t)y(t) = 0, (1.30)
and discuss further applications of the main theorems to the oscillation of (1.1). The
following oscillation criterion, based on an identity extending (1.29), will also be
established.

THEOREM 7. If q(t) � 0 and

lim sup
1
T

∫ T

0
t2q(t) dt > 1, (1.31)

then (1.1) is oscillatory.

This result extends the well-known criterion that
∫

tγ q(t) dt = ∞ for some γ ∈
[0, 1) .

Section 4 is devoted to some constrained optimization problems that are of interest
on their own, and that will be used to prove Theorem 4. Section 5 contains the proofs
of Theorems 5 and 6.

2. Proofs of Theorems 1 and 2

Throughout this section, we assume that g(t) is a positive nondecreasing differen-
tiable function on a given interval [α, β ] , and f (t) is a locally integrable function on the
same interval. In general, f can change sign arbitrarily often. Let F(t) =

∫ t
α f (s) ds .

LEMMA 1. Suppose ∫ β

α
f (t)g(t) dt = A > 0. (2.1)
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Then

D̄F(α, β) � D̄F(β) � A − Fmg(α)
g(β)

, (2.2)

where Fm = mint∈[α,β ] F(t) . In particular, if g(α) = 0 , then

D̄F(α, β) � D̄F(β) � A
g(β)

. (2.3)

Furthermore, equality can occur in the second part of these inequalities if and only if
at every point t ∈ [α, β ] , either F(t) = Fm , or g′(t) = 0 .

Proof. The lemma is a simple consequence of the integration by parts identity

∫ β

α
f (t)g(t) dt = F(β)g(β) −

∫ β

α
F(t)g′(t) dt, (2.4)

and the facts F(t) � Fm , and g′ � 0 . �

Proof of Theorem 1. The second part of Theorem 1 follows if we apply Lemma 1
to (1.29), with g(t) = y1(t) , f (t) = (t − a)q(t) , and [α, β ] = [a, c] (and take the
effort to exclude the possibility of equality in the resulting inequality).

To obtain the first part of Theorem 1, we let β be the first point in [a, c] with
y′1(β) = 0 , and apply the second conclusion to y1 in [a, β ] . �

LEMMA 2. Define H(t) =
∫ t
α f (t)g(t) dt . Then

D̄H(α, β) � g(β) D̄F(α, β). (2.5)

Proof. By definition, there exist two points γ < δ in [α, β ] such that

D̄H(α, β) =
∫ δ

γ
f (t)g(t) dt

= (F(δ) − F(γ ))g(γ ) +
∫ δ

γ
f (t)(g(t) − g(γ )) dt

� D̄F(γ , δ)g(γ ) +
∫ δ

γ
f (t)(g(t) − g(γ )) dt. (2.6)

Hence, ∫ δ

γ
f (t)(g(t) − g(γ )) dt � D̄H(α, β) − D̄F(γ , δ)g(γ ). (2.7)

We now apply Lemma 1 to this inequality, with g(t) replaced by g(t)− g(γ ) , to obtain

D̄F(γ , δ)(g(δ) − g(γ )) � D̄H(α, β) − D̄F(γ , δ)g(δ), (2.8)

from which (2.5) follows. �
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As a corollary of Lemma 2, we see that (1.14) implies (1.5). Hence Theorem 1
includes Harris and Kong’s result.

LEMMA 3. In the interval [a, b] , define as before K(t) =
∫ t

a(t − a)q(t) dt . Take

any point α ∈ (a, b) and define K1(t) =
∫ t
α(t − α)q(t) dt . Then

D̄K1(α, b) � D̄K(α, b) � D̄K(a, b). (2.9)

Proof. The second inequality is obvious. The first inequality can be obtained by
applying Lemma 2, using f (t) = (t − a)q(t) , and g(t) = (t − α)/(t − a) . �

The significance of this lemma can be explained by the following observation.
Given the differential equation on the interval [a, c] , suppose it is known that c does
not have a left focal in [a, c] . In general, one cannot conclude that for all c1 < c , there
is likewise no left focal point in [a, c] . However, as a consequence of Lemma 3, we
have

THEOREM 8. If D̄K(a, c) � 1 , with K as defined in (1.13), then no point in
[a, c] can have a left focal point in [a, c] .

We are now ready to prove our second main result.
Proof of Theorem 2. Suppose that a nontrivial solution y0(t) of equation (1.1) has

two consecutive zeros α < β in [a, b] , and we may assume that y0(t) > 0 in (α, β) .
Let c ∈ (α, β) be a point at which y0 attains its maximum in (α, β) . Then α is the
left focal point of c and β is the right focal point of c . By applying Theorem 8 to the
two subintervals, we see that

D̄K(a, c) > 1, (2.10)

and
DK̄(c, b) > 1, (2.11)

and the conclusion of Theorem 2 follows. �

3. Examples and Further Applications

It is well known how one can transform equation (1.30) to equation (1.1) by a
change of the independent variable. Alternatively, one can extend Theorem 1 and its
consequences directly by observing that the analog of the basic identity (1.29) for (1.30)
is

y1(c) =
∫ c

a
P(t)q(t)y1(t) dt (3.1)

where

P(t) =
∫ t

a

ds
p(s)

. (3.2)

We also define

P̄(t) =
∫ b

t

ds
p(s)

. (3.3)
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It follows that Theorems 1 and 2 are valid for (1.30) provided that we now define

K(t) =
∫ t

a
P(s)q(s) ds (3.4)

and

K̄(t) =
∫ b

t
P̄(s)q(s) ds. (3.5)

A simple consequence of Theorem 1 is

COROLLARY 1. Let K(t) =
∫ t

0 tq(t) dt . If

lim sup
t→∞

D̄K(t,∞) < 1, (3.6)

then (1.1) is nonoscillatory in [0,∞) .

Corollary 1 implies Theorem 3.
EXAMPLE 1. The equation

y′′(t) + C
sin t

t
y(t) = 0 (3.7)

has been shown by Willet [5] to be nonoscillatory if C < 1/
√

2 , and oscillatory if
C > 1/

√
2 . Wong [7] shows that the critical case C = 1/

√
2 is nonoscillatory. The

results in [5] and [7] are stated for the differential equation y′′ + (sin β/t)y = 0 . A
scaling can be used to transform that to (3.7). It is easy to see that Theorem 3 gives
nonoscillation only for C � 1/2 . This shows that the main results of this paper are far
from being optimal. Yet they are still useful because more accurate criteria are often
tied to the particular form of the coefficients. For instance, even with the help of a very
crude estimate, Theorem 3 shows that

y′′(t) +
∑

i Ci sinωit

t
y(t) = 0 (3.8)

is nonoscillatory if
∑

i Ci/ωi � 1/2 . The constant 1/2 can be sharpened by more
carefully estimating the maxima and minima of the expression

∑
i Ci cosωit/ωi . Yet

it is not readily obvious how Willet or Wong’s method can be applied to (3.8). �

EXAMPLE 2. When we subtract a negative constant from the coefficient in the
(3.8), we obtain an example

y′′(t) +
(∑

i Ci sinωit
t

− λ
)

y(t) = 0, (3.9)

for which Theorem 3 is no longer applicable because limT→∞
∫ T

tq(t) dt = −∞ ,
but Corollary 1 is. Again a crude estimate is sufficient to show that the equation is
nonoscillatory if

∑
i Ci/ωi � 1 + πλ/ω , where ω = max{ωi} . �
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EXAMPLE 3. The differential equation

y′′(t) + C sin(ω t2)y(t) = 0 (3.10)

is nonoscillatory if C � ω . �

EXAMPLE 4. Note that Theorem 3 is utterly inadequate for differential equations
with periodic coefficients. For instance, we cannot conclude from Theorem 3 that the
Hill’s equation

y′′(t) + (sin t − λ )y(t) = 0 (3.11)

is nonoscillatory, unless λ � 1 . The Floquet theory provides a way to estimate the
critical λ0 (which is also the infimum of the essential spectrum of the associated
second-order differential operator) that demarcate the oscillation and nonoscillation
of (3.11). Let y1 and y2 be the two fundamental solutions of (3.11), such that
y1(0) = y′2(0) = 1 , and y′1(0) = y2(0) = 0 . Then λ0 is the smallest critical
value that gives y1(2π) + y′2(2π) = 2 . By numerical computation, we find that
0.3784892 < λ0 < 0.3784893 .

On the other hand, Theorem 5 (with the help of numerical computation) shows
that (3.11) is nonoscillatory if λ > 0.8126 . We use the decomposition [0,∞) =
∪[(i − 1)π, iπ] . One can see that the conclusion from Theorem 5 is not optimal.
However, the Floquet method is tied to the periodic nature of the coefficient. For
instance, if the coefficient is perturbed by a small nonperiodic function, then the Floquet
method no longer works but Theorem 5 may still be useful. �

To conclude this section, we prove Theorem 7 and its corollary.
Proof of Theorem 7. Note that a translation preserves (1.31), namely that

lim sup
1

T − a

∫ T−a

0
(t − a)2q(t) dt > 1 (3.12)

for all a . Hence we can assume that the solution y1(t) with initial conditions y1(0) = 0 ,
y′1(0) = 1 has no other zero in [0,∞) . Since q(t) � 0 , this implies that y′1(t) > 0
and y1 is concave in [0,∞) . Let T > 0 . Concavity gives

y1(t) � ty1(T)
T

. (3.13)

We can obtain the following identity in a way similar to the derivation of (1.29).

y1(T) = Ty′1(T) +
∫ T

0
tq(t)y1(t) dt. (3.14)

Together with (3.13), this gives

y1(T) >
y1(T)

T

∫ T

0
t2q(t) dt, (3.15)
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which contradicts the hypothesis of the theorem. �
COROLLARY 2. If q(t) � 0 , and there exists γ ∈ [0, 1) , such that∫ ∞

0
tγ g(t) dt = ∞, (3.16)

then

lim sup
1
T

∫ T

0
t2q(t) dt = ∞, (3.17)

and hence, by Theorem 7, (1.1) is oscillatory.

Proof. Suppose that (3.17) is false. Then∫ T

0
t2q(t) dt � MT (3.18)

for some M > 0 and for all T > 0 . Define

F(t) =
∫ t

0
sγ q(t) ds. (3.19)

Integrating (3.18) by parts gives the integral inequality

F(T) � M
T1−γ +

2 − γ
T2−γ

∫ T

0
t1−γF(t) dt. (3.20)

By (3.16), F(T) � 0 for sufficiently large T , say for T > α . We rewrite (3.20) as

F(T) � A +
M

T1−γ +
2 − γ
T2−γ

∫ T

α
t1−γF(t) dt, T � α, (3.21)

where A =
∫ α

0 t1−γF(t) dt .
The condition F(T) � 0 is necessary to apply the theory of integral inequalities

which asserts that if G(T) is the function that satisfies the integral equation

G(T) = A +
M

T1−γ +
2 − γ
T2−γ

∫ T

α
t1−γG(t) dt, T � α, (3.22)

then
F(T) � G(T), T � α. (3.23)

It is easy to solve (3.22) to find that

G(T) = A +
M

1 − γ

(
1

α1−γ − 1
T1−γ

)
< ∞. (3.24)

It follows that F(T) < ∞ , contradicting (3.16). �

The oscillation criterion (3.16) has been attributed to Wintner, Hille, and Hartman
(the case γ = 0 is the classical Fite criterion), and extended to nonlinear equations by
Wong. For references, see [6].
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4. Some Optimization Problems and Theorem 4

Theorem 4 is a consequence of the following fact. Suppose that q(t)/tn is nonin-
creasing, and

∫ T
a q1/2(t) dt is sufficiently small; then

∫ T
a tq(t) dt will also be small. A

scaling argument shows that it suffices to establish this fact for T = 1 .
We are, therefore, interested in the optimization problem:
PROBLEM 1. Knowing that k(t)/tm (m > 0) is nonincreasing, and

∫ 1
0 k(t) dt = 1 ,

find

max
∫ 1

0
tk2(t) dt. (4.1)

The answer is given by

LEMMA 4. The maximum as required in the optimization problem above exists
and is attained by functions of the form

k̄(t) =
{

Ctm in [0,α]
0 in (α, 1] (4.2)

for some α ∈ (0, 1] , and the constant C = (m + 1)/αm+1 .

Since the proof for the general case is the same as that when m = 0 , we shall
concentrate only on the latter special case and assume that k(t) is nonincreasing. Our
method is to approximate k(t) by step functions that are constant in equal subintervals
of length 1/N of [0, 1] . We then take the limit when N → ∞ to obtain the conclusion
for the continuous case. By rewriting the various integral as a sum, we have a discrete
analog of our optimization problem.

PROBLEM 2. Knowing that the set of real numbers {ki : i = 1 . . .N} is nonin-
creasing and

∑N
i=1 ki = 1 , find

max
N∑

i=1

(2i − 1)k2
i . (4.3)

Let us suppose that we have already found the optimal set of numbers, still denoted
by ki for simplicity. We prove by induction that the first j numbers must be equal,
provided that kj �= 0 , and this solves the problem.

Since kj �= 0 , kj−1 �= 0 , and by the induction hypotheses, the first j− 1 numbers
are equal. If we hold kj+1, . . . , kN constant, then maximizing the entire sum becomes
maximizing the partial sum Sj over the first j numbers, which is now a function of
kj , since each of the first j − 1 numbers are all equal to (1 − s − kj)/(j − 1) , where
s =

∑N
i=j+1 ki is a fixed constant. Direct computation easily shows that Sj is a quadratic

function of kj , with a positive leading coefficient. The maximum of S can only occur
at the two endpoints of the interval of definition for kj , which is (0, (1 − s)/j] . Again
direct computation shows that Sj is the same at either endpoint, but since kj �= 0 ,
kj = (1 − s)/j . So the first j numbers are all equal.
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Note that our proof would have failed if the coefficients (2i − 1) in (4.3) are
replaced by i , because the partial sum Sj will then have a larger value when kj = 0
than when it is at the other endpoint of the interval.

Proof of Theorem 4. We may assume, without loss of generality, that

∫ ∞

0
q1/2(t) dt = A <

(
4

n + 2

)1/2

. (4.4)

Let us choose any T > 0 and try to maximize
∫ T

0 tq(t) dt . By Lemma 4, the maximum

is attained by the function q(t) = Ctn on [0, T] . Using the constraint
∫ T

0 q1/2(t) dt � A ,
we find that C � (n + 2)/T2m+2 . Then

∫ T

0
tq(t) dt =

CT2m+2

n + 2
� 1. (4.5)

Hence by Theorem 3, equation (1.1) is nonoscillatory. �
We conclude this section by noting that the monotonicity of tnq(t) can be further

relaxed. Again we confine ourselves to the simplest case n = 0 . Instead of requiring
that q(t) be nonincreasing, we can require just that at each point t , q(t) will not
increase more than a fixed multiple, that is, there exists an M � 1 , such that

q(s)
q(t)

� M, for all s > t. (4.6)

To see that this is true, we construct the function

q∗(t) = sup
u>t

q(u). (4.7)

Then q∗(t) is nonincreasing and q(t) � q∗(t) � Mq(t) . Hence,

∫ ∞

0
q∗(t) dt � M

∫ ∞

0
q(t) dt < ∞. (4.8)

By Theorem 4, the equation z′′(t) + q∗(t)z(t) = 0 is nonoscillatory. By Sturm’s
Comparison Theorem, (1.1) is also nonoscillatory.

Furthermore, we do not even need (4.6) to hold for every t , but for sufficiently
many t . More precisely, we require that there is a number 0 < δ < 1 such that for all
T > 0 , the set

{
t ∈ [0, T] :

sups>t q(s)
q(t)

> M

}
has measure � δT. (4.9)

We omit the simple proof.
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5. Proof of Theorems 5 and 6

Proof of Theorem 5. We prove Theorem 5 by using a sequence of reductions to
simpler cases. For simplicity, we will leave out the subscript 2 when we write the
solution y2 .

Step 1. We can assume without loss of generality that y′(b) = 0 . Suppose that we
originally have y′(b) < 0 . In a small neighborhood of b , [b − ε, b] , modify q(t) by
replacing it by a smaller and sufficiently large negative function, so that the modified
solution ȳ′(b) = 0 . Then the conclusion of Theorem 3, (1.24), holds for the modified
coefficient. Since the modified coefficient has a smaller P and a larger N than those
of the original coefficient, (4.6) holds for the original q(t) as well.

Step 2. We need only prove the theorem for the case when y(t) is increasing in
[a, b] . By using a reflection, we see that the theorem is also true for the case when
y(t) is decreasing in [a, b] . Now suppose that y(t) is no longer monotone in [a, b] .
We decompose [a, b] into subintervals Ii in each of which y(t) is monotone. Then
inequality (1.24) applies to each of these intervals. By summing them up, we get (1.24)
over the entire interval [a, b] . Let us illustrate this in the simplest case when there are
only two subintervals I1 = [a, c] and I2 = [c, b] , then

P1 � N1

1 + N1(c − a)
>

N1

1 + N1(b − a)
. (5.1)

Likewise,

P2 � N2

1 + N2(b − c)
>

N2

1 + N2(b − a)
. (5.2)

Adding them up gives (1.24).
Step 3. We may assume that q(t) is continuous. If it is not, we can approximate it

(in the L1 norm) by a continuous function for which (1.24) holds. Taking limit gives
the general result.

Furthermore, a similar approximation argument shows that we may assume that
q(t) changes sign only a finite number of times in [a, b] , that is, there is a finite
decomposition [a, b] = ∪Ii , such that, in each Ii , q(t) is either � 0 or � 0 . Since
y(t) has a local minimum at a and a local maximum at b , q(a) � 0 and q(b) � 0 .
As a consequence, q(t) changes sign an even number of times, say 2n times (n � 1 ).

Step 4. Let us first take care of the simplest case of n = 1 , and we assume
q(t) � 0 in [a, c] and q(t) � 0 in [c, b] . In the rest of the proof, we freely make use of
coefficients that contain delta functions. Such a function introduces a jump in the first
derivative of a solution. We need the following lemmas.

LEMMA 5. Suppose q(t) � 0 in [α, β ] , and ρ = y′(α)/y(α) � 0 . Then

y′(β)
y(β)

� ρ + N1

1 + (ρ + N1)(β − α)
, (5.3)

where N1 = − ∫ β
α q(t) dt . Equality in the above inequality holds if and only if q(t) is

a delta function concentrated at α .
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Proof. Essentially, this is another optimization problem. Given a fixed N1 , what
q(t) will give the minimum y′(β)/y(β) ? The proof again resorts to using the technique
of approximation with step functions; it would be interesting to find a direct proof.
Instead of starting with equation (1.1), we consider the equivalent Riccati equation

r(t) = ρ + N(t) −
∫ t

α
r2(s) ds, (5.4)

where r(t) = y′(t)/y(t) , and N(t) = − ∫ t
α q(s) ds .

The optimization problem under consideration can now be restated as: minimize
r(β) under the constraints that N(β) = N and N(t) is nondecreasing. In view of the
approximation trick, we need only establish the result when N(t) is a step function.
Our claim is that r(β) can be progressively decreased by raising every step value to be
equal to N . Hence, the absolute minimum of r(β) must be attained when all the steps
have the same value N(t) = N . We can prove this claim by induction on the steps of
the function, starting with the second to last step and working backwards to the first
step.

We have to be a little careful in dealing with (5.4) when N(t) is a step function,
because r(t) is no longer a continuous function. In fact, at every point of discontinuity s
of N(t) , r(t) is also discontinuous and we must be working with r(s−) = limt→s− r(t)
and r(s+) = limt→s+ r(t) , instead of simply r(s) . Nonetheless, we only have to
observe that

r(s+) − r(s−) = N(s+) − N(s−). (5.5)

In the jth cycle of our induction process, all the last j steps of N(t) have the same
value N , but the current one does not. Let the subinterval corresponding to the current
step be [γ , δ ] . By raising the step value in this interval to N , we actually construct a
new Riccati equation. The required conclusion is thus a simple comparison between
the two r(β) values for the original and the new equations. Since the two functions
N(t) have the same steps to the left of the current step, the two solutions are identical
to the left of the current step. Hence, r(γ−) = r̄(γ−) , where r̄(t) denotes the solution
of (5.4) with the new N(t) . However, on the right hand side of γ ,

r(γ+) + N − N(γ+) = r̄(γ+). (5.6)

Direct computation shows that

r(δ+) = r(δ−) + N − N(γ+) =
r(γ+)

1 + r(γ+)(δ − γ )
+ N − N(γ+) (5.7)

and

r̄(δ+) = r̄(δ−) =
r̄(γ+)

1 + r̄(γ+)(δ − γ )
=

r(γ+)
1 + r̄(γ+)(δ − γ )

+
N − N(γ+)

1 + r̄(γ+)(δ − γ )
.

(5.8)
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Obviously, r(δ+) � r̄(δ+) . To the right of δ , the two equations become identical
again, but r starts with a larger value than r̄ at δ . By the classical Sturm Comparison
Theorem (use the fact that the Riccati equation corresponds to a second-order linear
differential equation), r(t) will remain larger than r̄(t) throughout [δ, β ] . Hence,
r(β) � r̄(β) . The proof is now complete. �

A similar result holds when we manipulate the positive part of q(t) to minimize
r(t) . The optimal value is attained when q(t) is all concentrated at the right endpoint
β . Since the proof is similar to that of Lemma 5, it is omitted.

LEMMA 6. Suppose q(t) � 0 in [α, β ] , y′(t) � 0 in [α, β ] , and ρ =
y′(α)/y(α) � 0 . Then

y′(β)
y(β)

� ρ − P1(1 + ρ(β − α))
1 + ρ(β − α)

, (5.9)

where P1 =
∫ β
α q(t) dt . Equality in the above inequality holds if and only if q(t) is a

delta function concentrated at β .

Let us return to the two-interval case of Theorem 5. Apply Lemma 5 to the solution
in the interval [a, c] to get

ρ =
y′(c)
y(c)

� N1

1 + N1(c − a).
(5.10)

Next we apply Lemma 6 to the solution in the interval [c, b] to get

0 =
y′(b)
y(b)

� ρ − P1(1 + ρ(b − c))
1 + ρ(b − c)

, (5.11)

from which
P1 � ρ

1 + ρ(b − c)
. (5.12)

Substituting (5.10) into this inequality give the conclusion of the Theorem.
Step 5. Let us now suppose that, as in Step 3, q(t) changes sign 2n times, n � 2 .

We give below a construction to reduce the case to one in which q(t) change sign
2(n − 1) times. Then by induction, the conclusion of the general case follows. Since
the construction is essentially the same in the case n = 2 as in the general case, for
simplicity, we just assume n = 2 .

Let the subintervals of constant sign of q(t) be q(t) � 0 in [a, c1] , q(t) � 0
in [c1, c2] , q(t) � 0 in [c2, c3] , and q(t) � 0 in [c3, b] , Denote N1 = − ∫ c1

a q(t) dt ,

P1 =
∫ c2

c1
q(t) dt , N2 = − ∫ c3

c2
q(t) dt , and P2 =

∫ b
c3

q(t) dt . Using the same proof for
the two-interval case as in Step 4, we see easily that

P2 >
N2

1 + N2(b − c2)
. (5.13)
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Replace q(t) in [c1, c2] by a positive delta function concentrated at c2 , while
preserving P1 . Retain the same q(t) in the other three intervals. Let us denote by q1(t)
the new function, and by y1(t) the solution of the new differential equation with the
same initial conditions as y(t) at a . We have y(t) = y1(t) in [a, c1] . Apply Lemma 6
to [c1, c2] , we have r(c2) � r1(c2) .

If r1(c2) � 0 , then the two-interval case of the theorem applies to q1(t) in [a, c2] ,
and we have

P1 >
N1

1 + N1(c2 − a)
. (5.14)

Together with (5.13), this implies the theorem and we are done.

So we only need to consider the remaining case r(c2) � r1(c2) > 0 . By the Sturm
Comparison Theorem, r(t) � r1(t) in [c2, b] , unless y1(t) has a zero before b . In the
first case, r1(b) � r(b) = 0 , giving y′1(b) < 0 . Hence, there exists a point β ∈ [c3, b]
at which y′1(β) = 0 , and y(t) is increasing in [c2, β ] . It is easy to see that this fact is
also true in the second case. In all cases, β must be in [c3, b] since y1(β) is a local
maximum for y1 . Next we replace q1(t) in [β , b] by 0, to get a new function q2(t)
while the corresponding solution y2(t) will have vanishing first derivative at a and b .
In doing so we have reduced the positive part of the coefficient q1(t) . Hence, if we can
prove the required inequality for q2(t) , that will imply the same inequality for q(t) .

In an similar way, we replace the part of q2(t) in [c2, c3] by a delta function that
is concentrated at c2 , while preserving N2 . By going through a similar sequence of
arguments, we arrive at a new function q3(t) that has less positive part than q(t) but its
solution y3(t) is nondecreasing in [a, b] and y′3(a) = y′3(b) = 0 . Notice that we have
introduced two delta functions, both concentrated at c2 and of opposite sign, in the
construction of q3(t) from q(t) . Depending on the relative magnitude of these delta
functions, they coalesce into one delta function of either positive or negative sign. In
any case, q3(t) is now a function that changes sign only twice, and the result in Step 4
applies. The proof of Theorem 5 is now complete. �

Proof of Theorem 6. Let Ii = [ai, ai+1] be the subintervals in the hypotheses of
Theorem 6, and y0(t) be the solution of (1.1) with initial condition y0(a1) = 1 and
y′0(a1) = 0 . Since (1.28) implies that P1T1 < 1 , the classical Lyapunov inequality for
disfocality (1.3) shows that y0 cannot have a zero in I1 . By applying Theorem 5 to y0

in the interval I1 , we see that y0(a2) > 0 . We claim that y0 has no zero in I2 and that
y0(a3) > 0 . Let y1(t) be the solution of (1.1) with initial condition y1(a2) = y0(a2)
and y′1(a2) = 0 . It follows from the Sturm Comparison Theorem that y′0(t) > y′1(t) . As
before, Lyapunov’s inequality and Theorem 5 imply that y1 has no zero in the interval
I2 , and y1(a3) > 0 . Hence, y0 has no zero in I2 and y0(a3) > y1(a3) > 0 , as claimed.
In a similar way, we can proceed to show that y0 has no zero in Ii and y0(ai) > 0 , for
all i . The proof of Theorem 6 is then complete. �
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